File: ZeckendorfTerms.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (156 lines) | stat: -rw-r--r-- 3,922 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# A134561 triangle T(n,k) = k-th number whose Zeckendorf has exactly n terms

# 4180 5777 6387 6620 6709 6743 6756 6761 6763 6764 8361
# 1596 2206 2439 2528 2562 2575 2580 2582 2583 3193 3426
#  609  842  931  965  978  983  985  986 1219 1308 1342
#  232  321  355  368  373  375  376  465  499  512  517
#   88  122  135  140  142  143  177  190  195  197  198
#   33   46   51   53   54   67   72   74   75   80   82
#   12   17   19   20   25   27   28   30   31   32   38
#    4    6    7    9   10   11   14   15   16   18   22
#    1    2    3    5    8   13   21   34   55   89  144

# Y=1  Fibonacci
# Y=2  A095096

# X=1  first with Y many bits is Zeck    101010101
#      A027941 Fib(2n+1)-1
# X=2  second with Y many bits is Zeck  1001010101   high 1, low 10101
#      A005592 F(2n+1)+F(2n-1)-1
# X=3  third with Y many bits is  Zeck  1010010101
#      A005592 F(2n+1)+F(2n-1)-1
# X=4  fourth with Y many bits is Zeck  1010100101

package Math::PlanePath::ZeckendorfTerms;
use 5.004;
use strict;
use List::Util 'max';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant y_minimum => 1;
use constant x_minimum => 1;


use Math::NumSeq::FibbinaryBitCount;
my $fbc = Math::NumSeq::FibbinaryBitCount->new;

my $next_n = 1;
my @n_to_x;
my @n_to_y;
my @yx_to_n;

sub _extend {
  my ($self) = @_;
  my $n = $next_n++;
  my $y = $fbc->ith($n);
  my $row = ($yx_to_n[$y] ||= []);
  my $x = scalar(@$row) || 1;
  $row->[$x] = $n;
  $n_to_x[$n] = $x;
  $n_to_y[$n] = $y;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### ZeckendorfTerms n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n) || $n == 0) { return ($n,$n); }

  {
    # fractions on straight line ?
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my $y = $fbc->ith($n);
  while ($next_n <= $n) {
    _extend($self);
  }
  ### $self
  return ($n_to_x[$n], $n_to_y[$n]);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### ZeckendorfTerms xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x < 1 || $y < 1) { return undef; }
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  for (;;) {
    if (defined (my $n = $yx_to_n[$y][$x])) {
      return $n;
    }
    _extend($self);
  }
}

sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ZeckendorfTerms rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  return (1, 10000);
#          $self->xy_to_n($x2,$y2));
}

1;
__END__

=cut

# math-image  --path=ZeckendorfTerms --output=numbers --all --size=60x14

=pod