1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
# Copyright 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# A134561 triangle T(n,k) = k-th number whose Zeckendorf has exactly n terms
# 4180 5777 6387 6620 6709 6743 6756 6761 6763 6764 8361
# 1596 2206 2439 2528 2562 2575 2580 2582 2583 3193 3426
# 609 842 931 965 978 983 985 986 1219 1308 1342
# 232 321 355 368 373 375 376 465 499 512 517
# 88 122 135 140 142 143 177 190 195 197 198
# 33 46 51 53 54 67 72 74 75 80 82
# 12 17 19 20 25 27 28 30 31 32 38
# 4 6 7 9 10 11 14 15 16 18 22
# 1 2 3 5 8 13 21 34 55 89 144
# Y=1 Fibonacci
# Y=2 A095096
# X=1 first with Y many bits is Zeck 101010101
# A027941 Fib(2n+1)-1
# X=2 second with Y many bits is Zeck 1001010101 high 1, low 10101
# A005592 F(2n+1)+F(2n-1)-1
# X=3 third with Y many bits is Zeck 1010010101
# A005592 F(2n+1)+F(2n-1)-1
# X=4 fourth with Y many bits is Zeck 1010100101
package Math::PlanePath::ZeckendorfTerms;
use 5.004;
use strict;
use List::Util 'max';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant y_minimum => 1;
use constant x_minimum => 1;
use Math::NumSeq::FibbinaryBitCount;
my $fbc = Math::NumSeq::FibbinaryBitCount->new;
my $next_n = 1;
my @n_to_x;
my @n_to_y;
my @yx_to_n;
sub _extend {
my ($self) = @_;
my $n = $next_n++;
my $y = $fbc->ith($n);
my $row = ($yx_to_n[$y] ||= []);
my $x = scalar(@$row) || 1;
$row->[$x] = $n;
$n_to_x[$n] = $x;
$n_to_y[$n] = $y;
}
sub n_to_xy {
my ($self, $n) = @_;
### ZeckendorfTerms n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n) || $n == 0) { return ($n,$n); }
{
# fractions on straight line ?
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
my $y = $fbc->ith($n);
while ($next_n <= $n) {
_extend($self);
}
### $self
return ($n_to_x[$n], $n_to_y[$n]);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### ZeckendorfTerms xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 1 || $y < 1) { return undef; }
if (is_infinite($x)) { return $x; }
if (is_infinite($y)) { return $y; }
for (;;) {
if (defined (my $n = $yx_to_n[$y][$x])) {
return $n;
}
_extend($self);
}
}
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### ZeckendorfTerms rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
return (1, 10000);
# $self->xy_to_n($x2,$y2));
}
1;
__END__
=cut
# math-image --path=ZeckendorfTerms --output=numbers --all --size=60x14
=pod
|