1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
divert(-1)
# Copyright 2013 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# Usage: m4 dragon.m4
#
# This is a bit of fun generating the dragon curve with the predicate
# algorithms of xy_is_visited() from DragonMidpoint and DragonCurve. The
# output is generated row by row and and column by column with no image
# array or storage.
#
# The macros which return a pair of values x,y expand to an unquoted 123,456
# which is suitable as arguments to a further macro. The quoting is slack
# because the values are always integers and so won't suffer unwanted macro
# expansion.
# 0,1 Vertex and segment x,y numbering.
# |
# | Segments are numbered as if a
# |s=0,1 square grid turned anti-clockwise
# | by 45 degrees.
# |
# -1,0 -------- 0,0 -------- 1,0 vertex_to_seg_east(x,y) returns
# s=-1,1 | s=0,0 the segment x,y to the East,
# | so vertex_to_seg_east(0,0) is 0,0
# |
# |s=-1,0 vertex_to_seg_west(x,y) returns
# | the segment x,y to the West,
# 0,-1 so vertex_to_seg_west(0,0) is -1,1
#
define(`vertex_to_seg_east', `eval($1 + $2), eval($2 - $1)')
define(`vertex_to_seg_west', `eval($1 + $2 - 1), eval($2 - $1 + 1)')
define(`vertex_to_seg_south', `eval($1 + $2 - 1), eval($2 - $1)')
# Some past BSD m4 didn't have "&" operator, so mod2(n) using % instead.
# mod2() returns 0,1 even if "%" gives -1 for negative odds.
#
define(`mod2', `ifelse(eval($1 % 2),0,0,1)')
# seg_to_even(x,y) returns x,y moved to an "even" position by subtracting an
# offset in a way which suits the segment predicate test.
#
# seg_offset_y(x,y) is a repeating pattern
#
# | 1,1,0,0
# | 1,1,0,0
# | 0,0,1,1
# | 0,0,1,1
# +---------
#
# seg_offset_x(x,y) is the same but offset by 1 in x,y
#
# | 0,1,1,0
# | 1,0,0,1
# | 1,0,0,1
# | 0,1,1,0
# +---------
#
# Incidentally these offset values also give n which is the segment number
# along the curve. "x_offset XOR y_offset" is 0,1 and is a bit of n from
# low to high.
#
define(`seg_offset_y', `mod2(eval(($1 >> 1) + ($2 >> 1)))')
define(`seg_offset_x', `seg_offset_y(eval($1+1), eval($2+1))')
define(`seg_to_even', `eval($1 - seg_offset_x($1,$2)),
eval($2 - seg_offset_y($1,$2))');
# xy_div_iplus1(x,y) returns x,y divided by complex number i+1.
# So (x+i*y)/(i+1) which means newx = (x+y)/2, newy = (y-x)/2.
# Must have x,y "even", meaning x+y even, so newx and newy are integers.
#
define(`xy_div_iplus1', `eval(($1 + $2)/2), eval(($2 - $1)/2)')
# seg_is_final(x,y) returns 1 if x,y is one of the final four points.
# On these four points xy_div_iplus1(seg_to_even(x,y)) returns x,y
# unchanged, so the seg_pred() recursion does not reduce any further.
#
# .. | ..
# final | final y=+1
# final | final y=0
# -------+--------
# .. | ..
# x=-1 x=0
#
define(`seg_is_final', `eval(($1==-1 || $1==0) && ($2==1 || $2==0))')
# seg_pred(x,y) returns 1 if segment x,y is on the dragon curve.
# If the final point reached is 0,0 then the original x,y was on the curve.
# (If a different final point then x,y was one of four rotated copies of the
# curve.)
#
define(`seg_pred', `ifelse(seg_is_final($1,$2), 1,
`eval($1==0 && $2==0)',
`seg_pred(xy_div_iplus1(seg_to_even($1,$2)))')')
# vertex_pred(x,y) returns 1 if point x,y is on the dragon curve.
# The curve always turns left or right at a vertex, it never crosses itself,
# so if a vertex is visited then either the segment to the east or to the
# west must have been traversed. Prefer ifelse() for the two checks since
# eval() || operator is not a short-circuit.
#
define(`vertex_pred', `ifelse(seg_pred(vertex_to_seg_east($1,$2)),1,1,
`seg_pred(vertex_to_seg_west($1,$2))')')
# forloop(varname, start,end, body)
# Expand body with varname successively define()ed to integers "start" to
# "end" inclusive. "start" to "end" can go either increasing or decreasing.
#
define(`forloop', `define(`$1',$2)$4`'dnl
ifelse($2,$3,,`forloop(`$1',eval($2 + 2*($2 < $3) - 1), $3, `$4')')')
#----------------------------------------------------------------------------
# dragon01(xmin,xmax, ymin,ymax) prints an array of 0s and 1s which are the
# vertex_pred() values. `y' runs from ymax down to ymin so that y
# coordinate increases up the screen.
#
define(`dragon01',
`forloop(`y',$4,$3, `forloop(`x',$1,$2, `vertex_pred(x,y)')
')')
# dragon_ascii(xmin,xmax, ymin,ymax) prints an ascii art dragon curve.
# Each y value results in two output lines. The first has "+" vertices and
# "--" horizontals. The second has "|" verticals.
#
define(`dragon_ascii',
`forloop(`y',$4,$3,
`forloop(`x',$1,$2,
`ifelse(vertex_pred(x,y),1, `+', ` ')dnl
ifelse(seg_pred(vertex_to_seg_east(x,y)), 1, `--', ` ')')
forloop(`x',$1,$2,
`ifelse(seg_pred(vertex_to_seg_south(x,y)), 1, `| ', ` ')')
')')
#--------------------------------------------------------------------------
divert`'dnl
# 0s and 1s directly from vertex_pred().
#
dragon01(-7,23, dnl X range
-11,10) dnl Y range
# ASCII art lines.
#
dragon_ascii(-6,5, dnl X range
-10,2) dnl Y range
|