1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
#!/usr/bin/perl -w
# Copyright 2011, 2012, 2013 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
use 5.004;
use strict;
use List::Util 'min', 'max';
use Math::PlanePath::SierpinskiTriangle;
use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
use Smart::Comments;
{
# number of children
my $path = Math::PlanePath::SierpinskiTriangle->new;
for (my $n = $path->n_start; $n < 180; $n++) {
my @n_children = $path->tree_n_children($n);
my $num_children = scalar(@n_children);
print "$num_children,";
print "\n" if path_tree_n_is_depth_end($path,$n);
}
print "\n";
exit 0;
sub path_tree_n_is_depth_end {
my ($path, $n) = @_;
my $depth = $path->tree_n_to_depth($n);
return defined($depth) && $n == $path->tree_depth_to_n_end($depth);
}
}
{
# Pascal's triangle
require Math::BigInt;
my @array;
my $rows = 10;
my $width = 0;
foreach my $y (0 .. $rows) {
foreach my $x (0 .. $y) {
my $n = Math::BigInt->new($y);
my $k = Math::BigInt->new($x);
$n->bnok($k);
my $str = "$n";
$array[$x][$y] = $str;
$width = max($width,length($str));
}
}
$width += 2;
if ($width & 1) { $width++; }
# $width |= 1;
foreach my $y (0 .. $rows) {
print ' ' x (($rows-$y) * int($width/2));
foreach my $x (0 .. $y) {
my $value = $array[$x][$y];
unless ($value & 1) { $value = ''; }
printf "%*s", $width, $value;
}
print "\n";
}
exit 0;
}
{
# NumSiblings run lengths
# lowest 1-bit of pos k
# NumChildren run lengths
# is same lowest 1-bit if NumChildren=0 leaf coalesced with NumChildren=1
my $path = Math::PlanePath::SierpinskiTriangle->new (align => 'diagonal');
require Math::NumSeq::PlanePathCoord;
my $seq = Math::NumSeq::PlanePathCoord->new (planepath_object => $path,
# coordinate_type => 'NumChildren',
coordinate_type => 'NumSiblings',
);
my $prev = 0;
my $run = 1;
for (my $n = $path->n_start+1; $n < 500; $n++) {
my ($i,$value) = $seq->next;
$value = 1-$value;
# if ($value == 1) { $value = 0; }
# if ($value == $prev) {
# $run++;
# } else {
# print "$run,";
# $run = 1;
# $prev = $value;
# }
# printf "%4b %d\n", $i, $value;
print "$value,";
}
print "\n";
exit 0;
sub path_tree_n_num_siblings {
my ($path, $n) = @_;
$n = $path->tree_n_parent($n);
return (defined $n
? $path->tree_n_num_children($n) - 1 # not including self
: 0); # any tree root considered to have no siblings
}
}
{
# height
use constant _INFINITY => do {
my $x = 999;
foreach (1 .. 20) {
$x *= $x;
}
$x;
};
my $path = Math::PlanePath::SierpinskiTriangle->new (align => 'diagonal');
require Math::NumSeq::PlanePathCoord;
my $seq = Math::NumSeq::PlanePathCoord->new (planepath_object => $path,
coordinate_type => 'SubHeight');
for (my $n = $path->n_start; $n < 500; $n++) {
my ($x,$y) = $path->n_to_xy($n);
my $s = $seq->ith($n);
# my $c = $path->_UNTESTED__NumSeq__tree_n_to_leaflen($n);
my $c = n_to_subheight($n);
if (! defined $c) { $c = _INFINITY; }
my $diff = ($s == $c ? '' : ' ***');
print "$x,$y $s $c$diff\n";
}
print "\n";
exit 0;
sub n_to_subheight {
my ($n) = @_;
# this one correct based on diagonal X,Y bits
my ($x,$y) = $path->n_to_xy($n);
if ($x == 0 || $y == 0) {
return _INFINITY();
}
my $mx = ($x ^ ($x-1)) >> 1;
my $my = ($y ^ ($y-1)) >> 1;
return max ($mx - ($y & $mx),
$my - ($x & $my));
# Must stretch out $n remainder to make X.
# my ($depthbits, $ndepth, $nwidth) = Math::PlanePath::SierpinskiTriangle::_n0_to_depthbits($n);
# $n -= $ndepth; # X
# my $y = digit_join_lowtohigh ($depthbits, 2, $n*0) - $n;
#
# if ($n == 0 || $y == 0) {
# return undef;
# }
# my $mx = ($n ^ ($n-1)) >> 1;
# my $my = ($y ^ ($y-1)) >> 1;
# return max ($mx - ($y & $mx),
# $my - ($n & $my));
# my $h = high_bit($y);
# my $m = ($h<<1)-1;
# return $y ^ $m;
# # return count_0_bits($y); # - count_0_bits($x);
}
sub high_bit {
my ($n) = @_;
my $bit = 1;
while ($bit <= $n) {
$bit <<= 1;
}
return $bit >> 1;
}
sub count_0_bits {
my ($n) = @_;
my $count = 0;
while ($n) {
$count += ($n & 1) ^ 1;
$n >>= 1;
}
return $count;
}
sub count_1_bits {
my ($n) = @_;
my $count = 0;
while ($n) {
$count += ($n & 1);
$n >>= 1;
}
return $count;
}
}
{
# number of children in replicate style
my $levels = 5;
my $height = 2**$levels;
sub replicate_n_to_xy {
my ($n) = @_;
my $zero = $n * 0;
my @xpos_bits;
my @xneg_bits;
my @y_bits;
foreach my $ndigit (digit_split_lowtohigh($n,3)) {
if ($ndigit == 0) {
push @xpos_bits, 0;
push @xneg_bits, 0;
push @y_bits, 0;
} elsif ($ndigit == 1) {
push @xpos_bits, 0;
push @xneg_bits, 1;
push @y_bits, 1;
} else {
push @xpos_bits, 1;
push @xneg_bits, 0;
push @y_bits, 1;
}
}
return (digit_join_lowtohigh(\@xpos_bits, 2, $zero)
- digit_join_lowtohigh(\@xneg_bits, 2, $zero),
digit_join_lowtohigh(\@y_bits, 2, $zero));
}
# xxx0 = 2 low digit 0 then num children = 2
# xxx0111 = 1 \ low digit != 0 then all low non-zeros must be same
# xxx0222 = 1 /
# other = 0 otherwise num children = 0
sub replicate_tree_n_num_children {
my ($n) = @_;
$n = int($n);
my $low_digit = _divrem_mutate($n,3);
if ($low_digit == 0) {
return 2;
}
while (my $digit = _divrem_mutate($n,3)) {
if ($digit != $low_digit) {
return 0;
}
}
return 1;
}
my $path = Math::PlanePath::SierpinskiTriangle->new;
my %grid;
for (my $n = 0; $n < 3**$levels; $n++) {
my ($x,$y) = replicate_n_to_xy($n);
my $path_num_children = path_xy_num_children($path,$x,$y);
my $repl_num_children = replicate_tree_n_num_children($n);
if ($path_num_children != $repl_num_children) {
print "$x,$y $path_num_children $repl_num_children\n";
exit 1;
}
$grid{$x}{$y} = $repl_num_children;
}
foreach my $y (0 .. $height) {
foreach my $x (-$height .. $y) {
print $grid{$x}{$y} // ' ';
}
print "\n";
}
exit 0;
sub path_xy_num_children {
my ($path, $x,$y) = @_;
my $n = $path->xy_to_n($x,$y);
return (defined $n
? $path->tree_n_num_children($n)
: undef);
}
}
{
my $path = Math::PlanePath::SierpinskiTriangle->new;
foreach my $y (0 .. 10) {
foreach my $x (-$y .. $y) {
if ($path->xy_to_n($x,$y)) {
print "1,";
} else {
print "0,";
}
}
}
print "\n";
exit 0;
}
|