File: AlternatePaper.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1932 lines) | stat: -rw-r--r-- 57,152 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# ENHANCE-ME: Explanation for this bit ...
# 'arms=4' =>
# { dSum  => 'A020985', # GRS
#   # OEIS-Other: A020985 planepath=AlternatePaper,arms=4 delta_type=dSum
# },


package Math::PlanePath::AlternatePaper;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh',
  'bit_split_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_8',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 8,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

use constant n_start => 0;
sub x_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 3);
}
sub y_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 5);
}
{
  my @x_negative_at_n = (undef,
                         undef,undef,8,7,
                         4,4,4,4);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef,
                                        undef,undef,undef,undef,
                                        44,23,13,14);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->arms_count <= 3
          ? 0        # 1,2,3 arms above X=-Y diagonal
          : undef);
}
sub diffxy_minimum {
  my ($self) = @_;
  return ($self->arms_count == 1
          ? 0        # 1 arms right of X=Y diagonal
          : undef);
}


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(8, $self->{'arms'} || 1));
  return $self;
}


# state=0  /|         +----+----+
#         / |         |\ 1||<--/
#        /2 |         |^\ || 0/
#       /-->|         || \v| /
#      +----+         ||3 \|/
#     /|\ 3||         +----+
#    / |^\ ||         |<--/   state=4
#   / 0|| \v|         | 2/
#  /-->||1 \|         | /
# +----+----+         |/
#
# |\  state=8         +----+----+  state=12
# |^\                  \ 1||<--/|
# || \                  \ || 0/ |
# ||3 \                  \v| /2 |
# +----+                  \|/-->|
# |<--/|\                  +----+
# | 2/ |^\                  \ 3||
# | /0 || \                  \ ||
# |/-->||1 \                  \v|
# +----+----+                  \|

my @next_state = (0,  8, 0, 12,   # forward
                  4, 12, 4,  8,   # forward NW
                  0,  8, 4,  8,   # reverse
                  4, 12, 0, 12,   # reverse NE
                 );
my @digit_to_x = (0,1,1,1,
                  1,0,0,0,
                  0,1,0,0,
                  1,0,1,1,
                 );
my @digit_to_y = (0,0,1,0,
                  1,1,0,1,
                  0,0,0,1,
                  1,1,1,0,
                 );

# state_to_dx[S] == state_to_x[S+3] - state_to_x[S+0]
my @state_to_dx = (1, undef,undef,undef,
                   -1, undef,undef,undef,
                   0, undef,undef,undef,
                   0, undef,undef,undef,
                  );
my @state_to_dy = (0, undef,undef,undef,
                   0, undef,undef,undef,
                   1, undef,undef,undef,
                   -1, undef,undef,undef,
                  );

sub n_to_xy {
  my ($self, $n) = @_;
  ### AlternatePaper n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $int = int($n);  # integer part
  $n -= $int;         # fraction part
  ### $int
  ### $n

  my $zero = ($int * 0);  # inherit bignum 0
  my $arm = _divrem_mutate ($int, $self->{'arms'});

  ### $arm
  ### $int

  my @digits = digit_split_lowtohigh($int,4);
  my $state = 0;
  my (@xbits,@ybits); # bits low to high (like @digits)

  foreach my $i (reverse 0 .. $#digits) {  # high to low
    $state += $digits[$i];
    $xbits[$i] = $digit_to_x[$state];
    $ybits[$i] = $digit_to_y[$state];
    $state = $next_state[$state];
  }
  my $x = digit_join_lowtohigh(\@xbits,2,$zero);
  my $y = digit_join_lowtohigh(\@ybits,2,$zero);

  # X+1,Y+1 for final state=4 or state=12
  $x += $digit_to_x[$state];
  $y += $digit_to_y[$state];

  ### final: "xy=$x,$y state=$state"

  # apply possible fraction part of $n in direction of $state
  $x = $n * $state_to_dx[$state] + $x;
  $y = $n * $state_to_dy[$state] + $y;

  # rotate,transpose for arm number
  if ($arm & 1) {
    ($x,$y) = ($y,$x);   # transpose
  }
  if ($arm & 2) {
    ($x,$y) = (-$y,$x+1);  # rotate +90 and shift origin to X=0,Y=1
  }
  if ($arm & 4) {
    $x = -1 - $x;      # rotate +180 and shift origin to X=-1,Y=1
    $y = 1 - $y;
  }

  ### rotated return: "$x,$y"
  return ($x,$y);
}

#                                                      8
#
#                                          42   43     7
#
#                                    40 41/45   44     6
#
#                              34 35/39 38/46   47     5
#
#                        32-33/53-36/52-37/49---48     4
#                        | \
#                  10 11/31 30/54 51/55 50/58   59     3
#                        |       \
#             8  9/13 12/28 25/29 24/56 57/61   60     2
#                        |             \
#       2   3/7  6/14 15/27 18/26 19/23 22/62   63     1
#                        |                   \
# 0     1     4     5    16    17    20    21 ==64     0
#
# 0     1     2     3     4     5     6     7    8

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### AlternatePaper xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my $arms = $self->{'arms'};
  my $arm = 0;
  my @ret;
  foreach (1 .. 4) {
    push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
    last if ++$arm >= $arms;

    ($x,$y) = ($y,$x); # transpose
    push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
    last if ++$arm >= $arms;

    # X,Y -> Y,X
    #     -> Y,X-1     # Y-1 shift
    #     -> X-1,-Y    # rot -90
    # ie. mirror across X axis and shift
    ($x,$y) = ($x-1,-$y);
  }
  return sort {$a<=>$b} @ret;
}

sub _xy_to_n_list__onearm {
  my ($self, $x, $y) = @_;
  ### _xy_to_n_list__onearm(): "$x,$y"

  if ($y < 0 || $y > $x || $x < 0) {
    ### outside first octant ...
    return;
  }

  my ($len,$level) = round_down_pow($x, 2);
  ### $len
  ### $level
  if (is_infinite($level)) {
    return;
  }

  my $n = my $big_n = $x * 0 * $y;  # inherit bignum 0
  my $rev = 0;

  my $big_x = $x;
  my $big_y = $y;
  my $big_rev = 0;

  while ($level-- >= 0) {
    ### at: "$x,$y  len=$len  n=$n"

    # the smaller N
    {
      $n *= 4;
      if ($rev) {
        if ($x+$y < 2*$len) {
          ### rev 0 or 1 ...
          if ($x < $len) {
          } else {
            ### rev 1 ...
            $rev = 0;
            $n -= 2;
            ($x,$y) = ($len-$y, $x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### rev 2 or 3 ...
          if ($y > $len || ($x==$len && $y==$len)) {
            ### rev 2 ...
            $n -= 2;
            $x -= $len;
            $y -= $len;
          } else {
            ### rev 3 ...
            $n -= 4;
            $rev = 0;
            ($x,$y) = ($y, 2*$len-$x);   # to origin then rotate -90
          }
        }
      } else {
        if ($x+$y <= 2*$len
            && !($x==$len && $y==$len)
            && !($x==2*$len && $y==0)) {
          ### 0 or 1 ...
          if ($x <= $len) {
          } else {
            ### 1 ...
            $n += 2;
            $rev = 1;
            ($x,$y) = ($len-$y, $x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### 2 or 3 ...
          if ($y >= $len && !($x==2*$len && $y==$len)) {
            $n += 2;
            $x -= $len;
            $y -= $len;
          } else {
            $n += 4;
            $rev = 1;
            ($x,$y) = ($y, 2*$len-$x);   # to origin then rotate -90
          }
        }
      }
    }

    # the bigger N
    {
      $big_n *= 4;
      if ($big_rev) {
        if ($big_x+$big_y <= 2*$len
            && !($big_x==$len && $big_y==$len)
            && !($big_x==2*$len && $big_y==0)) {
          ### rev 0 or 1 ...
          if ($big_x <= $len) {
          } else {
            ### rev 1 ...
            $big_rev = 0;
            $big_n -= 2;
            ($big_x,$big_y) = ($len-$big_y, $big_x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### rev 2 or 3 ...
          if ($big_y >= $len && !($big_x==2*$len && $big_y==$len)) {
            ### rev 2 ...
            $big_n -= 2;
            $big_x -= $len;
            $big_y -= $len;
          } else {
            ### rev 3 ...
            $big_n -= 4;
            $big_rev = 0;
            ($big_x,$big_y) = ($big_y, 2*$len-$big_x);   # to origin then rotate -90
          }
        }
      } else {
        if ($big_x+$big_y < 2*$len) {
          ### 0 or 1 ...
          if ($big_x < $len) {
          } else {
            ### 1 ...
            $big_n += 2;
            $big_rev = 1;
            ($big_x,$big_y) = ($len-$big_y, $big_x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### 2 or 3 ...
          if ($big_y > $len || ($big_x==$len && $big_y==$len)) {
            $big_n += 2;
            $big_x -= $len;
            $big_y -= $len;
          } else {
            $big_n += 4;
            $big_rev = 1;
            ($big_x,$big_y) = ($big_y, 2*$len-$big_x);   # to origin then rotate -90
          }
        }
      }
    }
    $len /= 2;
  }

  if ($x) {
    $n += ($rev ? -1 : 1);
  }
  if ($big_x) {
    $big_n += ($big_rev ? -1 : 1);
  }

  ### final: "$x,$y  n=$n  rev=$rev"
  ### final: "$x,$y  big_n=$n  big_rev=$rev"

  return ($n,
          ($n == $big_n ? () : ($big_n)));
}


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AlternatePaper rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest($x1);
  $x2 = round_nearest($x2);
  $y1 = round_nearest($y1);
  $y2 = round_nearest($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  ### rounded: "$x1,$y1  $x2,$y2"

  my $arms = $self->{'arms'};
  if (($arms == 1 && $y1 > $x2)       # x2,y1 bottom right corner
      || ($arms <= 2 && $x2 < 0)
      || ($arms <= 4 && $y2 < 0)) {
    ### outside ...
    return (1,0);
  }

  # arm start 0,1 at X=0,Y=0
  #           2,3 at X=0,Y=1
  #           4,5 at X=-1,Y=1
  #           6,7 at X=-1,Y=1
  # arms>=6 is arm=5 starting at Y=+1, so 1-$y1
  # arms>=8 starts at X=-1 so extra +1 for x2 to the right in that case
  my ($len, $level) =round_down_pow (max ($x2+($arms>=8),
                                          ($arms >= 2 ? $y2 : ()),
                                          ($arms >= 4 ? -$x1 : ()),
                                          ($arms >= 6 ? 1-$y1 : ())),
                                     2);
  return (0, 4*$arms*$len*$len-1);
}


my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  my $int = int($n);
  $n -= $int;  # $n fraction part
  ### $int
  ### $n

  my $arm = _divrem_mutate ($int, $self->{'arms'});
  ### $arm
  ### $int

  # $dir initial direction from the arm.
  # $inc +/-1 according to the bit position odd or even, but also odd
  # numbered arms are transposed so flip them.
  #
  my @bits = bit_split_lowtohigh($int);
  my $dir = ($arm+1) >> 1;
  my $inc = (($#bits ^ $arm) & 1 ? -1 : 1);
  my $prev = 0;

  ### @bits
  ### initial dir: $dir
  ### initial inc: $inc

  foreach my $bit (reverse @bits) {
    if ($bit != $prev) {
      $dir += $inc;
      $prev = $bit;
    }
    $inc = -$inc;   # opposite at each bit
  }
  $dir &= 3;
  my $dx = $dir4_to_dx[$dir];
  my $dy = $dir4_to_dy[$dir];
  ### $dx
  ### $dy

  if ($n) {
    ### apply fraction part: $n

    # maybe:
    # +/- $n as dx or dy
    # +/- (1-$n) as other dy or dx

    # strip any low 1-bits, and the 0-bit above them
    # $inc is +1 at an even bit position or -1 at an odd bit position
    $inc = my $inc = ($arm & 1 ? -1 : 1);
    while (shift @bits) {
      $inc = -$inc;
    }
    if ($bits[0]) { # bit above lowest 0-bit, 1=right,0=left
      $inc = -$inc;
    }
    $dir += $inc;   # apply turn to give $dir at $n+1
    $dir &= 3;
    $dx += $n*($dir4_to_dx[$dir] - $dx);
    $dy += $n*($dir4_to_dy[$dir] - $dy);
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}

# {
#   sub print_table {
#     my ($name, $aref) = @_;
#     print "my \@$name = (";
#     my $entry_width = max (map {length($_//'')} @$aref);
#
#     foreach my $i (0 .. $#$aref) {
#       printf "%*s", $entry_width, $aref->[$i]//'undef';
#       if ($i == $#$aref) {
#         print ");\n";
#       } else {
#         print ",";
#         if (($i % 16) == 15
#             || ($entry_width >= 3 && ($i % 4) == 3)) {
#           print "\n        ".(" " x length($name));
#         } elsif (($i % 4) == 3) {
#           print " ";
#         }
#       }
#     }
#   }
#
#   my @next_state;
# my @state_to_dxdy;
#
# sub make_state {
#   my %values = @_;
#   #  if ($oddpos) { $rot = ($rot-1)&3; }
#   my $state = delete $values{'nextturn'};
#   $state <<= 2; $state |= delete $values{'rot'};
#   $state <<= 1; $state |= delete $values{'oddpos'};
#   $state <<= 1; $state |= delete $values{'lowerbit'};
#   $state <<= 1; $state |= delete $values{'bit'};
#   die if %values;
#   return $state;
# }
# sub state_string {
#   my ($state) = @_;
#   my $bit = $state & 1;  $state >>= 1;
#   my $lowerbit = $state & 1;  $state >>= 1;
#   my $oddpos = $state & 1;  $state >>= 1;
#   my $rot = $state & 3;  $state >>= 2;
#   my $nextturn = $state;
#   #  if ($oddpos) { $rot = ($rot+1)&3; }
#   return "rot=$rot,oddpos=$oddpos nextturn=$nextturn  lowerbit=$lowerbit (bit=$bit)";
# }
#
# foreach my $nextturn (0, 1, 2) {
#   foreach my $rot (0, 1, 2, 3) {
#     foreach my $oddpos (0, 1) {
#       foreach my $lowerbit (0, 1) {
#         foreach my $bit (0, 1) {
#           my $state = make_state (bit      => $bit,
#                                   lowerbit => $lowerbit,
#                                   rot      => $rot,
#                                   oddpos   => $oddpos,
#                                   nextturn => $nextturn);
#           ### $state
#
#           my $new_nextturn = $nextturn;
#           my $new_lowerbit = $bit;
#           my $new_rot = $rot;
#           my $new_oddpos = $oddpos ^ 1;
#
#           if ($bit != $lowerbit) {
#             if ($oddpos) {
#               $new_rot++;
#             } else {
#               $new_rot--;
#             }
#             $new_rot &= 3;
#           }
#           if ($lowerbit == 0 && ! $nextturn) {
#             $new_nextturn = ($bit ^ $oddpos ? 1 : 2);  # bit above lowest 0
#           }
#
#           my $dx = 1;
#           my $dy = 0;
#           if ($rot & 2) {
#             $dx = -$dx;
#             $dy = -$dy;
#           }
#           if ($rot & 1) {
#             ($dx,$dy) = (-$dy,$dx); # rotate +90
#           }
#           ### rot to: "$dx, $dy"
#
#           # if ($oddpos) {
#           #   ($dx,$dy) = (-$dy,$dx); # rotate +90
#           # } else {
#           #   ($dx,$dy) = ($dy,-$dx); # rotate -90
#           # }
#
#           my $next_dx = $dx;
#           my $next_dy = $dy;
#           if ($nextturn == 2) {
#             ($next_dx,$next_dy) = (-$next_dy,$next_dx); # left, rotate +90
#           } else {
#             ($next_dx,$next_dy) = ($next_dy,-$next_dx); # right, rotate -90
#           }
#           my $frac_dx = $next_dx - $dx;
#           my $frac_dy = $next_dy - $dy;
#
#           # mask to rot,oddpos only, ignore bit,lowerbit
#           my $masked_state = $state & ~3;
#           $state_to_dxdy[$masked_state]     = $dx;
#           $state_to_dxdy[$masked_state + 1] = $dy;
#           $state_to_dxdy[$masked_state + 2] = $frac_dx;
#           $state_to_dxdy[$masked_state + 3] = $frac_dy;
#
#           my $next_state =  make_state (bit      => 0,
#                                         lowerbit => $new_lowerbit,
#                                         rot      => $new_rot,
#                                         oddpos   => $new_oddpos,
#                                         nextturn => $new_nextturn);
#           $next_state[$state] = $next_state;
#         }
#       }
#     }
#   }
# }
#
# my @arm_to_state;
# foreach my $arm (0 .. 7) {
#   my $rot = $arm >> 1;
#   my $oddpos = 0;
#   if ($arm & 1) {
#     $rot++;
#     $oddpos ^= 1;
#   }
#   $arm_to_state[$arm] = make_state (bit => 0,
#                                     lowerbit => 0,
#                                     rot => $rot,
#                                     oddpos => $oddpos,
#                                     nextturn => 0);
# }
#
# ### @next_state
# ### @state_to_dxdy
# ### next_state length: 4*(4*2*2 + 4*2)
#
# print "# next_state length ", scalar(@next_state), "\n";
# print_table ("next_state", \@next_state);
# print_table ("state_to_dxdy", \@state_to_dxdy);
# print_table ("arm_to_state", \@arm_to_state);
# print "\n";
#
# foreach my $arm (0 .. 7) {
#   print "# arm=$arm  ",state_string($arm_to_state[$arm]),"\n";
# }
# print "\n";
#
#
#
#   use Smart::Comments;
#
#   sub n_to_dxdy {
#     my ($self, $n) = @_;
#     ### n_to_dxdy(): $n
#
#     my $int = int($n);
#     $n -= $int;  # $n fraction part
#     ### $int
#     ### $n
#
#     my $state = _divrem_mutate ($int, $self->{'arms'}) << 2;
#     ### arm as initial state: $state
#
#     foreach my $bit (bit_split_lowtohigh($int)) {
#       $state = $next_state[$state + $bit];
#     }
#     $state &= 0x1C;  # mask out "prevbit"
#
#     ### final state: $state
#     ### dx: $state_to_dxdy[$state]
#     ### dy: $state_to_dxdy[$state+1],
#     ### frac dx: $state_to_dxdy[$state+2],
#     ### frac dy: $state_to_dxdy[$state+3],
#
#     return ($state_to_dxdy[$state]   + $n * $state_to_dxdy[$state+2],
#             $state_to_dxdy[$state+1] + $n * $state_to_dxdy[$state+3]);
#   }
#
# }

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::DragonCurve;
*level_to_n_range = \&Math::PlanePath::DragonCurve::level_to_n_range;
*n_to_level       = \&Math::PlanePath::DragonCurve::n_to_level;

#------------------------------------------------------------------------------

sub _UNDOCUMENTED_level_to_right_line_boundary {
  my ($self, $level) = @_;
  if ($level == 0) {
    return 1;
  }
  my ($h,$odd) = _divrem($level,2);
  return ($odd
          ? 6 * 2**$h - 4
          : 2 * 2**$h);
}
sub _UNDOCUMENTED_level_to_left_line_boundary {
  my ($self, $level) = @_;
  if ($level == 0) {
    return 1;
  }
  my ($h,$odd) = _divrem($level,2);
  return ($odd
          ? 2 * 2**$h
          : 4 * 2**$h - 4);
}
sub _UNDOCUMENTED_level_to_line_boundary {
  my ($self, $level) = @_;
  my ($h,$odd) = _divrem($level,2);
  return (($odd?8:6) * 2**$h - 4);
}

sub _UNDOCUMENTED_level_to_hull_area {
  my ($self, $level) = @_;
  return (2**$level - 1)/2;
}

sub _UNDOCUMENTED__n_is_x_positive {
  my ($self, $n) = @_;
  if (! ($n >= 0) || is_infinite($n)) { return 0; }

  $n = int($n);
  {
    my $arm = _divrem_mutate($n, $self->{'arms'});

    # arm 1 good only on N=1 which is remaining $n==0
    if ($arm == 1) {
      return ($n == 0);
    }

    # arm 0 good
    # arm 8 good for N>=15 which is remaining $n>=1
    unless ($arm == 0
            || ($arm == 7 && $n > 0)) {
      return 0;
    }
  }

  return _is_base4_01($n);
}

sub _UNDOCUMENTED__n_is_diagonal_NE {
  my ($self, $n) = @_;
  if (! ($n >= 0) || is_infinite($n)) { return 0; }

  $n = int($n);
  if ($self->{'arms'} >= 8 && $n == 15) { return 1; }
  if (_divrem_mutate($n, $self->{'arms'}) >= 2) { return 0; }
  return _is_base4_02($n);
}

# X axis N is base4 digits 0,1
# and -1 from even is 0,1 low 0333333
# and -2 from even is 0,1 low 0333332
# so $n+2 low digit any then 0,1s above
sub _UNDOCUMENTED__n_segment_is_right_boundary {
  my ($self, $n) = @_;
  if ($self->{'arms'} >= 8
      || ! ($n >= 0)
      || is_infinite($n)) {
    return 0;
  }
  $n = int($n);

  if (_divrem_mutate($n, $self->{'arms'}) >= 1) {
    return 0;
  }
  $n += 2;
  _divrem_mutate($n,4);
  return _is_base4_01($n);
}

# diagonal N is base4 digits 0,2,
# and -1 from there is 0,2 low 1
#                   or 0,2 low 13333
# so $n+1 low digit possible 1 or 3 then 0,2s above
# which means $n+1 low digit any and 0,2s above
#use Smart::Comments;

sub _UNDOCUMENTED__n_segment_is_left_boundary {
  my ($self, $n) = @_;
  ### _UNDOCUMENTED__n_segment_is_left_boundary(): $n

  my $arms = $self->{'arms'};
  if ($arms >= 8
      || ! ($n >= 0)
      || is_infinite($n)) {
    return 0;
  }
  $n = int($n);

  if (($n == 1 && $arms >= 4)
      || ($n == 3 && $arms >= 5)
      || ($n == 5 && $arms == 7)) {
    return 1;
  }
  if (_divrem_mutate($n, $arms) < $arms-1) {
    ### no, not last arm ...
    return 0;
  }

  if ($arms % 2) {
    ### odd arms, stair-step boundary ...
    $n += 1;
    _divrem_mutate($n,4);
    return _is_base4_02($n);
  } else {
    # even arms, notched like right boundary
    $n += 2;
    _divrem_mutate($n,4);
    return _is_base4_01($n);
  }
}

sub _is_base4_01 {
  my ($n) = @_;
  while ($n) {
    my $digit = _divrem_mutate($n,4);
    if ($digit >= 2) { return 0; }
  }
  return 1;
}
sub _is_base4_02 {
  my ($n) = @_;
  while ($n) {
    my $digit = _divrem_mutate($n,4);
    if ($digit == 1 || $digit == 3) { return 0; }
  }
  return 1;
}

1;
__END__

#------------------------------------------------------------------------------


# Old code with explicit rotation etc rather than state table.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# my @arm_to_x = (0,0, 0,0, -1,-1, -1,-1);
# my @arm_to_y = (0,0, 1,1,   1,1,  0,0);
#
# sub XXn_to_xy {
#   my ($self, $n) = @_;
#   ### AlternatePaper n_to_xy(): $n
#
#   if ($n < 0) { return; }
#   if (is_infinite($n)) { return ($n, $n); }
#
#   my $frac;
#   {
#     my $int = int($n);
#     $frac = $n - $int;  # inherit possible BigFloat
#     $n = $int;          # BigFloat int() gives BigInt, use that
#   }
#   ### $frac
#
#   my $zero = ($n * 0);  # inherit bignum 0
#
#   my $arm = _divrem_mutate ($n, $self->{'arms'});
#
#   my @bits = bit_split_lowtohigh($n);
#   if (scalar(@bits) & 1) {
#     push @bits, 0;  # extra high to make even
#   }
#
#   my @sx;
#   my @sy;
#   {
#     my $sy = $zero;   # inherit BigInt
#     my $sx = $sy + 1; # inherit BigInt
#     ### $sx
#     ### $sy
#
#     foreach (1 .. scalar(@bits)/2) {
#       push @sx, $sx;
#       push @sy, $sy;
#
#       # (sx,sy) + rot+90(sx,sy)
#       ($sx,$sy) = ($sx - $sy,
#                    $sy + $sx);
#
#       push @sx, $sx;
#       push @sy, $sy;
#
#       # (sx,sy) + rot-90(sx,sy)
#       ($sx,$sy) = ($sx + $sy,
#                    $sy - $sx);
#     }
#   }
#
#   ### @bits
#   ### @sx
#   ### @sy
#   ### assert: scalar(@sx) == scalar(@bits)
#
#   my $rot = int($arm/2);  # arm to initial rotation
#   my $rev = 0;
#   my $x = $zero;
#   my $y = $zero;
#   while (@bits) {
#     {
#       my $bit = pop @bits;   # high to low
#       my $sx = pop @sx;
#       my $sy = pop @sy;
#       ### at: "$x,$y  $bit   side $sx,$sy"
#       ### $rot
#
#       if ($rot & 2) {
#         ($sx,$sy) = (-$sx,-$sy);
#       }
#       if ($rot & 1) {
#         ($sx,$sy) = (-$sy,$sx);
#       }
#
#       if ($rev) {
#         if ($bit) {
#           $x -= $sy;
#           $y += $sx;
#           ### rev add to: "$x,$y next is still rev"
#         } else {
#           $rot ++;
#           $rev = 0;
#         }
#       } else {
#         if ($bit) {
#           $rot ++;
#           $x += $sx;
#           $y += $sy;
#           $rev = 1;
#           ### add to: "$x,$y next is rev"
#         }
#       }
#     }
#
#     @bits || last;
#
#     {
#       my $bit = pop @bits;
#       my $sx = pop @sx;
#       my $sy = pop @sy;
#       ### at: "$x,$y  $bit   side $sx,$sy"
#       ### $rot
#
#       if ($rot & 2) {
#         ($sx,$sy) = (-$sx,-$sy);
#       }
#       if ($rot & 1) {
#         ($sx,$sy) = (-$sy,$sx);
#       }
#
#       if ($rev) {
#         if ($bit) {
#           $x += $sy;
#           $y -= $sx;
#           ### rev add to: "$x,$y next is still rev"
#         } else {
#           $rot --;
#           $rev = 0;
#         }
#       } else {
#         if ($bit) {
#           $rot --;
#           $x += $sx;
#           $y += $sy;
#           $rev = 1;
#           ### add to: "$x,$y next is rev"
#         }
#       }
#     }
#   }
#
#   ### $rot
#   ### $rev
#
#   if ($rev) {
#     $rot += 2;
#     ### rev change rot to: $rot
#   }
#
#   if ($arm & 1) {
#     ($x,$y) = ($y,$x);  # odd arms transpose
#   }
#
#   $rot &= 3;
#   $x = $frac * $dir4_to_dx[$rot] + $x + $arm_to_x[$arm];
#   $y = $frac * $dir4_to_dy[$rot] + $y + $arm_to_y[$arm];
#
#   ### final: "$x,$y"
#   return ($x,$y);
# }



=for :stopwords eg Ryde Math-PlanePath Nlevel et al vertices doublings OEIS Online DragonCurve ZOrderCurve 0xAA..AA Golay-Rudin-Shapiro Rudin-Shapiro dX dY dX,dY GRS dSum undoubled MendE<232>s Tenenbaum des Courbes Papiers de ie ceil

=head1 NAME

Math::PlanePath::AlternatePaper -- alternate paper folding curve

=head1 SYNOPSIS

 use Math::PlanePath::AlternatePaper;
 my $path = Math::PlanePath::AlternatePaper->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of the alternate paper folding curve (a variation
on the DragonCurve paper folding).

=cut

# math-image --path=AlternatePaper --expression='i<=128?i:0' --output=numbers --size=60

=pod

      8 |                                                      128
        |                                                       |
      7 |                                                42---43/127
        |                                                |      |
      6 |                                         40---41/45--44/124
        |                                         |      |      |
      5 |                                  34---35/39--38/46--47/123
        |                                  |      |      |      |
      4 |                           32---33/53--36/52--37/49--48/112
        |                           |      |      |      |      |
      3 |                    10---11/31--30/54--51/55--50/58--59/111
        |                    |      |      |      |      |      |
      2 |              8----9/13--12/28--29/25--24/56--57/61--60/108
        |              |     |      |      |      |      |      |
      1 |        2----3/7---6/14--15/27--26/18--19/23---22/62--63/107
        |        |     |     |      |      |      |      |      |
    Y=0 |  0-----1     4-----5     16-----17     20-----21     64---..
        |
        +------------------------------------------------------------
          X=0    1     2     3      4      5      6      7      8

The curve visits the X axis points and the X=Y diagonal points once each and
visits "inside" points between there twice each.  The first doubled point is
X=2,Y=1 which is N=3 and also N=7.  The segments N=2,3,4 and N=6,7,8 have
touched, but the curve doesn't cross over itself.  The doubled vertices are
all like this, touching but not crossing, and no edges repeat.

The first step N=1 is to the right along the X axis and the path fills the
eighth of the plane up to the X=Y diagonal inclusive.

The X axis N=0,1,4,5,16,17,etc is the integers which have only digits 0,1 in
base 4, or equivalently those which have a 0 bit at each odd numbered bit
position.

The X=Y diagonal N=0,2,8,10,32,etc is the integers which have only digits
0,2 in base 4, or equivalently those which have a 0 bit at each even
numbered bit position.

The X axis values are the same as on the ZOrderCurve X axis, and the X=Y
diagonal is the same as the ZOrderCurve Y axis, but in between the two are
different.  (See L<Math::PlanePath::ZOrderCurve>.)

=head2 Paper Folding

The curve arises from thinking of a strip of paper folded in half
alternately one way and the other, and then unfolded so each crease is a 90
degree angle.  The effect is that the curve repeats in successive doublings
turned 90 degrees and reversed.

The first segment N=0 to N=1 unfolds clockwise, pivoting at the endpoint
"1",

                                    2
                               ->   |
                 unfold       /     |
                  ===>       |      |
                                    |
    0------1                0-------1

Then that "L" shape unfolds again, pivoting at the end "2", but
anti-clockwise, on the opposite side to the first unfold,

                                    2-------3
           2                        |       |
           |     unfold             |   ^   |
           |      ===>              | _/    |
           |                        |       |
    0------1                0-------1       4

In general after each unfold the shape is a triangle as follows.  "N" marks
the N=2^k endpoint in the shape, either bottom right or top centre.

    after even number          after odd number
       of unfolds,                of unfolds,
     N=0 to N=2^even            N=0 to N=2^odd

               .                       N
              /|                      / \
             / |                     /   \
            /  |                    /     \
           /   |                   /       \
          /    |                  /         \
         /_____N                 /___________\
        0,0                     0,0

For an even number of unfolds the triangle consists of 4 sub-parts numbered
by the high digit of N in base 4.  Those sub-parts are self-similar in the
direction "E<gt>", "^" etc as follows, and with a reversal for parts 1
and 3.

              +
             /|
            / |
           /  |
          / 2>|
         +----+
        /|\  3|
       / | \ v|
      /  |^ \ |
     / 0>| 1 \|
    +----+----+

=head2 Arms

The C<arms> parameter can choose 1 to 8 curve arms successively advancing.
Each fills an eighth of the plane.  The second arm is mirrored across the
X=Y leading diagonal, so

=cut

# math-image --path=AlternatePaper,arms=2 --expression='i<=128?i:0' --output=numbers --size=60

=pod

      arms => 2

        |   |     |       |       |       |
      4 |  33---31/55---25/57---23/63---64/65--
        |         |       |       |       |
      3 |  11---13/29---19/27---20/21---22/62--
        |   |     |       |       |       |
      2 |   9----7/15---16/17---18/26---24/56--
        |         |       |       |       |
      1 |   3----4/5-----6/14---12/28---30/54--
        |   |     |       |       |       |
    Y=0 |  0/1----2       8------10      32---
        |
        +------------- -------------------------
          X=0     1       2       3       4

Here the even N=0,2,4,6,etc is the plain curve below the X=Y diagonals and
odd N=1,3,5,7,9,etc is the mirrored copy.

Arms 3 and 4 are the same but rotated +90 degrees and starting from X=0,Y=1.
That start point ensures each edge between integer points is traversed just
once.

=cut

# math-image --path=AlternatePaper,arms=4 --expression='i<=256?i:0' --output=numbers --size=60

=pod

    arms => 4

        |       |       |      |        |
    --34/35---14/30---18/21--25/57----37/53--        3
        |       |       |      |        |
    --15/31---10/11----6/17--13/29----32/33--        2
        |       |       |      |        |
     --19       7-----2/3/5---8/9-----12/28--        1
                        |      |        |
                       0/1-----4        16--     <- Y=0

    -----------------------------------------
       -1      -2      X=0     1        2

Points N=0,4,8,12,etc is the plain curve, N=1,5,9,13,etc the second mirrored
arm, N=2,6,10,14,etc is arm 3 which is the plain curve rotated +90, and
N=3,7,11,15,etc the rotated and mirrored.

Arms 5 and 6 start at X=-1,Y=1, and arms 7 and 8 start at X=-1,Y=0 so they
too traverse each edge once.  With a full 8 arms each point is visited twice
except for the four start points which are three times.

=cut

# math-image --path=AlternatePaper,arms=8 --expression='i<=256?i:0' --output=numbers --size=60

=pod

    arms => 8

        |       |       |       |       |       |
    --75/107--66/67---26/58---34/41---49/113--73/105--        3
        |       |       |       |       |       |
    --51/115---27/59---18/19--10/33---25/57---64/65--         2
        |       |       |       |       |       |
    --36/43---12/35---4/5/11---2/3/9--16/17---24/56--         1
        |       |       |       |       |       |
    --28/60---20/21---6/7/13--0/1/15---8/39---32/47--     <- Y=0
        |       |       |       |       |       |
    --68/69---29/61----14/37---22/23--31/63---55/119--       -1
        |       |       |       |       |       |
    --77/109--53/117---38/45---30/62--70/71---79/111--       -2
        |       |       |       |       |       |

                                ^
       -2      -1      -2      X=0     1        2

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new ()>

=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new (arms =E<gt> $integer)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer points.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.  There may be
none, one or two N's for a given C<$x,$y>, and for armsE<gt>=2 there are
three N's at the starting X,Y points.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level)>, or for multiple arms return C<(0, $arms *
2**$level + ($arms-1))>.

This is the same as L<Math::PlanePath::DragonCurve/Level Methods>.  Each
level is an unfold (on alternate sides left or right).

=back

=head1 FORMULAS

=head2 Turn

At each point N the curve always turns either left or right, it never goes
straight ahead.  The turn is given by the bit above the lowest 1 bit in N
and whether that position is odd or even.

    N = 0b...z100..00   (including possibly no trailing 0s)
             ^
             pos, counting from 0 for least significant bit

    (z bit) XOR (pos&1)   Turn
    -------------------   ----
             0            right
             1            left

For example N=10 binary 0b1010 has lowest 1 bit at 0b__1_ and the bit above
that is a 0 at even number pos=2, so turn to the right.

=head2 Next Turn

The bits also give the turn after next by looking at the bit above the
lowest 0.

    N = 0b...w011..11    (including possibly no trailing 1s)
             ^
             pos, counting from 0 for least significant bit

    (w bit) XOR (pos&1)    Next Turn
    -------------------    ---------
             0             right
             1             left

For example at N=10 binary 0b1010 the lowest 0 is the least significant bit,
and above that is a 1 at odd pos=1, so at N=10+1=11 turn right.  This works
simply because w011..11 when incremented becomes w100..00 which is the "z"
form above.

The inversion at odd bit positions can be applied with an xor 0b1010..1010.
If that's done then the turn calculation is the same as the DragonCurve (see
L<Math::PlanePath::DragonCurve/Turn>).

=head2 Total Turn

The total turn can be calculated from the segment replacements resulting
from the bits of N.

    each bit of N from high to low

      when plain state
       0 -> no change
       1 -> turn left if even bit pos or turn right if odd bit pos
              and go to reversed state

      when reversed state
       1 -> no change
       0 -> turn left if even bit pos or turn right if odd bit pos
              and go to plain state

    (bit positions numbered from 0 for the least significant bit)

This is similar to the DragonCurve (see L<Math::PlanePath::DragonCurve/Total
Turn>) except the turn is either left or right according to an odd or even
bit position of the transition, instead of always left for the DragonCurve.

=head2 dX,dY

Since there's always a turn either left or right, never straight ahead, the
X coordinate changes, then Y coordinate changes, alternately.

        N=0
    dX   1  0  1  0  1  0 -1  0  1  0  1  0 -1  0  1  0  ...
    dY   0  1  0 -1  0  1  0  1  0  1  0 -1  0 -1  0 -1  ...

X changes when N is even, Y changes when N is odd.  Each change is either +1
or -1.  Which it is follows the Golay-Rudin-Shapiro sequence which is parity
odd or even of the count of adjacent 11 bit pairs.

In the total turn above it can be seen that if the 0-E<gt>1 transition is at
an odd position and 1-E<gt>0 transition at an even position then there's a
turn to the left followed by a turn to the right for no net change.
Likewise an even and an odd.  This means runs of 1 bits with an odd length
have no effect on the direction.  Runs of even length on the other hand are
a left followed by a left, or a right followed by a right, for 180 degrees,
which negates the dX change.  Thus

    if N even then dX = (-1)^(count even length runs of 1 bits in N)
    if N odd  then dX = 0

This (-1)^count is related to the Golay-Rudin-Shapiro sequence,

    GRS = (-1) ^ (count of adjacent 11 bit pairs in N)
        = (-1) ^ count_1_bits(N & (N>>1))
        = /  +1 if (N & (N>>1)) even parity
          \  -1 if (N & (N>>1)) odd parity

The GRS is +1 on an odd length run of 1 bits, for example a run 111 has two
11 bit pairs.  The GRS is -1 on an even length run, for example 1111 has
three 11 bit pairs.  So modulo 2 the power in the GRS is the same as the
count of even length runs and therefore

    dX = /  GRS(N)  if N even
         \  0       if N odd

For dY the total turn and odd/even runs of 1s is the same 180 degree
changes, except N is odd for a Y change so the least significant bit is 1
and there's no return to "plain" state.  If this lowest run of 1s starts on
an even position (an odd number of 1s) then it's a turn left for +1.
Conversely if the run started at an odd position (an even number of 1s) then
a turn right for -1.  The result for this last run is the same "negate if
even length" as the rest of the GRS, just for a slightly different reason.

    dY = /  0       if N even
         \  GRS(N)  if N odd

=head2 dX,dY Pair

At a consecutive pair of points N=2k and N=2k+1 the dX and dY can be
expressed together in terms of GRS(k) as

    dX = GRS(2k)
       = GRS(k)

    dY = GRS(2k+1)
       = GRS(k) * (-1)^k
       = /  GRS(k) if k even
         \  -GRS(k) if k odd

For dY reducing 2k+1 to k drops a 1 bit from the low end.  If the second
lowest bit is also a 1 then they were a "11" bit pair which is lost from
GRS(k).  The factor (-1)^k adjusts for that, being +1 if k even or -1 if k
odd.

=head2 dSum

From the dX and dY formulas above it can be seen that their sum is simply
GRS(N),

    dSum = dX + dY = GRS(N)

The sum X+Y is a numbering of anti-diagonal lines,

   | \ \ \
   |\ \ \ \
   | \ \ \ \
   |\ \ \ \ \
   | \ \ \ \ \
   |\ \ \ \ \ \
   +------------
     0 1 2 3 4 5

The curve steps each time either up to the next or back to the previous
according to dSum=GRS(N).

The way the curve visits outside edge X,Y points once each and inner X,Y
points twice each means an anti-diagonal s=X+Y is visited a total of s many
times.  The diagonal has floor(s/2)+1 many points.  When s is odd the first
is visited once and the rest visited twice.  When s is even the X=Y point is
only visited once.  In each case the total is s many visits.

The way the coordinate sum s=X+Y occurs s many times is a geometric
interpretation to the way the cumulative GRS sequence has each value k
occurring k many times.  (See L<Math::NumSeq::GolayRudinShapiroCumulative>.)

=head2 Area

The area enclosed by the curve for points N=0 to N=2^k inclusive is

    A[k] = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
         = / (2^k - 3*2^h + 2) / 2   if k odd 
           \ (2^k - 4*2^h + 2) / 2   if k even
           where h=floor(k/2)
    = 1/2*0, 0*0, 0*1, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, ...
    = 0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, ... (A027556/2)

=for Test-Pari-DEFINE  AsamplesP = [0, 0, 0, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, 15*31, 31*31, 31*63, 63*63, 63*127, 127*127, 127*255]

=for Test-Pari-DEFINE  Asamples = [0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385]

=for Test-Pari-DEFINE  A(k) = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)

=for Test-Pari-DEFINE  A2(k)= local(h); h=floor(k/2); if(k%2, (2^k - 4*2^h + 2)/2, (2^k - 3*2^h + 2)/2)

=for Test-Pari-DEFINE  A3(k)= local(h); h=floor(k/2); (2^h-1)*(2^if(k%2,h,h-1) - 1)

=for Test-Pari vector(length(Asamples), k, A(k-1)) == Asamples

=for Test-Pari vector(length(Asamples), k, A2(k-1)) == Asamples

=for Test-Pari vector(length(Asamples), k, A3(k-1)) == Asamples

=for Test-Pari Asamples == AsamplesP

=cut

# Pari: for(k=0,16,print1(A(k),", "))

# K = H^2
# (H-1)*(H-1 + 1)/2 - (H-2)/2 - (H-2)/2 - 1
# = 1/2*H^2 - 3/2*H + 1
# = (H^2 - 3*H + 2)/2
# = (H-1)(H-2)/2

=pod

When k is even the curve is a triangular stack with every second block along
the bottom and right sides unfilled.

                         *--*    Y=2^h-1
                         |  |      where h=k/2
                      *--*--*
                      |  |
                   *--*--*--*
                   |  |  |  |
                *--*--*--*--*
                |  |  |  |
             *--*--*--*--*--*
             |  |  |  |  |  |
          *--*--*--*--*--*--*
          |  |  |  |  |  |
       *--*--*--*--*--*--*--*
       |  |  |  |  |  |  |  |
    *--*  *--*  *--*  *--*  *   Y=0
      X=1                  X=2^h

The area formula can be found by moving the alternating blocks in the right
column to fill the gaps in the bottom row, and moving the top half of the
triangle down to complete a rectangle

    *--------*--*--*--*--*
    |        |  |  |  |  |    height = 2^(h-1) - 1
    |     *--*--*--*--*--*           = 2^floor((k-1)/2) - 1
    |     |  |  |  |  |  |
    |  *--*--*--*--*--*--*    width = 2^h - 1
    |  |  |  |  |  |  |  |          = 2^ceil((k-1)/2) - 1
    *--*__*--*__*--*__*--*

When k is odd the curve is a pyramid stack with every second block along the
bottom unfilled.


                            *          Y=2^h
                            |
                         *--*--*       Y=2^h-1
                         |  |  |         where h=floor(k/2)
                      *--*--*--*--*
                      |  |  |  |  |
                   *--*--*--*--*--*--*
                   |  |  |  |  |  |  |
                *--*--*--*--*--*--*--*--*
                |  |  |  |  |  |  |  |  |
             *--*--*--*--*--*--*--*--*--*--*
             |  |  |  |  |  |  |  |  |  |  |
          *--*--*--*--*--*--*--*--*--*--*--*--*
          |  |  |  |  |  |  |  |  |  |  |  |  |
       *--*--*--*--*--*--*--*--*--*--*--*--*--*--*
       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    *--*  *--*  *--*  *--*  *--*  *--*  *--*  *--*
      X=1                  X=2^h                X=2^(2h)-1

This too can be rearranged, this time to make a square.  The right hand half
of the bottom row fills the gaps in the left.  The remaining right hand
triangle then goes above the left triangle.

                            *    Y=2^h
                            |
       *-----------------*--*    Y=2^h - 1
       |                 |  |
       |              *--*--*
       |              |  |  |
       |           *--*--*--*    height = 2^h - 1
       |           |  |  |  |           = 2^floor((k-1)/2)
       |        *--*--*--*--*
       |        |  |  |  |  |    width = 2^h - 1
       |     *--*--*--*--*--*          = 2^ceil((k-1)/2)
       |     |  |  |  |  |  |
       |  *--*--*--*--*--*--*    floor((k-1)/2) = ceil((k-1)/2)
       |  |  |  |  |  |  |  |    since (k-1)/2 is an integer
       *--*--*--*--*--*--*--*    when k is odd
       |  |  |  |  |  |  |  |
    *--*__*--*__*--*__*--*__*
      X=1                  X=2^h

For k=0 through k=2 there are no areas to copy this way but 2^0-1=0 in the
formula gives the desired A[0]=A[1]=A[2]=0.

=head2 Area Increment

The new area added between N=2^k and N=2^(k+1) is

    dA[k] = A[k+1] - A[k]
          = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2
          = (2^k - 2^ceil(k/2)) / 2
    = 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, ... (A122746)

=for Test-Pari-DEFINE dAsamples = [0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640]

=for Test-Pari-DEFINE dA(k) = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2

=for Test-Pari-DEFINE dA2(k) = (2^k - 2^ceil(k/2)) / 2

=for Test-Pari vector(length(dAsamples), k, dA(k-1)) == dAsamples

=for Test-Pari vector(length(dAsamples), k, dA2(k-1)) == dAsamples

=for Test-Pari vector(20, k, dA(k-1)) == vector(20, k, A(k+1 -1) - A(k -1))

=cut

# dA[k] = A[k+1]-A[k]
#  = (2^floor(k/2) - 1) * (2^ceil(k/2) - 1)
#    - (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
# if k even  h=floor(k/2)  k/2 integer
#  = (2^h - 1) * (2^h - 1) - (2^h/2 - 1) * (2^h - 1)
#  = (2^h - 1 - (2^h/2 - 1)) * (2^h - 1)
#  = (2^h - 1 - 2^h/2 + 1) * (2^h - 1)
#  = 2^h * (2^h - 1) / 2
#  = 2^k/2 - 2^h/2
# if k odd  h=floor(k/2)   k/2 not integer
#  = (2^h - 1) * (2*2^h - 1) - (2^h - 1) * (2^h - 1)
#  = (2^h - 1) * (2*2^h - 1 - (2^h - 1))
#  = (2^h - 1) * (2*2^h - 1 - 2^h + 1)
#  = (2^h - 1) * 2^h
#  = 2^k/2 - 2^h
# dA[k] = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2

=pod

=head2 Convex Hull Area

A convex hull is the smallest convex polygon which contains a given set of
points.  For the alternate paper the area of the convex hull for points N=0
to N=2^k inclusive is

    HA[k] = (2^k - 1)/2

The hull is a triangle of area 2^k/2 except for an end triangle of area 1/2
at the top for even level or right for odd level.

=head2 Right Boundary

The boundary length of the curve from N=0 to N=2^k on its right side is

    R[k] = /  1           if k=0
           |  2*2^h       if k even >= 2
           \  6*2^h - 4   if k odd  >= 1
           where h=floor(k/2)
    = 1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, ...

=for Test-Pari-DEFINE  Rsamples = [1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, 764, 512]

=for Test-Pari-DEFINE  R(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 6*2^h-4, 2*2^h))

=for Test-Pari vector(length(Rsamples), k, R(k-1)) == Rsamples

For k even the right boundary is along the X axis

      2^h        X axis horizontals
      2^h        X axis indentations, if k >= 2
    -----
    2*2^h

For k odd the right boundary is along the X axis and then up the right side
to the top,

    2*2^h - 1    X axis horizontals
    2*2^h - 2    X axis indentations
      2^h        right slope verticals
      2^h - 1    right slope horizontals
    -------
    6*2^h - 4

=head2 Left Boundary

The boundary length of the curve from N=0 to N=2^k on its left side is

    L[k] = /  1           if k=0
           |  4*2^h - 4   if k even >= 2
           \  2*2^h       if k odd  >= 1
           where h=floor(k/2)
    = 1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, ...

=for Test-Pari-DEFINE  Lsamples = [1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, 256, 1020]

=for Test-Pari-DEFINE  L(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 2*2^h, 4*2^h-4))

=for Test-Pari vector(length(Lsamples), k, L(k-1)) == Lsamples

For k even the left boundary is up the left slope then down the vertical

      2^h        left slope horizontals
      2^h - 1    left slope verticals
      2^h - 1    right edge verticals
      2^h - 2    right edge indentations
    -----
    4*2^h - 4

For k odd the left boundary is the left slope, and this time it includes a
final vertical line segment

      2^h        left slope horizontals
      2^h        left slope verticals
    -------
    2*2^h

=cut

#      *---*    k=2
#      |   |    right=4
#  O---*   E    left=4
#
#          E       k=3
#          |       right=8
#      *---*---*   left=4
#      |   |   |
#  O---*   *---*
#                  E
#                  |
#              *---*---*
#              |   |   |
#          *---*---*---*---*       k=5
#          |   |   |   |   |       right=20
#      *---*---*---*---*---*---*   left=8
#      |   |   |   |   |   |   |
#  O---*   *---*   *---*   *---*
#

=pod

=head2 Boundary

The total boundary length of the curve from N=0 to N=2^k is

    B[k] = L[k] + R[k] = /  6*2^h - 4   if k even
                         \  8*2^h - 4   if k odd
                         where h=floor(k/2)
    = 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, ... (2*A027383)

=for Test-Pari-DEFINE  Bsamples = [2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, 508, 764, 1020, 1532]

=for Test-Pari-DEFINE  B(k) = local(h); h=floor(k/2); if(k%2, 8*2^h-4, 6*2^h-4)

=for Test-Pari vector(length(Bsamples), k, B(k-1)) == Bsamples

=for Test-Pari vector(20, k, B(k-1)) == vector(20, k, R(k-1)+L(k-1))

=for Test-Pari vector(20, k, 4*A(k-1)+B(k-1)) == vector(20, k, 2*2^(k-1))

=for Test-Pari 4*(p/2 - 1)*(p-1) + 6*p-4 == 2*p^2

=for Test-Pari 4*(p-1)*(p-1) + 8*p-4 == 4*p^2

The special case for k=0 is eliminated since the k even 6*2^h-4 is the
desired 2 when k=0, h=0.

Every enclosed unit square has all four sides traversed so by counting
inside and outside sides of the segments have 2*N = 4*A + B.  This can be
verified for A[k] and B[k]

    4*A[k] + B[k] = 4* / (2^h/2 - 1) * (2^h - 1)  if k even
                       \ (2^h - 1) * (2^h - 1)  if k odd
                    + /  6*2^h - 4   if k even
                      \  8*2^h - 4   if k odd
                  = / 2 * 2^h * 2^h  if k even
                    \ 4 * 2^h * 2^h  if k odd
                  = 2*2^k

This relation also gives a formula for B[k] using the floor and ceil pair
from A[k]

    B[k] = 2*2^k - 4*A[k]
         = 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)

=for Test-Pari-DEFINE  BfromA(k) = 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)

=for Test-Pari vector(length(Bsamples), k, BfromA(k-1)) == Bsamples

=head2 Single Points

The number of single-visited points for N=0 to N=2^k inclusive is

    S[k] = /  3*2^h - 1   if k even
           \  4*2^h - 1   if k odd
    = 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, ...   (A052955)

=for Test-Pari-DEFINE  Ssamples = [2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767]

=for Test-Pari-DEFINE  S(k) = local(h); h=floor(k/2); if(k%2, 4*2^h-1, 3*2^h-1)

=for Test-Pari vector(length(Ssamples), k, S(k-1)) == Ssamples

=cut

# Pari: for(k=0,16,print1(S(k),", "))

=pod

The single points are all on the outer edges and those sides can be counted
easily.

The singles can also be obtained from the boundary.  Each new line segment
which increases the area also increases the double points, so area=doubles.
Such a segment decreases the singles by -1 and the boundary by -2.  A new
line segment which doesn't enclose new area increases the singles by +1 and
the boundary by +2.  Starting from singles=1 boundary=0 means

    S[N] = B[N]/2 + 1

=for Test-Pari vector(20, k, S(k-1)) == vector(20, k, B(k-1)/2+1)

Or with singles and doubles adding up to N+1 points the doubles=area can
give the singles from the area.

    S + 2*D = N+1          N=number of segments, N+1=number of points

=for Test-Pari vector(20, k, S(k-1)) == vector(20, k, 2^(k-1)+1 - 2*A(k-1))

=head1 OEIS

The alternate paper folding curve is in Sloane's Online Encyclopedia of
Integer Sequences as

=over

L<http://oeis.org/A106665> (etc)

=back

    A106665   next turn 1=left,0=right, a(0) is turn at N=1
    A209615   turn 1=left,-1=right
    A020985   Golay/Rudin/Shapiro sequence +1,-1
                dX and dY alternately
                dSum, change in X+Y
    A020986   Golay/Rudin/Shapiro cumulative
                X coordinate (undoubled)
                X+Y coordinate sum
    A020990   Golay/Rudin/Shapiro * (-1)^n cumulative
                Y coordinate (undoubled)
                X-Y diff, starting from N=1
    A020987   GRS with values 0,1 instead of +1,-1

Since the X and Y coordinates each change alternately, each coordinate
appears twice, for instance X=0,1,1,2,2,3,3,2,2,etc.  A020986 and A020990
are "undoubled" X and Y in the sense of just one copy of each of those
paired values.

    A077957   Y at N=2^k, being alternately 0 and 2^(k/2)

    A000695   N on X axis,   base 4 digits 0,1 only
    A062880   N on diagonal, base 4 digits 0,2 only

    A022155   N positions of left or down segment,
                being GRS < 0,
                ie. dSum < 0 so move to previous anti-diagonal
    A203463   N positions of up or right segment,
                being GRS > 0,
                ie. dSum > 0 so move to next anti-diagonal

    A020991   N-1 of first time on X+Y=k anti-diagonal
    A212591   N-1 of last time on X+Y=k anti-diagonal
    A093573   N-1 of points on the anti-diagonals d=X+Y,
                by ascending N-1 value within each diagonal

A020991 etc have values N-1, ie. the numbering differs by 1 from the N here,
since they're based on the A020986 cumulative GRS starting at n=0 for value
GRS(0).  This matches the turn sequence A106665 starting at n=0 for the
first turn, whereas for the path here that's N=1.

    A027556   area*2 to N=2^k
    A134057   area to N=4^k
    A060867   area to N=2*4^k
    A122746   area increment N=2^k to N=2^(k+1)

    A000225   convex hull area*2, being 2^k-1

    A027383   boundary/2 to N=2^k
               also boundary verticals or horizontals
               (boundary is half verticals half horizontals)
    A131128   boundary to N=4^k
    A028399   boundary to N=2*4^k

    A052955   single-visited points to N=2^k
    A052940   single-visited points to N=4^k, being 3*2^n-1

    arms=2
      A062880   N on X axis, base 4 digits 0,2 only

    arms=3
      A001196   N on X axis, base 4 digits 0,3 only

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::AlternatePaperMidpoint>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::CCurve>,
L<Math::PlanePath::HIndexing>,
L<Math::PlanePath::ZOrderCurve>

L<Math::NumSeq::GolayRudinShapiro>,
L<Math::NumSeq::GolayRudinShapiroCumulative>

Michel MendE<232>s France and G. Tenenbaum, "Dimension des Courbes Planes,
Papiers Plies et Suites de Rudin-Shapiro", Bulletin de la S.M.F., volume
109, 1981, pages 207-215.
L<http://www.numdam.org/item?id=BSMF_1981__109__207_0>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut