1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
#!/usr/bin/perl -w
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
use 5.004;
use strict;
use POSIX ();
use Math::Trig 'pi';
use Math::PlanePath::SierpinskiCurve;
# uncomment this to run the ### lines
# use Smart::Comments;
# Nlevel A146882 5*(4^(n+1)-1)/3 = 5*A002450
# =for Test-Pari-DEFINE Ytop(k,L) = if(k==0,0, (L+2)*2^(k-1) - 2)
#
# =for Test-Pari Ytop(0,1) == 0
#
# =for Test-Pari Ytop(1,1) == 1
#
# =for Test-Pari Ytop(2,1) == 4
#
# =for Test-Pari Ytop(3,1) == 10
#
# Ytop[k] = / 0 if k = 0
# \ (L+2)*2^(k-1) - 2 if k > 0
# = 0, 1, 4, 10, 22, 46, 94, 190, ...
# for L=1
#
# This is the same as C<SierpinskiCurve> but
#
# Nlevel = ((3L+2)*4^level - 5) / 3
# Nlevel = 4^level - 1 + ((3L+2)*4^level - 5) / 3 - 4^level + 1
# Nlevel = 4^level - 1 + ((3L+2)*4^level - 5 - 3*4^level + 3) / 3
# Nlevel = 4^level - 1 + ((3L-1)*4^level - 2) / 3
#
#
#
# For C<diagonal_length> = L and reckoning the first diagonal side N=0 to N=2L
# as level 0, a level extends out to a triangle
#
# Nlevel = ((6L+4)*4^level - 4) / 3
# Xlevel = (L+2)*2^level - 1
#
# For example level 2 in the default L=1 goes to N=((6*1+4)*4^2-4)/3=52 and
# Xlevel=(1+2)*2^2-1=11. Or in the L=4 sample above level 1 is
# N=((6*4+4)*4^1-4)/3=36 and Xlevel=(4+2)*2^1-1=11.
#
# The power-of-4 in Nlevel is per the plain C<SierpinskiCurve>, with factor
# 2L+1 for the points making the diagonal stair. The "/3" arises from the
# extra points between replications. They become a power-of-4 series
#
# Nextras = 1+4+4^2+...+4^(level-1) = (4^level-1)/3
#
# For example level 1 is Nextras=(4^1-1)/3=1, being point N=6 in the default
# L=1. Or for level 2 Nextras=(4^2-1)/3=5 at N=6 and N=19,26,33,46.
{
# between two curves
# (13*4^k - 7)/3
# = 2 15 67 275 1107 4435 17747 70995 283987 1135955
# not in OEIS
# area=2 initial diamond is level=0
require Math::Geometry::Planar;
my $path = Math::PlanePath::SierpinskiCurve->new (arms => 2);
my @values;
foreach my $level (0 .. 8) {
my $n_hi = 4**($level+1) - 1;
my @points;
for (my $n = 0; $n <= $n_hi; $n+=2) {
my ($x,$y) = $path->n_to_xy($n);
push @points, [$x,$y];
}
for (my $n = $n_hi; $n >= 0; $n-=2) {
my ($x,$y) = $path->n_to_xy($n);
push @points, [$x,$y];
}
### @points
my $polygon = Math::Geometry::Planar->new;
$polygon->points(\@points);
my $area = $polygon->area;
my $length = $polygon->perimeter;
my $formula = two_area_by_formula($level);
print "$level $length area $area $formula\n";
push @values, $area;
}
shift @values;
require Math::OEIS::Grep;
Math::OEIS::Grep->search(array => \@values);
exit 0;
sub two_area_by_formula {
my ($k) = @_;
return (13*4**$k - 7) / 3;
$k++;
return (27*4**($k-1) - 18*2**($k-1) -14 * 4**($k-1) + 18 * 2**($k-1) - 4) / 3 - 1;
return 9*4**($k-1) - 6*2**($k-1) + (-14 * 4**($k-1) + 18 * 2**($k-1) - 4) / 3 - 1;
return 9*4**($k-1) - 6*2**($k-1) - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 1;
return 9*2**(2*$k-2) - 2*3*2**($k-1) + 1 - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 2;
return (3*2**($k-1) - 1)**2 - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 2;
return (3*2**($k-1) - 1)**2 - 4*(7 * 4**($k-1) - 9 * 2**($k-1) + 2) / 6 - 2;
return (3*2**($k-1) - 2 + 1)**2 - 4*((7 * 4**($k-1) - 9 * 2**($k-1) + 2) / 6) - 2;
return (3*2**($k-1) - 2 + 1)**2 - 4*area_by_formula($k-1) - 2;
}
}
{
# area under the curve
# (7*4^k - 9*2^k + 2)/6
#
require Math::Geometry::Planar;
my $path = Math::PlanePath::SierpinskiCurve->new;
my @values;
foreach my $level (1 .. 10) {
my ($n_lo, $n_hi) = $path->level_to_n_range($level);
my @points;
foreach my $n ($n_lo .. $n_hi) {
my ($x,$y) = $path->n_to_xy($n);
push @points, [$x,$y];
}
my $polygon = Math::Geometry::Planar->new;
$polygon->points(\@points);
my $area = $polygon->area;
my $length = $polygon->perimeter;
my $formula = area_by_formula($level);
print "$level $length area $area $formula\n";
push @values, $area;
}
shift @values;
require Math::OEIS::Grep;
Math::OEIS::Grep->search(array => \@values);
exit 0;
sub area_by_formula {
my ($k) = @_;
if ($k == 0) { return 0; }
return (7 * 4**$k - 9 * 2**$k + 2) / 6;
return (28 * 4**($k-1) - 18 * 2**($k-1) + 2) / 6;
{
return (
4**($k-1) * 6
- 4**($k-1) + 1
+ 9*4**($k-1) - 9*2**($k-1)
)/3;
}
{
return (
(4**($k-1) * 6 - 4**($k-1) + 1)/3
+ 3*4**($k-1) - 3*2**($k-1));
}
{
return (4**($k-1) * 2
- (4**($k-1) - 1)/3
+ 3*2* (4**($k-1) - 2**($k-1))/(4-2));
}
{
# i=k-2
# = 2*4^(k-1) + 3*2 * sum 4^i * 2^(k-2-i) - (4^(k-1) - 1)/3
# i=0
# = 2*4^(k-1) + 3*2 * (4^(k-1) - 2^(k-1))/(4-2) - (4^(k-2) - 1)/3
if ($k == 1) { return 2; }
my $total = 4**($k-1) * 2;
$total -= (4**($k-1) - 1)/3;
$total += 3*2* (4**($k-1) - 2**($k-1))/(4-2);
return $total;
}
{
# i=k-2
# = 2*4^(k-1) + 3*2^2 * sum 4^i * 2^(k-3-i) - (4^(k-1) - 1)/3
# i=0
# = 2*4^(k-1) + 3*2^2 * (4^(k-1) - 2^(k-1))/(4-2) - (4^(k-2) - 1)/3
if ($k == 1) { return 2; }
my $total = 4**($k-1) * 2;
$total -= (4**($k-1) - 1)/3;
foreach my $i (0 .. $k-2) {
$total += 4**$i * (3 * 2**($k-1-$i));
}
return $total;
}
{
# A(2) = 4*A(1) + (3*2^(1) - 1)
# = (3*2^(k-1) - 1) 0 + k-1 = k-1
# + 4 *(3*2^(k-2) - 1) 1 + k-2 = k-1
# + 4^2*(3*2^(k-3) - 1) 2 + k-2 = k-1
# + ...
# + 4^(k-3)*(3*2^(2) - 1) Ytop(2) k-3 + 2 = k-1
# + 4^(k-2)*A(1)
# i=k-2
# = 2*4^(k-1) + sum 4^i * (3*2^(k-1-i) - 1)
# i=0
if ($k == 1) { return 2; }
my $total = 4**($k-1) * 2;
foreach my $i (0 .. $k-2) {
$total += 4**$i * (3 * 2**($k-1-$i) - 1);
}
return $total;
}
{
# A(k) = 4*A(k-1) + Ytop(k) + 1 k >= 2
# A(1) = 2
# A(0) = 0
# Ytop(k) = 3*2^(k-1) - 2
# A(k) = 4*A(k-1) + 3*2^(k-1) - 1
#
if ($k == 1) { return 2; }
return 4*area_by_formula($k-1) + 3 * 2**($k-1) - 1;
}
}
}
{
# Y coordinate sequence
require Math::NumSeq::PlanePathCoord;
my $seq = Math::NumSeq::PlanePathCoord->new (planepath => 'SierpinskiCurve',
coordinate_type => 'Sum');
my @values;
for (1 .. 500) {
my ($i,$value) = $seq->next;
push @values, $value-1;
}
unduplicate(\@values);
print "values: ", join(',', @values), "\n";
require Math::OEIS::Grep;
Math::OEIS::Grep->search(array => \@values, verbose => 1);
exit 0;
sub unduplicate {
my ($aref) = @_;
my $i = 1;
while ($i < $#$aref) {
if ($aref->[$i] == $aref->[$i-1]) {
splice @$aref, $i, 1;
} else {
$i++;
}
}
}
}
{
# dSumAbs
require Math::NumSeq::PlanePathDelta;
my $seq = Math::NumSeq::PlanePathDelta->new (planepath => 'SierpinskiCurveStair,arms=6',
delta_type => 'dSumAbs');
for (1 .. 300) {
my ($i,$value) = $seq->next;
print "$value,";
if ($i % 6 == 5) {
print "\n";
}
}
exit 0;
}
{
# A156595 Mephisto Waltz first diffs xor as turns
require Tk;
require Tk::CanvasLogo;
require Math::NumSeq::MephistoWaltz;
my $top = MainWindow->new;
my $width = 1200;
my $height = 800;
my $logo = $top->CanvasLogo(-width => $width, -height => $height)->pack;
my $turtle = $logo->NewTurtle('foo');
$turtle->LOGO_PU();
$turtle->LOGO_FD(- $height/2*.9);
$turtle->LOGO_PD();
my $step = 5;
$turtle->LOGO_FD($step);
my $seq = Math::NumSeq::MephistoWaltz->new;
my ($i,$prev) = $seq->next;
for (;;) {
my ($i,$value) = $seq->next;
my $turn = $value ^ $prev;
$prev = $value;
last if $i > 10000;
if ($turn) {
$turtle->LOGO_FD($step);
if ($i & 1) {
$turtle->LOGO_RT(120);
} else {
$turtle->LOGO_LT(120);
}
} else {
$turtle->LOGO_FD($step);
}
$logo->createArc($turtle->{x}+2, $turtle->{y}+2,
$turtle->{x}-2, $turtle->{y}-2);
}
Tk::MainLoop();
exit;
}
{
# dX,dY
require Math::PlanePath::SierpinskiCurve;
my $path = Math::PlanePath::SierpinskiCurve->new;
foreach my $n (0 .. 32) {
# my $n = $n + 1/256;
my ($x,$y) = $path->n_to_xy($n);
my ($x2,$y2) = $path->n_to_xy($n+1);
my $sx = $x2-$x;
my $sy = $y2-$y;
my $sdir = dxdy_to_dir8($sx,$sy);
my ($dx,$dy) = $path->_WORKING_BUT_HAIRY__n_to_dxdy($n);
my $ddir = dxdy_to_dir8($dx,$dy);
my $diff = ($dx != $sx || $dy != $sy ? ' ***' : '');
print "$n $x,$y $sx,$sy\[$sdir] $dx,$dy\[$ddir]$diff\n";
}
# return 0..7
sub dxdy_to_dir8 {
my ($dx, $dy) = @_;
return atan2($dy,$dx) / atan2(1,1);
if ($dx == 1) {
if ($dy == 1) { return 1; }
if ($dy == 0) { return 0; }
if ($dy == -1) { return 7; }
}
if ($dx == 0) {
if ($dy == 1) { return 2; }
if ($dy == -1) { return 6; }
}
if ($dx == -1) {
if ($dy == 1) { return 3; }
if ($dy == 0) { return 4; }
if ($dy == -1) { return 5; }
}
die 'oops';
}
exit 0;
}
{
# Mephisto Waltz 1/12 slice of plane
require Tk;
require Tk::CanvasLogo;
require Math::NumSeq::MephistoWaltz;
my $top = MainWindow->new;
my $width = 1000;
my $height = 800;
my $logo = $top->CanvasLogo(-width => $width, -height => $height)->pack;
my $turtle = $logo->NewTurtle('foo');
$turtle->LOGO_RT(45);
$turtle->LOGO_PU();
$turtle->LOGO_FD(- $height*sqrt(2)/2*.9);
$turtle->LOGO_PD();
$turtle->LOGO_RT(135);
$turtle->LOGO_LT(30);
my $step = 5;
$turtle->LOGO_FD($step);
my $seq = Math::NumSeq::MephistoWaltz->new;
for (;;) {
my ($i,$value) = $seq->next;
last if $i > 10000;
if ($value) {
$turtle->LOGO_RT(60);
$turtle->LOGO_FD($step);
} else {
$turtle->LOGO_LT(60);
$turtle->LOGO_FD($step);
}
}
Tk::MainLoop();
exit;
}
{
require Tk;
require Tk::CanvasLogo;
require Math::NumSeq::PlanePathTurn;
my $top = MainWindow->new();
my $logo = $top->CanvasLogo->pack;
my $turtle = $logo->NewTurtle('foo');
my $seq = Math::NumSeq::PlanePathTurn->new
(planepath => 'KochCurve',
turn_type => 'Left');
$turtle->LOGO_RT(45);
$turtle->LOGO_FD(10);
for (;;) {
my ($i,$value) = $seq->next;
last if $i > 64;
if ($value) {
$turtle->LOGO_RT(45);
$turtle->LOGO_FD(10);
$turtle->LOGO_RT(45);
$turtle->LOGO_FD(10);
} else {
$turtle->LOGO_LT(90);
$turtle->LOGO_FD(10);
$turtle->LOGO_LT(90);
$turtle->LOGO_FD(10);
}
}
Tk::MainLoop();
exit;
}
{
# filled fraction
require Math::PlanePath::SierpinskiCurve;
require Number::Fraction;
my $path = Math::PlanePath::SierpinskiCurve->new;
foreach my $level (1 .. 20) {
my $Ntop = 4**$level / 2 - 1;
my ($x,$y) = $path->n_to_xy($Ntop);
my $Xtop = 3*2**($level-1) - 1;
$x == $Xtop or die "x=$x Xtop=$Xtop";
my $frac = $Ntop / ($x*($x-1)/2);
print " $level $frac\n";
}
my $nf = Number::Fraction->new(4,9);
my $limit = $nf->to_num;
print " limit $nf = $limit\n";
exit 0;
}
{
# filled fraction
require Math::PlanePath::SierpinskiCurveStair;
require Number::Fraction;
foreach my $L (1 .. 5) {
print "L=$L\n";
my $path = Math::PlanePath::SierpinskiCurveStair->new (diagonal_length=>$L);
foreach my $level (1 .. 10) {
my $Nlevel = ((6*$L+4)*4**$level - 4) / 3;
my ($x,$y) = $path->n_to_xy($Nlevel);
my $Xlevel = ($L+2)*2**$level - 1;
$x == $Xlevel or die "x=$x Xlevel=$Xlevel";
my $frac = $Nlevel / ($x*($x-1)/2);
print " $level $frac\n";
}
my $nf = Number::Fraction->new((12*$L+8),(3*$L**2+12*$L+12));
my $limit = $nf->to_num;
print " limit $nf = $limit\n";
}
exit 0;
}
{
my $path = Math::PlanePath::SierpinskiCurve->new;
my @rows = ((' ' x 79) x 64);
foreach my $n (0 .. 3 * 3**4) {
my ($x, $y) = $path->n_to_xy ($n);
$x += 32;
substr ($rows[$y], $x,1, '*');
}
local $,="\n";
print reverse @rows;
exit 0;
}
{
my @rows = ((' ' x 64) x 32);
foreach my $p (0 .. 31) {
foreach my $q (0 .. 31) {
next if ($p & $q);
my $x = $p-$q;
my $y = $p+$q;
next if ($y >= @rows);
$x += 32;
substr ($rows[$y], $x,1, '*');
}
}
local $,="\n";
print reverse @rows;
exit 0;
}
|