File: sierpinski-curve.pl

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (511 lines) | stat: -rw-r--r-- 13,705 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#!/usr/bin/perl -w

# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


use 5.004;
use strict;
use POSIX ();
use Math::Trig 'pi';
use Math::PlanePath::SierpinskiCurve;

# uncomment this to run the ### lines
# use Smart::Comments;

# Nlevel A146882 5*(4^(n+1)-1)/3 = 5*A002450


# =for Test-Pari-DEFINE  Ytop(k,L) = if(k==0,0, (L+2)*2^(k-1) - 2)
# 
# =for Test-Pari  Ytop(0,1) == 0
# 
# =for Test-Pari  Ytop(1,1) == 1
# 
# =for Test-Pari  Ytop(2,1) == 4
# 
# =for Test-Pari  Ytop(3,1) == 10
# 
#     Ytop[k] = /  0                   if k = 0
#               \  (L+2)*2^(k-1) - 2   if k > 0
#             = 0, 1, 4, 10, 22, 46, 94, 190, ...
#               for L=1
# 
# This is the same as C<SierpinskiCurve> but
# 
#     Nlevel = ((3L+2)*4^level - 5) / 3
#     Nlevel = 4^level - 1 + ((3L+2)*4^level - 5) / 3 - 4^level + 1
#     Nlevel = 4^level - 1 + ((3L+2)*4^level - 5 - 3*4^level + 3) / 3
#     Nlevel = 4^level - 1 + ((3L-1)*4^level - 2) / 3
# 
# 
# 
# For C<diagonal_length> = L and reckoning the first diagonal side N=0 to N=2L
# as level 0, a level extends out to a triangle
# 
#     Nlevel = ((6L+4)*4^level - 4) / 3
#     Xlevel = (L+2)*2^level - 1
# 
# For example level 2 in the default L=1 goes to N=((6*1+4)*4^2-4)/3=52 and
# Xlevel=(1+2)*2^2-1=11.  Or in the L=4 sample above level 1 is
# N=((6*4+4)*4^1-4)/3=36 and Xlevel=(4+2)*2^1-1=11.
# 
# The power-of-4 in Nlevel is per the plain C<SierpinskiCurve>, with factor
# 2L+1 for the points making the diagonal stair.  The "/3" arises from the
# extra points between replications.  They become a power-of-4 series
# 
#     Nextras = 1+4+4^2+...+4^(level-1) = (4^level-1)/3
# 
# For example level 1 is Nextras=(4^1-1)/3=1, being point N=6 in the default
# L=1.  Or for level 2 Nextras=(4^2-1)/3=5 at N=6 and N=19,26,33,46.

{
  # between two curves
  #   (13*4^k - 7)/3
  #   = 2 15 67 275 1107 4435 17747 70995 283987 1135955
  #   not in OEIS
  # area=2 initial diamond is level=0

  require Math::Geometry::Planar;
  my $path = Math::PlanePath::SierpinskiCurve->new (arms => 2);
  my @values;

  foreach my $level (0 .. 8) {
    my $n_hi = 4**($level+1) - 1;
    my @points;
    for (my $n = 0; $n <= $n_hi; $n+=2) {
      my ($x,$y) = $path->n_to_xy($n);
      push @points, [$x,$y];
    }
    for (my $n = $n_hi; $n >= 0; $n-=2) {
      my ($x,$y) = $path->n_to_xy($n);
      push @points, [$x,$y];
    }
    ### @points
    my $polygon = Math::Geometry::Planar->new;
    $polygon->points(\@points);
    my $area = $polygon->area;
    my $length = $polygon->perimeter;

    my $formula = two_area_by_formula($level);

    print "$level  $length  area $area $formula\n";
    push @values, $area;
  }
  shift @values;
  require Math::OEIS::Grep;
  Math::OEIS::Grep->search(array => \@values);
  exit 0;

  sub two_area_by_formula {
    my ($k) = @_;

    return (13*4**$k - 7) / 3;

    $k++;
    return (27*4**($k-1) - 18*2**($k-1) -14 * 4**($k-1) + 18 * 2**($k-1) - 4) / 3 - 1;
    return 9*4**($k-1) - 6*2**($k-1) + (-14 * 4**($k-1) + 18 * 2**($k-1) - 4) / 3 - 1;
    return 9*4**($k-1) - 6*2**($k-1) - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 1;
    return 9*2**(2*$k-2) - 2*3*2**($k-1) + 1 - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 2;
    return (3*2**($k-1) - 1)**2 - (14 * 4**($k-1) - 18 * 2**($k-1) + 4) / 3 - 2;
    return (3*2**($k-1) - 1)**2 - 4*(7 * 4**($k-1) - 9 * 2**($k-1) + 2) / 6 - 2;
    return (3*2**($k-1) - 2 + 1)**2 - 4*((7 * 4**($k-1) - 9 * 2**($k-1) + 2) / 6) - 2;
    return (3*2**($k-1) - 2 + 1)**2 - 4*area_by_formula($k-1) - 2;
  }
}

{
  # area under the curve
  #   (7*4^k - 9*2^k + 2)/6
  #
  require Math::Geometry::Planar;
  my $path = Math::PlanePath::SierpinskiCurve->new;
  my @values;

  foreach my $level (1 .. 10) {
    my ($n_lo, $n_hi) = $path->level_to_n_range($level);
    my @points;
    foreach my $n ($n_lo .. $n_hi) {
      my ($x,$y) = $path->n_to_xy($n);
      push @points, [$x,$y];
    }
    my $polygon = Math::Geometry::Planar->new;
    $polygon->points(\@points);
    my $area = $polygon->area;
    my $length = $polygon->perimeter;

    my $formula = area_by_formula($level);

    print "$level  $length  area $area $formula\n";
    push @values, $area;
  }
  shift @values;
  require Math::OEIS::Grep;
  Math::OEIS::Grep->search(array => \@values);
  exit 0;

  sub area_by_formula {
    my ($k) = @_;
    if ($k == 0) { return 0; }

    return (7 * 4**$k - 9 * 2**$k + 2) / 6;
    return (28 * 4**($k-1) - 18 * 2**($k-1) + 2) / 6;

    {
      return (
              4**($k-1) * 6
              - 4**($k-1) + 1
              + 9*4**($k-1) - 9*2**($k-1)
             )/3;
    }
    {
      return (
              (4**($k-1) * 6 - 4**($k-1) + 1)/3
              + 3*4**($k-1) - 3*2**($k-1));
    }
    {
      return (4**($k-1) * 2
              - (4**($k-1) - 1)/3
              + 3*2* (4**($k-1) - 2**($k-1))/(4-2));
    }

    {
      #                            i=k-2
      #      = 2*4^(k-1) + 3*2 * sum   4^i * 2^(k-2-i)    - (4^(k-1) - 1)/3
      #                            i=0
      #      = 2*4^(k-1) + 3*2 * (4^(k-1) - 2^(k-1))/(4-2)    - (4^(k-2) - 1)/3

      if ($k == 1) { return 2; }
      my $total = 4**($k-1) * 2;
      $total -= (4**($k-1) - 1)/3;
      $total += 3*2* (4**($k-1) - 2**($k-1))/(4-2);
      return $total;
    }
    {
      #                            i=k-2
      #      = 2*4^(k-1) + 3*2^2 * sum   4^i * 2^(k-3-i)    - (4^(k-1) - 1)/3
      #                            i=0
      #      = 2*4^(k-1) + 3*2^2 * (4^(k-1) - 2^(k-1))/(4-2)    - (4^(k-2) - 1)/3

      if ($k == 1) { return 2; }
      my $total = 4**($k-1) * 2;
      $total -= (4**($k-1) - 1)/3;
      foreach my $i (0 .. $k-2) {
        $total += 4**$i * (3 * 2**($k-1-$i));
      }
      return $total;
    }

    {
      # A(2) = 4*A(1) + (3*2^(1) - 1)
      #      =       (3*2^(k-1) - 1)                    0 + k-1 = k-1
      #        + 4  *(3*2^(k-2) - 1)                    1 + k-2 = k-1
      #        + 4^2*(3*2^(k-3) - 1)                    2 + k-2 = k-1
      #        + ...
      #        + 4^(k-3)*(3*2^(2) - 1)      Ytop(2)     k-3 + 2 = k-1
      #        + 4^(k-2)*A(1)
      #                    i=k-2
      #      = 2*4^(k-1) + sum   4^i * (3*2^(k-1-i) - 1)
      #                    i=0
      if ($k == 1) { return 2; }
      my $total = 4**($k-1) * 2;
      foreach my $i (0 .. $k-2) {
        $total += 4**$i * (3 * 2**($k-1-$i) - 1);
      }
      return $total;
    }

    {
      # A(k) = 4*A(k-1) + Ytop(k) + 1      k >= 2
      # A(1) = 2
      # A(0) = 0
      # Ytop(k) = 3*2^(k-1) - 2
      # A(k) = 4*A(k-1) + 3*2^(k-1) - 1
      #
      if ($k == 1) { return 2; }
      return 4*area_by_formula($k-1) + 3 * 2**($k-1) - 1;
    }

  }
}


{
  # Y coordinate sequence
  require Math::NumSeq::PlanePathCoord;
  my $seq = Math::NumSeq::PlanePathCoord->new (planepath => 'SierpinskiCurve',
                                               coordinate_type => 'Sum');
  my @values;
  for (1 .. 500) {
    my ($i,$value) = $seq->next;
    push @values, $value-1;
  }
  unduplicate(\@values);
  print "values: ", join(',', @values), "\n";
  require Math::OEIS::Grep;
  Math::OEIS::Grep->search(array => \@values, verbose => 1);
  exit 0;

  sub unduplicate {
    my ($aref) = @_;
    my $i = 1;
    while ($i < $#$aref) {
      if ($aref->[$i] == $aref->[$i-1]) {
        splice @$aref, $i, 1;
      } else {
        $i++;
      }
    }
  }
}
{
  # dSumAbs
  require Math::NumSeq::PlanePathDelta;
  my $seq = Math::NumSeq::PlanePathDelta->new (planepath => 'SierpinskiCurveStair,arms=6',
                                               delta_type => 'dSumAbs');
  for (1 .. 300) {
    my ($i,$value) = $seq->next;
    print "$value,";
    if ($i % 6 == 5) {
      print "\n";
    }
  }
  exit 0;
}
{
  # A156595 Mephisto Waltz first diffs xor as turns
  require Tk;
  require Tk::CanvasLogo;
  require Math::NumSeq::MephistoWaltz;
  my $top = MainWindow->new;
  my $width = 1200;
  my $height = 800;
  my $logo = $top->CanvasLogo(-width => $width, -height => $height)->pack;
  my $turtle = $logo->NewTurtle('foo');
  $turtle->LOGO_PU();
  $turtle->LOGO_FD(- $height/2*.9);
  $turtle->LOGO_PD();

  my $step = 5;
  $turtle->LOGO_FD($step);
  my $seq = Math::NumSeq::MephistoWaltz->new;
  my ($i,$prev) = $seq->next;
  for (;;) {
    my ($i,$value) = $seq->next;
    my $turn = $value ^ $prev;
    $prev = $value;
    last if $i > 10000;
    if ($turn) {
      $turtle->LOGO_FD($step);
      if ($i & 1) {
        $turtle->LOGO_RT(120);
      } else {
        $turtle->LOGO_LT(120);
      }
    } else {
      $turtle->LOGO_FD($step);
    }
    $logo->createArc($turtle->{x}+2, $turtle->{y}+2,
                       $turtle->{x}-2, $turtle->{y}-2);
  }

  Tk::MainLoop();
  exit;
}

{
  # dX,dY
  require Math::PlanePath::SierpinskiCurve;
  my $path = Math::PlanePath::SierpinskiCurve->new;
  foreach my $n (0 .. 32) {
#    my $n = $n + 1/256;
    my ($x,$y) = $path->n_to_xy($n);
    my ($x2,$y2) = $path->n_to_xy($n+1);
    my $sx = $x2-$x;
    my $sy = $y2-$y;
    my $sdir = dxdy_to_dir8($sx,$sy);
    my ($dx,$dy) = $path->_WORKING_BUT_HAIRY__n_to_dxdy($n);
    my $ddir = dxdy_to_dir8($dx,$dy);
    my $diff = ($dx != $sx || $dy != $sy ? '  ***' : '');
    print "$n $x,$y  $sx,$sy\[$sdir]  $dx,$dy\[$ddir]$diff\n";
  }

  # return 0..7
  sub dxdy_to_dir8 {
    my ($dx, $dy) = @_;
    return atan2($dy,$dx) / atan2(1,1);
    if ($dx == 1) {
      if ($dy == 1) { return 1; }
      if ($dy == 0) { return 0; }
      if ($dy == -1) { return 7; }
    }
    if ($dx == 0) {
      if ($dy == 1) { return 2; }
      if ($dy == -1) { return 6; }
    }
    if ($dx == -1) {
      if ($dy == 1) { return 3; }
      if ($dy == 0) { return 4; }
      if ($dy == -1) { return 5; }
    }
    die 'oops';
  }
  exit 0;
}


{
  # Mephisto Waltz 1/12 slice of plane
  require Tk;
  require Tk::CanvasLogo;
  require Math::NumSeq::MephistoWaltz;
  my $top = MainWindow->new;
  my $width = 1000;
  my $height = 800;
  my $logo = $top->CanvasLogo(-width => $width, -height => $height)->pack;
  my $turtle = $logo->NewTurtle('foo');
  $turtle->LOGO_RT(45);
  $turtle->LOGO_PU();
  $turtle->LOGO_FD(- $height*sqrt(2)/2*.9);
  $turtle->LOGO_PD();
  $turtle->LOGO_RT(135);
  $turtle->LOGO_LT(30);

  my $step = 5;
  $turtle->LOGO_FD($step);
  my $seq = Math::NumSeq::MephistoWaltz->new;
  for (;;) {
    my ($i,$value) = $seq->next;
    last if $i > 10000;
    if ($value) {
      $turtle->LOGO_RT(60);
      $turtle->LOGO_FD($step);
    } else {
      $turtle->LOGO_LT(60);
      $turtle->LOGO_FD($step);
    }
  }

  Tk::MainLoop();
  exit;
}

{
  require Tk;
  require Tk::CanvasLogo;
  require Math::NumSeq::PlanePathTurn;
  my $top = MainWindow->new();
  my $logo = $top->CanvasLogo->pack;
  my $turtle = $logo->NewTurtle('foo');

  my $seq = Math::NumSeq::PlanePathTurn->new
    (planepath => 'KochCurve',
     turn_type => 'Left');
  $turtle->LOGO_RT(45);
  $turtle->LOGO_FD(10);
  for (;;) {
    my ($i,$value) = $seq->next;
    last if $i > 64;
    if ($value) {
      $turtle->LOGO_RT(45);
      $turtle->LOGO_FD(10);
      $turtle->LOGO_RT(45);
      $turtle->LOGO_FD(10);
    } else {
      $turtle->LOGO_LT(90);
      $turtle->LOGO_FD(10);
      $turtle->LOGO_LT(90);
      $turtle->LOGO_FD(10);
    }
  }

  Tk::MainLoop();
  exit;
}
{
  # filled fraction

  require Math::PlanePath::SierpinskiCurve;
  require Number::Fraction;
  my $path = Math::PlanePath::SierpinskiCurve->new;
  foreach my $level (1 .. 20) {
    my $Ntop = 4**$level / 2 - 1;
    my ($x,$y) = $path->n_to_xy($Ntop);
    my $Xtop = 3*2**($level-1) - 1;
    $x == $Xtop or die "x=$x Xtop=$Xtop";
    my $frac = $Ntop / ($x*($x-1)/2);
    print "  $level  $frac\n";
  }
  my $nf = Number::Fraction->new(4,9);
  my $limit = $nf->to_num;
  print "  limit  $nf = $limit\n";
  exit 0;
}

{
  # filled fraction

  require Math::PlanePath::SierpinskiCurveStair;
  require Number::Fraction;
  foreach my $L (1 .. 5) {
    print "L=$L\n";
    my $path = Math::PlanePath::SierpinskiCurveStair->new (diagonal_length=>$L);
    foreach my $level (1 .. 10) {
      my $Nlevel = ((6*$L+4)*4**$level - 4) / 3;
      my ($x,$y) = $path->n_to_xy($Nlevel);
      my $Xlevel = ($L+2)*2**$level - 1;
      $x == $Xlevel or die "x=$x Xlevel=$Xlevel";
      my $frac = $Nlevel / ($x*($x-1)/2);
      print "  $level  $frac\n";
    }
    my $nf = Number::Fraction->new((12*$L+8),(3*$L**2+12*$L+12));
    my $limit = $nf->to_num;
    print "  limit  $nf = $limit\n";
  }
  exit 0;
}

{
  my $path = Math::PlanePath::SierpinskiCurve->new;
  my @rows = ((' ' x 79) x 64);
  foreach my $n (0 .. 3 * 3**4) {
    my ($x, $y) = $path->n_to_xy ($n);
    $x += 32;
    substr ($rows[$y], $x,1, '*');
  }
  local $,="\n";
  print reverse @rows;
  exit 0;
}

{
  my @rows = ((' ' x 64) x 32);
  foreach my $p (0 .. 31) {
    foreach my $q (0 .. 31) {
      next if ($p & $q);

      my $x = $p-$q;
      my $y = $p+$q;
      next if ($y >= @rows);
      $x += 32;
      substr ($rows[$y], $x,1, '*');
    }
  }
  local $,="\n";
  print reverse @rows;
  exit 0;
}