File: ChanTree.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1258 lines) | stat: -rw-r--r-- 36,495 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
# Copyright 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# digit_direction LtoH
# digit_order     HtoL
# reduced = bool
# points = even, all_mul, all_div

# points=all wrong
#
# Chan corollary 3 taking frac(2n)   = b(2n)   /   b(2n+1)
#                         frac(2n+1) = b(2n+1) / 2*b(2n+2)
# at N odd multiply 2 into denominator,
# which is divide out 2 from numerator since b(2n+1) odd terms are even
#

package Math::PlanePath::ChanTree;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

use Math::PlanePath::GcdRationals;
*_gcd = \&Math::PlanePath::GcdRationals::_gcd;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'k',
      display         => 'k',
      type            => 'integer',
      default         => 3,
      minimum         => 2,
    },

    # Not sure about these yet.
    # { name            => 'reduced',
    #   display         => 'Reduced',
    #   type            => 'boolean',
    #   default         => 0,
    # },
    # { name            => 'points',
    #   share_key       => 'points_ea',
    #   display         => 'Points',
    #   type            => 'enum',
    #   default         => 'even',
    #   choices         => ['even','all_mul','all_div'],
    #   choices_display => ['Even','All Mul','All Div'],
    #   when_name       => 'k',
    #   when_condition  => 'odd',
    # },
    # { name            => 'digit_order',
    #   display         => 'Digit Direction',
    #   type            => 'enum',
    #   default         => 'HtoL',
    #   choices         => ['HtoL','LtoH'],
    #   choices_display => ['High to Low','Low to High'],
    # },

    Math::PlanePath::Base::Generic::parameter_info_nstart0(),
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;

use constant x_minimum => 1;
use constant y_minimum => 1;

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->{'reduced'} || $self->{'k'} == 2
          ? 2    # X=1,Y=1 if reduced or k=2
          : 3);  # X=1,Y=2
}
sub absdiffxy_minimum {
  my ($self) = @_;
  return ($self->{'k'} & 1
          ? 1    # k odd, X!=Y since one odd one even
          : 0);  # k even, has X=Y in top row
}
sub rsquared_minimum {
  my ($self) = @_;
  return ($self->{'k'} == 2
          || ($self->{'reduced'} && ($self->{'k'} & 1) == 0)
          ? 2    # X=1,Y=1 reduced k even, including k=2 top 1/1
          : 5);  # X=1,Y=2
}
sub gcdxy_maximum {
  my ($self) = @_;
  return ($self->{'k'} == 2       # k=2, RationalsTree CW above
          || $self->{'reduced'}
          ? 1
          : undef);  # other, unlimited
}

sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'k'} & 1
          ? 1    # k odd
          : 0);  # k even, dX=0,dY=-1 at N=k/2 middle of roots
}
sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'k'} == 2 || ($self->{'k'} & 1)
          ? 1    # k=2 or k odd
          : 0);  # k even, dX=1,dY=0 at N=k/2-1 middle of roots
}

sub dir_minimum_dxdy {
  my ($self) = @_;
  return ($self->{'k'} == 2
          ? (0,1)   # k=2, per RationalsTree CW

          # otherwise East
          # k even exact  dX=1,dY=0 middle of roots
          # k odd infimum dX=big,dY=-1 eg k=5 N="2222220"
          : (1,0));
}

sub tree_num_children_list {
  my ($self) = @_;
  return ($self->{'k'});   # complete tree, always k children
}
use constant tree_n_to_subheight => undef; # complete trees, all infinite


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  $self->{'digit_order'} ||= 'HtoL'; # default

  my $k = ($self->{'k'} ||= 3);  # default
  $self->{'half_k'} = int($k / 2);

  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = 0;      # default
  }

  $self->{'points'} ||= 'even';
  return $self;
}

# rows
# level=0   k-1
# level=1   k * (k-1)
# level=2   k^2 * (k-1)
# total (k-1)*(1+k+k^2+...+k^level)
#     = (k-1)*(k^(level+1) - 1)/(k-1)
#     = k^(level+1) - 1
#
# middle odd
# k(r+s)/2-r-2s / k(r+s)/2-s
# (k-1)(r+s)/2+r / (k-1)(r+s)/2+s
# k(r+s)/2-r-2s / k(r+s)/2-s
#
#   k=5
#   5(r+2)/2 -r-2s / 5(r+s)/2-s
#
# (1 + 2*x + 3*x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8)
# * (1 + 2*x^5 + 3*x^10 + 2*x^15 + x^20 + 2*x^25 + 3*x^30 + 2*x^35 + x^40)
# * (1 + 2*x^(25*1) + 3*x^(25*2) + 2*x^(25*3) + x^(25*4) + 2*x^(25*5) + 3*x^(25*6) + 2*x^(25*7) + x^(25*8))
#
# 1 2 3 2
# 1 4 7 8 5 2 7 12 13 8 3 8

# x^48 + 2*x^47 + 3*x^46 + 2*x^45 + x^44 + 4*x^43 + 7*x^42 + 8*x^41 + 5*x^40 + 2*x^39 + 7*x^38 + 12*x^37 + 13*x^36 + 8*x^35 + 3*x^34 + 8*x^33 + 13*x^32 + 12*x^31 + 7*x^30 + 2*x^29 + 5*x^28 + 8*x^27 + 7*x^26 + 4*x^25 + x^24 + 4*x^23 + 7*x^22 + 8*x^21 + 5*x^20 + 2*x^19 + 7*x^18 + 12*x^17 + 13*x^16 + 8*x^15 + 3*x^14 + 8*x^13 + 13*x^12 + 12*x^11 + 7*x^10 + 2*x^9 + 5*x^8 + 8*x^7 + 7*x^6 + 4*x^5 + x^4 + 2*x^3 + 3*x^2 + 2*x + 1


sub n_to_xy {
  my ($self, $n) = @_;
  ### ChanTree n_to_xy(): "$n   k=$self->{'k'} reduced=".($self->{'reduced'}||0)

  if ($n < $self->{'n_start'}) { return; }

  $n -= $self->{'n_start'}-1;
  ### 1-based N: $n
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      $int += $self->{'n_start'}-1;  # back to n_start() based
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
  }

  my $k = $self->{'k'};
  my $half_k = int($self->{'k'} / 2);
  my $half_ceil = int(($self->{'k'}+1) / 2);
  my @digits = digit_split_lowtohigh ($n, $k);
  ### @digits

  # top 1/2, 2/3, ..., (k/2-1)/(k/2), (k/2)/(k/2) ... 3/2, 2/1
  my $x = (pop @digits) + ($n*0);  # inherit bignum zero
  my $y = $x+1;
  if ($x > $half_k) {
    $x = $k+1 - $x;
  }
  if ($y > $half_k) {
    $y = $k+1 - $y;
  }
  ### top: "x=$x y=$y"


  # 1/2       2/3 3/4 ...
  # 1/4 4/7 7/10 10/13 ...

  # descend
  #
  # middle even
  # (k/2-1)(r+s)-s / (k/2)(r+s)-s
  # (k/2)(r+s)-s / (k/2)(r+s)
  # (k/2)(r+s) / (k/2)(r+s)-r
  # (k/2)(r+s)-r / (k/2-1)(r+s)-r
  #
  # k=4          r/s=1/2
  # r/2r+s         1/4
  # 2r+s/2r+2s     4/6
  # 2r+2s/r+2s     6/5
  # r+2s/s         5/1
  #
  # even eg k=4    half_k==2 half_ceil==2
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) /     2*(x+y)     1    2x+1y / 2x+2y    <2/3
  #    2*(x+y)     / 1*(x+y) + y     2    2x+2y / 1x+2y    >3/2
  #    1*(x+y) + y / 0*(x+y) + y     3    1x+2y / 0x+1y    >2/1
  #
  # even eg k=6    half_k==3 half_ceil==3
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y
  #    x + 1*(x+y) / x + 2*(x+y)     1    2x+1y / 3x+2y
  #    x + 2*(x+y) / 3(x+y)          2    3x+2y / 3x+3y
  #        3*(x+y) / 2*(x+y) + y     3    3x+3y / 2x+3y
  #    2*(x+y) + y / 1*(x+y) + y     4    2x+3y / 1x+2y
  #    1*(x+y) + y / 0*(x+y) + y     5    1x+2y / 0x+1y
  #
  # odd eg k=3   half_k==1 half_ceil==2
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) / 1*(x+y) + y     1    2x+1y / 1x+2y
  #    1*(x+y) + y / 0*(x+y) + y     2    1x+2y / 0x+1y    >2/1
  #
  # odd eg k=5   half_k==2 half_ceil==3
  #    x + 0*(x+y) / x + 1*(x+y)     0    1x+0y / 2x+1y    <1/2
  #    x + 1*(x+y) / x + 2*(x+y)     1    2x+1y / 3x+2y    <2/3
  #    x + 2*(x+y) / 2*(x+y) + y     2    3x+2y / 2x+3y
  #    2*(x+y) + y / 1*(x+y) + y     3    2x+3y / 1x+2y    >3/2
  #    1*(x+y) + y / 0*(x+y) + y     4    1x+2y / 0x+1y    >2/1

  if ($self->{'digit_order'} eq 'HtoL') {
    @digits = reverse @digits;   # high to low is the default
  }
  foreach my $digit (@digits) {
    # c1 = 1,2,3,3,2,1 or 1,2,3,2,1
    my $c0 = ($digit <= $half_ceil ? $digit : $k-$digit+1);
    my $c1 = ($digit < $half_ceil ? $digit+1 : $k-$digit);
    my $c2 = ($digit < $half_ceil-1 ? $digit+2 : $k-$digit-1);
    ### at: "x=$x y=$y  next digit=$digit  $c1,$c0  $c2,$c1"

    ($x,$y) = ($x*$c1 + $y*$c0,
               $x*$c2 + $y*$c1);
  }
  ### loop: "x=$x y=$y"

  if (($k & 1) && ($n % 2) == 0) {   # odd N=2n+1 when 1 based
    if ($self->{'points'} eq 'all_div') {
      $x /= 2;
      ### all_div divide X to: "x=$x y=$y"
    } elsif ($self->{'points'} eq 'all_mul') {
      if ($self->{'reduced'} && ($x % 2) == 0) {
        $x /= 2;
        ### all_mul reduced divide X to: "x=$x y=$y"
      } else {
        $y *= 2;
        ### all_mul multiply Y to: "x=$x y=$y"
      }
    }
  }

  if ($self->{'reduced'}) {
    ### unreduced: "x=$x y=$y"
    if ($k & 1) {
      # k odd, gcd(x,y)=k^m for some m, divide out factors of k as possible
      foreach (0 .. scalar(@digits)) {
        last if ($x % $k) || ($y % $k);
        $x /= $k;
        $y /= $k;
      }
    } else {
      # k even, gcd(x,y) divides (k/2)^m for some m, but gcd isn't
      # necessarily equal to such a power, only a divisor of it, so must do
      # full gcd calculation
      my $g = _gcd($x,$y);
      $x /= $g;
      $y /= $g;
    }
  }

  ### n_to_xy() return: "x=$x  y=$y"
  return ($x,$y);
}

# (3*pow+1)/2 - (pow+1)/2
#     = (3*pow + 1 - pow - 1)/2
#     = (2*pow)/2
#     = pow
#
sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### Chan xy_to_n(): "x=$x y=$y   k=$self->{'k'}"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }
  my $orig_x = $x;
  my $orig_y = $y;

  my $k = $self->{'k'};
  my $zero = ($x * 0 * $y);  # inherit bignum
  my $half_k = $self->{'half_k'};
  my $half_ceil = int(($self->{'k'}+1) / 2);

  if ($k & 1) {
    if ($self->{'points'} eq 'all_div'
        || ($self->{'points'} eq 'all_mul' && ($self->{'reduced'}))) {
      my $n = do {
        local $self->{'points'} = 'even';
        $self->xy_to_n(2*$x,$y)
      };
      if (defined $n) {
        my ($nx,$ny) = $self->n_to_xy($n);
        if ($nx == $x && $ny == $y) {
          return $n;
        }
      }
    }
    if ($self->{'points'} eq 'all_mul' && ($y % 2) == 0) {
      my $n = do {
        local $self->{'points'} = 'even';
        $self->xy_to_n($x,$y/2)
      };
      if (defined $n) {
        my ($nx,$ny) = $self->n_to_xy($n);
        if ($nx == $x && $ny == $y) {
          return $n;
        }
      }
    }

    # k odd cannot have X,Y both odd
    if (($x % 2) && ($y % 2)) {
      return undef;
    }
  }

  if (ref $x && ref $y && $x < 0xFF_FFFF && $y < 0xFF_FFFF) {
    # numize BigInt for speed
    $x = "$x";
    $y = "$y";
  }

  if ($self->{'reduced'}) {
    ### unreduced: "x=$x y=$y"
    unless (_coprime($x,$y)) {
      return undef;
    }
  }

  # left t'th child (t-1)/t < x/y < t/(t+1)       x/y<1  t=1,2,3,...
  #   x/y < (t-1)/t
  #   xt < (t-1)y
  #   xt < ty-y
  #   y < (y-x)t
  #   t > y/(y-x)
  #
  #   lx = x + (t-1)*(x+y) = t*x + (t-1)y         # t=1 upwards
  #   ly = x + t*(x+y)     = (t+1)x + ty
  #   t*lx - (t-1)*ly
  #      = t*t*x - (t-1)(t+1)x
  #      = (t^2 - (t^2 - 1))x
  #      = x
  #   x = t*lx - (t-1)*ly
  #
  #   lx = x + (t-1)*(x+y)
  #   ly = x + t*(x+y)
  #   ly-lx = x+y
  #   y = ly-lx - x
  #     = ly-lx - (t*lx - (t-1)*ly)
  #     = ly-lx - t*lx + (t-1)*ly
  #     = (-1-t)*lx + (1 + t-1)*ly
  #     = t*ly - (t+1)*lx
  #
  # right t'th child is (t+1)/t < x/y < t/(t-1)       x/y > 1
  #   (t+1)*y < t*x
  #   ty+y < tx
  #   t(x-y) > y
  #   t > y/(x-y)
  #
  #   lx = y + t*(x+y)       = t*x + (t+1)y
  #   ly = y + (t-1)*(x+y)   = (t-1)x + ty
  #   t*lx - (t+1)*ly
  #      = t*t*x - (t+1)(t-1)x
  #      = (t^2 - (t^2 - 1))x
  #      = x
  #   x = t*lx - (t+1)*ly
  #
  #   lx-ly = x+y
  #   y = lx-ly - x
  #     = lx - ly - t*lx + (t+1)*ly
  #     = (1-t)*lx + t*ly
  #     = t*ly - (t-1)*lx
  #
  # middle odd
  #   lx = x + t*(x+y)   = (t+1)x + ty
  #   ly = y + t*(x+y)   = tx + (t+1)y
  #   (t+1)*lx - t*ly
  #     = (t+1)*(t+1)*x - t*t*x
  #     = (2t+1)*x
  #   x = ((t+1)*lx - t*ly) / k          with 2t+1=k
  #   lx-ly = x-y
  #   y = ly - lx + x
  #     = x-diff
  #   ky = kx-k*diff
  #
  #   (t+1)*ly - t*lx
  #     = (t+1)*(t+1)*y - t*t*y
  #     = (2t+1)*y
  #
  # eg. k=11 x=6 y=5 t=5 -> child_x=6+5*(6+5)=61 child_y=5+5*(6+5)=60
  #     N=71 digits=5,6 top=6,5 -> 61,60
  #     low diff=11-10=1  k*ly-k*lx + x
  #
  # middle even first, t=k/2
  #   lx = tx + (t-1)y      # eg. x + 2*(x+y) / 3(x+y)  =  3x+2y / 3x+3y
  #   ly = tx + ty
  #   y = ly-lx
  #   t*x = ly - t*y
  #   x = ly/t - y
  #   eg k=4 lx=6,ly=10 t=2  y=10-6=4  x=10/2-4=1
  # middle even second, t=k/2
  #   lx = tx + ty          # eg. 3*(x+y) / 2*(x+y) + y  =  3x+3y / 2x+3y
  #   ly = (t-1)x + ty
  #   x = lx-ly
  #   t*y = lx - t*x
  #   y = lx/t - x

  my @digits;
  for (;;) {
    ### at: "x=$x, y=$y"
    ### assert: $x==int($x)
    ### assert: $y==int($y)

    if ($x < 1 || $y < 1) {
      ### X,Y negative, no such point ...
      return undef;
    }

    if ($x == $y) {
      if ($x == $half_k) {
        ### X=Y=half_k, done: $half_k
        push @digits, $x;
        last;
      } elsif ($x == 1 && $self->{'reduced'}) {
        ### X=Y=1 reduced, is top middle ...
        push @digits, $half_k;
        last;
      } else {
        ### X=Y, no such point ...
        return undef;
      }
    }

    my $diff = $x - $y;
    if ($diff < 0) {
      ### X<Y, left of row ...

      if ($diff == -1 && $x < $half_ceil) {
        ### end at diff=-1 ...
        push @digits, $x;
        last;
      }

      my ($t) = _divrem ($y, -$diff);   # y/(y-x)
      ### $t
      if ($t < $half_ceil) {
        # eg. k=4 t=1,  k=5 t=1,2  k=6 t=1,2  k=7 t=1,2,3
        ($x,$y) = ($t*$x - ($t-1)*$y,
                   $t*$y - ($t+1)*$x);
        push @digits, $t-1;

      } else {
        if ($k & 1) {
          ### left middle odd, t=half_k ...
          # x = ((t+1)*lx - t*ly) / k with 2t+1=k  t=(k-1)/2
          my $next_x = $half_ceil * $x - $half_k * $y;
          ### $next_x
          if ($next_x % $k) {
            unless ($self->{'reduced'}) {
              ### no divide k, no such point ...
              return undef;
            }
            $diff *= $k;
            ### no divide k, diff increased to: $diff
          } else {
            ### divide k ...
            $next_x /= $k;    # X = ((t+1)X - tY) / k
          }
          $x = $next_x;
          $y = $next_x - $diff;
        } else {
          ### left middle even, t=half_k ...
          my $next_y = $y - $x;
          ### $next_y
          if ($y % $half_k) {
            ### y not a multiple of half_k ...
            unless ($self->{'reduced'}) {
              return undef;
            }
            my $g = _gcd($y,$half_k);
            $y /= $g;
            $next_y *= $half_k / $g;
            ($x,$y) = ($y - $next_y,  # x = ly/t - y
                       $next_y);      # y = ly - lx
          } else {
            ### divide half_k ...
            ($x,$y) = ($y/$half_k - $next_y,  # x = ly/t - y
                       $next_y);              # y = ly - lx
          }
        }
        push @digits, $half_ceil-1;
      }

    } else {
      ### X>Y, right of row ...
      if ($diff == 1 && $y < $half_ceil) {
        ### end at diff=1 ...
        push @digits, $k+1-$x;
        last;
      }

      my ($t) = _divrem ($x, $diff);
      ### $t
      if ($t < $half_ceil) {
        ($x,$y) = ($t*$x - ($t+1)*$y,
                   $t*$y - ($t-1)*$x);
        push @digits, $k-$t;

      } else {
        if ($k & 1) {
          ### right middle odd ...
          # x = ((t+1)*lx - t*ly) / k with 2t+1=k  t=(k-1)/2
          my $next_x = $half_ceil * $x - $half_k * $y;
          ### $next_x
          if ($next_x % $k) {
            unless ($self->{'reduced'}) {
              ### no divide k, no such point ...
              return undef;
            }
            $diff *= $k;
            ### no divide k, diff increased to: $diff
          } else {
            ### divide k ...
            $next_x /= $k;    # X = ((t+1)X - tY) / k
          }
          $x = $next_x;
          $y = $next_x - $diff;
          push @digits, $half_k;
        } else {
          ### right middle even ...

          my $next_x = $x - $y;
          if ($x % $half_k) {
            ### x not a multiple of half_k ...
            unless ($self->{'reduced'}) {
              return undef;
            }
            # multiply lx,ly by half_k/gcd so lx is a multiple of half_k
            my $g = _gcd($x,$half_k);
            $x /= $g;
            $next_x *= $half_k / $g;
            ($x,$y) = ($next_x,         # x = lx-ly
                       $x - $next_x);   # y = lx/t - x
          } else {
            ### divide half_k ...
            ($x,$y) = ($next_x,                 # x = lx-ly
                       $x/$half_k - $next_x);   # y = lx/t - x
          }
          push @digits, $half_k;
        }
      }
    }
  }

  ### @digits
  if ($self->{'digit_order'} ne 'HtoL') {
    my $high = pop @digits;
    @digits = (reverse(@digits), $high);
    ### reverse digits to: @digits
  }
  my $n = digit_join_lowtohigh (\@digits, $k, $zero) + $self->{'n_start'}-1;
  ### $n

  # if (! $self->{'reduced'})
  {
    my ($nx,$ny) = $self->n_to_xy($n);
    ### reversed to: "$nx, $ny  cf orig $orig_x, $orig_y"
    if ($nx != $orig_x || $ny != $orig_y) {
      return undef;
    }
  }

  ### xy_to_n result: "n=$n"
  return $n;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### ChanTree rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 1 || $y2 < 1) {
    return (1,0);
  }

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum
  if ($self->{'points'} eq 'all_div') {
    $x2 *= 2;
  }

  my $max = max($x2,$y2);
  my $level = ($self->{'reduced'} || $self->{'k'} == 2   # k=2 is reduced
               ? $max + 1
               : int($max/2));

  return ($self->{'n_start'},
          $self->{'n_start'}-2 + ($self->{'k'}+$zero)**$level);
}

#------------------------------------------------------------------------------
# (N - (Nstart-1))*k + Nstart   run -1 to k-2
#   = N*k - (Nstart-1)*k + Nstart   run -1 to k-2
#   = N*k - k*Nstart + k + Nstart   run -1 to k-2
#   = (N+1)*k + (1-k)*Nstart   run -1 to k-2
# k*Nstart - k - Nstart + 1 = (k-1)*(Nstart-1)
#   = N*k - (k-1)*(Nstart-1) +1   run -1 to k-2
#   = N*k - (k-1)*(Nstart-1)    run 0 to k-1
#
sub tree_n_children {
  my ($self, $n) = @_;
  my $n_start = $self->{'n_start'};
  unless ($n >= $n_start) {
    return;
  }
  my $k = $self->{'k'};
  $n = $n*$k - ($k-1)*($n_start-1);
  return map {$n+$_} 0 .. $k-1;
}
sub tree_n_num_children {
  my ($self, $n) = @_;
  return ($n >= $self->{'n_start'} ? $self->{'k'} : undef);
}

# parent = floor((N-Nstart+1) / k) + Nstart-1
#        = floor((N-Nstart+1 + k*Nstart-k) / k)
#        = floor((N + (k-1)*(Nstart-1)) / k)
# N-(Nstart-1) >= k
# N-Nstart+1 >= k
# N-Nstart >= k-1
# N >= k-1+Nstart
# N >= k+Nstart-1
sub tree_n_parent {
  my ($self, $n) = @_;
  ### ChanTree tree_n_parent(): $n
  my $n_start = $self->{'n_start'};
  $n = $n - ($n_start-1);   # to N=1 basis, and warn if $n undef
  my $k = $self->{'k'};
  unless ($n >= $k) {
    ### root node, no parent ...
    return undef;
  }
  _divrem_mutate ($n, $k);   # delete low digit ...
  return $n + ($n_start-1);
}
sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### ChanTree tree_n_to_depth(): $n
  $n = $n - $self->{'n_start'} + 1;   # N=1 basis, and warn if $n==undef
  unless ($n >= 1) {
    return undef;
  }
  my ($pow, $exp) = round_down_pow ($n, $self->{'k'});
  return $exp;     # floor(log base k (N-Nstart+1))
}
sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? $self->{'k'}**$depth + ($self->{'n_start'}-1)
          : undef);
}

sub tree_num_roots {
  my ($self) = @_;
  return $self->{'k'} - 1;
}
sub tree_root_n_list {
  my ($self) = @_;
  my $n_start = $self->{'n_start'};
  return $n_start .. $n_start + $self->{'k'} - 2;
}

sub tree_n_root {
  my ($self, $n) = @_;
  my $n_start_offset = $self->{'n_start'} - 1;
  $n = $n - $n_start_offset;   # N=1 basis, and warn if $n==undef
  return ($n >= 1
          ? _high_digit($n,$self->{'k'}) + $n_start_offset
          : undef);
}
# Return the most significant digit of $n written in base $radix.
sub _high_digit {
  my ($n, $radix) = @_;
  ### assert: ! ($n < 1)
  my ($pow) = round_down_pow ($n, $radix);
  _divrem_mutate($n,$pow);  # $n=quotient
  return $n;
}

1;
__END__

=for stopwords Ryde Math-PlanePath Heng coeffs GCD Calkin-Wilf ie Nstart OEIS k-ary

=head1 NAME

Math::PlanePath::ChanTree -- tree of rationals

=head1 SYNOPSIS

 use Math::PlanePath::ChanTree;
 my $path = Math::PlanePath::ChanTree->new (k => 3, reduced => 0);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Chan, Song Heng>This path enumerates rationals X/Y in a tree as per

=over

Song Heng Chan, "Analogs of the Stern Sequence", Integers 2011,
L<http://www.integers-ejcnt.org/l26/l26.pdf>

=back

The default k=3 visits X,Y with one odd, one even, and perhaps a common
factor 3^m.

=cut

# math-image --path=ChanTree --all --output=numbers_xy --size=62x15

=pod

     14 |    728              20                              12
     13 |         53      11      77      27
     12 |    242              14              18
     11 |
     10 |     80
      9 |         17      23       9                      15
      8 |     26                                              78
      7 |
      6 |      8                              24              28
      5 |          5       3                              19
      4 |      2               6              10              22
      3 |
      2 |      0               4              16              52
      1 |          1       7      25      79     241     727
    Y=0 |
        +--------------------------------------------------------
         X=0   1   2   3   4   5   6   7   8   9  10  11  12  13

There are 2 tree roots (so technically it's a "forest") and each node has 3
children.  The points are numbered by rows starting from N=0.  This
numbering corresponds to powers in a polynomial product generating function.

    N=0 to 1               1/2                    2/1
                         /  |  \                /  |  \
    N=2 to 7          1/4  4/5   5/2         2/5  5/4  4/1
                     / | \  ...   ...      ...   ...  / | \
    N=8 to 25     1/6 6/9 9/4  ...            ...  5/9 9/6 6/1

    N=26 ...        

The children of each node are

                    X/Y
       ------------/ | \-----------
      |              |             |
    X/(2X+Y)   (2X+Y)/(X+2Y)   (X+2Y)/Y

Which as X,Y coordinates means vertical, 45-degree diagonal, and horizontal.

    X,Y+2X      X+(X+Y),Y+(X+Y)
      |       /
      |     /
      |   /
      | /
     X,Y------- X+2Y,Y

The slowest growth is on the far left of the tree 1/2, 1/4, 1/6, 1/8, etc
advancing by just 2 at each level.  Similarly on the far right 2/1, 4/1,
6/1, etc.  This means that to cover such an X or Y requires a power-of-3,
N=3^(max(X,Y)/2).

=head2 GCD

Chan shows that these top nodes and children visit all rationals X/Y with
X,Y one odd, one even.  But the X,Y are not in least terms, they may have a
power-of-3 common factor GCD(X,Y)=3^m for some m.

The GCD is unchanged in the first and third children.  The middle child GCD
might gain an extra factor 3.  This means the power is at most the number of
middle legs taken, which is the count of ternary 1-digits of its position
across the row.

    GCD(X,Y) = 3^m
    m <= count ternary 1-digits of N+1, excluding high digit

As per L</N Start> below, N+1 in ternary has high digit 1 or 2 which
indicates the tree root.  Ignoring that high digit gives an offset into the
row of that tree and the digits are 0,1,2 for left,middle,right.

For example the first GCD is at N=9 with X=6,Y=9 common factor GCD=3.
N+1=10="101" ternary, which without the high digit is "01" which has a
single "1" so GCD <= 3^1.  The mirror image of this point is X=9,Y=6 at N=24
and there N+1=24+1=25="221" ternary which without the high digit is "21"
with a single 1-digit likewise.

For various points the power m is equal to the count of 1-digits.

=head2 k Parameter

The C<k =E<gt> $integer> parameter controls the number of children and top
nodes.  There are k-1 top nodes and each node has k children.  The top nodes
are

    k odd, k-1 many tops, with h=ceil(k/2)
    1/2  2/3  3/4  ... (h-1)/h       h/(h-1) ...  4/3  3/2  2/1

    k even, k-1 many tops, with h=k/2
    1/2  2/3  3/4  ... (h-1)/h  h/h  h/(h-1) ...  4/3  3/2  2/1

Notice the list for k odd or k even is the same except that for k even
there's an extra middle term h/h.  The first few tops are as follows.  The
list in each row is spread to show how successive bigger h adds terms in the
middle.

     k                 X/Y top nodes
    ---    ---------------------------------
    k=2                   1/1

    k=3              1/2       2/1
    k=4              1/2  2/2  2/1

    k=5         1/2  2/3       3/2  2/1
    k=6         1/2  2/3  3/3  3/2  2/1

    k=7    1/2  2/3  3/4       4/3  3/2  2/1
    k=8    1/2  2/3  3/4  4/4  4/3  3/2  2/1

As X,Y coordinates these tops are a run up along X=Y-1 and back down along
X=Y+1, with a middle X=Y point if k even.  For example,

=cut

# math-image --path=ChanTree,k=13 --output=numbers --expression='i<12?i:0'
# math-image --path=ChanTree,k=14 --output=numbers --expression='i<13?i:0'

=pod

      7 |                         5         k=13 top nodes N=0 to N=11
      6 |                     4       6        total 12 top nodes
      5 |                 3       7
      4 |             2       8
      3 |         1       9
      2 |     0      10
      1 |        11
    Y=0 |
        +------------------------------
        X=0   1   2   3   4   5   6   7

                                            k=14 top nodes N=0 to N=12
      7 |                         5   6        total 13 top nodes
      6 |                     4       7
      5 |                 3       8         N=6 is the 7/7 middle term
      4 |             2       9
      3 |         1      10
      2 |     0      11
      1 |        12
    Y=0 |
        +------------------------------
        X=0   1   2   3   4   5   6   7

Each node has k children.  The formulas for the children can be seen from
sample cases k=5 and k=6.  A node X/Y descends to

    k=5                     k=6

    1X+0Y / 2X+1Y           1X+0Y / 2X+1Y
    2X+1Y / 3X+2Y           2X+1Y / 3X+2Y
    3X+2Y / 2X+3Y           3X+2Y / 3X+3Y
    2X+3Y / 1X+2Y           3X+3Y / 2X+3Y
    1X+2Y / 0X+1Y           2X+3Y / 1X+2Y
                            1X+2Y / 0X+1Y

The coefficients of X and Y run up to h=ceil(k/2) starting from either 0, 1
or 2 and ending 2, 1 or 0.  When k is even there's two h coeffs in the
middle.  When k is odd there's just one.  The resulting tree for example
with k=4 is

    k=4
          1/2              2/2               2/1
       /       \        /        \        /       \
    1/4 4/6 6/5 5/2  2/6 6/8 8/6 6/2   2/5 5/6 6/4 4/1

Chan shows that this combination of top nodes and children visits

    if k odd:    rationals X/Y with X,Y one odd, one even
                  possible GCD(X,Y)=k^m for some integer m

    if k even:   all rationals X/Y
                  possible GCD(X,Y) a divisor of (k/2)^m

When k odd GCD(X,Y) is a power of k, so for example as described above k=3
gives GCD=3^m.  When k even GCD(X,Y) is a divisor of (k/2)^m but not
necessarily a full such power.  For example with k=12 the first such
non-power GCD is at N=17 where X=16,Y=18 has GCD(16,18)=2 which is only a
divisor of k/2=6, not a power of 6.

=head2 N Start

The C<n_start =E<gt> $n> option can select a different initial N.  The tree
structure is unchanged, just the numbering shifted.  As noted above the
default Nstart=0 corresponds to powers in a generating function.

C<n_start=E<gt>1> makes the numbering correspond to digits of N written in
base-k.  For example k=10 corresponds to N written in decimal,

    N=1 to 9                1/2    ...  ...    2/1

    N=10 to 99          1/4 4/7  ...      ...  7/4 4/1

    N=100 to 999    1/6 6/11   ...          ...   11/6 6/1

In general C<n_start=E<gt>1> makes the tree

    N written in base-k digits
     depth = numdigits(N)-1
     NdepthStart = k^depth
                 = 100..000 base-k, high 1 in high digit position of N
     N-NdepthStart = position across whole row of all top trees

And the high digit of N selects which top-level tree the given N is under,
so

    N written in base-k digits
     top tree = high digit of N
                (1 to k, selecting the k-1 many top nodes)
     Nrem = digits of N after the highest
          = position across row within the high-digit tree
     depth = numdigits(Nrem)       # top node depth=0
           = numdigits(N)-1

=head2 Diatomic Sequence

Chan shows that each denominator Y becomes the numerator X in the next
point.  The last Y of a row becomes the first X of the next row.  This is a
generalization of Stern's diatomic sequence and of the Calkin-Wilf tree of
rationals.  (See L<Math::NumSeq::SternDiatomic> and
L<Math::PlanePath::RationalsTree/Calkin-Wilf Tree>.)

The case k=2 is precisely the Calkin-Wilf tree.  There's just one top node
1/1, being the even k "middle" form h/h with h=k/2=1 as described above.
Then there's two children of each node (the "middle" pair of the even k
case),

    k=2, Calkin-Wilf tree

                     X/Y
                   /     \
    (1X+0Y)/(1X+1Y)       (1X+1Y)/(0X+1Y)
       = X/(X+Y)             = (X+Y)/Y

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::ChanTree-E<gt>new ()>

=item C<$path = Math::PlanePath::ChanTree-E<gt>new (k =E<gt> $k, n_start =E<gt> $n)>

Create and return a new path object.  The defaults are k=3 and n_start=0.

=item C<$n = $path-E<gt>n_start()>

Return the first N in the path.  This is 0 by default, otherwise the
C<n_start> parameter.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

=back

=head2 Tree Methods

X<Complete n-ary tree>Each point has k children, so the path is a complete
k-ary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the children of C<$n>, or an empty list if C<$n E<lt> n_start()>,
ie. before the start of the path.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return k, since every node has k children.  Or return C<undef> if C<$n E<lt>
n_start()>, ie. before the start of the path.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n> has no parent either
because it's a top node or before C<n_start()>.

=item C<$n_root = $path-E<gt>tree_n_root ($n)>

Return the N which is root node of C<$n>.

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
tree tops are depth=0, then their children depth=1, etc.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth> in the path.  The top of
the tree is depth=0.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_roots ()>

Return the number of root nodes in C<$path>, which is k-1.  For example the
default k=3 return 2 as there are two root nodes.

=item C<@n_list = $path-E<gt>tree_root_n_list ()>

Return a list of the N values which are the root nodes of C<$path>.  This is
C<n_start()> through C<n_start()+k-2> inclusive, being the first k-1 many
points.  For example in the default k=2 and Nstart=0 the return is two
values C<(0,1)>.

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return k since every node has k many children, making that both the minimum
and maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=head1 FORMULAS

=head2 N Children

For the default k=3 the children are

    3N+2, 3N+3, 3N+4        n_start=0

If C<n_start=E<gt>1> then instead

    3N, 3N+1, 3N+2                  n_start=1

For this C<n_start=1> the children are found by appending an extra ternary
digit, or base-k digit for arbitrary k.

    k*N, k*N+1, ... , k*N+(k-1)     n_start=1

In general for k and Nstart the children are

    kN - (k-1)*(Nstart-1)  + 0
      ...
    kN - (k-1)*(Nstart-1)  + k-1

=head2 N Parent

The parent node reverses the children calculation above.  The simplest case
is C<n_start=1> where it's a division to remove the lowest base-k
digit

    parent = floor(N/k)       when n_start=1

For other C<n_start> adjust before and after to an C<n_start=1> basis,

    parent = floor((N-(Nstart-1)) / k) + Nstart-1

For example in the default k=0 Nstart=1 the parent of N=3 is
floor((3-(1-1))/3)=1.

The post-adjustment can be worked into the formula with (k-1)*(Nstart-1)
similar to the children above,

    parent = floor((N + (k-1)*(Nstart-1)) / k)

But the first style is more convenient to compare to see that N is past the
top nodes and therefore has a parent.

    N-(Nstart-1) >= k      to check N is past top-nodes

=head2 N Root

As described under L</N Start> above, if Nstart=1 then the tree root is
simply the most significant base-k digit of N.  For other Nstart an
adjustment is made to N=1 style and back again.

    adjust = Nstart-1
    Nroot(N) = high_base_k_digit(N-adjust) + adjust

=head2 N to Depth

The structure of the tree means

    depth = floor(logk(N+1))    for n_start=0

For example if k=3 then all of N=8 through N=25 inclusive have
depth=floor(log3(N+1))=2.  With an C<n_start> it becomes

    depth = floor(logk(N-(Nstart-1)))

C<n_start=1> is the simplest case, being the length of N written in base-k
digits.

    depth = floor(logk(N))     for n_start=1

=head1 OEIS

This tree is in Sloane's Online Encyclopedia of Integer Sequences as

=over

L<http://oeis.org/A191379> (etc)

=back

    k=3, n_start=0  (the defaults)
      A191379   X coordinate, and Y=X(N+n)

As noted above k=2 is the Calkin-Wilf tree.  See
L<Math::PlanePath::RationalsTree/OEIS> for "CW" related sequences.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::PythagoreanTree>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut