File: GcdRationals.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1165 lines) | stat: -rw-r--r-- 34,235 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# A003989 diagonals from (1,1)
# A109004        0,1,1,2,1,2,3,1,1,3,4,1,2,1,4,5,1,1,1,1
#  gcd by diagonals (0,0)=0
#                   (1,0)=1 (0,1)=1
#                   (2,0)=2 (1,1)=1 (0,2)=2
# A050873 gcd rows n>=1, k=1..n
#            1,1,2,1,1,3,1,2,1,4,1,1,1,1,5,1,2,3,2,1,6,1,1,1,
# add        0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0  A023532 0 at m(m+3)/2
# IntXY      1,0,2,0,0,3,0,1,0,4,0,0,0,0,5,0,1,2,1,0,6,
# IntXY+1    2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7
# diff       1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1   A023531
# A178340  1,2,1,3,1,1,4,1,2,1,5,1,1,1,1,6,1,2,3,2,1,7,1,1 Bernoulli
#   T(n,m) = A003989(n-m+1,m) m>=1, except when factor cancels

# diagonals_down even/odd in wedges, and other modulo

# math-image --path=GcdRationals --expression='i<30*31/2?i:0' --text --size=40
# math-image --path=GcdRationals --output=numbers --expression='i<100?i:0'
# math-image --path=GcdRationals --all --output=numbers

# Y = v = j/g
# X = (g-1)*v + u
#   = (g-1)*j/g + i/g
#   = ((g-1)*j + i)/g

# j=5  11 ...
# j=4  7 8 9 10
# j=3  4 5 6
# j=2  2 3
# j=1  1
#
# N = (1/2 d^2 - 1/2 d + 1)
#   = (1/2*$d**2 - 1/2*$d + 1)
#   = ((1/2*$d - 1/2)*$d + 1)
# j = 1/2 + sqrt(2 * $n + -7/4)
#   = [ 1 + 2*sqrt(2 * $n + -7/4) ] /2
#   = [ 1 + sqrt(8*$n -7) ] /2
#

# Primes
# i=3*a,j=3*b
# N=3*a*(3*b-1)/2


package Math::PlanePath::GcdRationals;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
*_divrem = \&Math::PlanePath::_divrem;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;


# uncomment this to run the ### lines
#use Smart::Comments;

use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 1;
use constant gcdxy_maximum => 1;  # no common factor

use constant parameter_info_array =>
  [ { name        => 'pairs_order',
      display     => 'Pairs Order',
      type        => 'enum',
      default     => 'rows',
      choices     => ['rows','rows_reverse','diagonals_down','diagonals_up'],
      choices_display => ['Rows',
                          'Rows Reverse',
                          'Diagonals Down',
                          'Diagonals Up'],
      description => 'Order in the i,j pairs.',
    } ];

sub absdy_minimum {
  my ($self) = @_;
  return ($self->{'pairs_order'} eq 'diagonals_down'
          ? 1
          : 0);
}

{
  my %dir_minimum_dxdy
    = (rows           => [1,0],  # N=4 to N=5 horiz
       rows_reverse   => [1,0],  # N=1 to N=2 horiz
       diagonals_down => [0,1],  # N=1 to N=2 vertical, nothing less
       diagonals_up   => [1,0],  # N=4 to N=5 horiz
      );
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{$self->{'pairs_order'}}};
  }
}
{
  my %dir_maximum_dxdy
    = (rows           => [1,-1], # N=2 to N=3 SE diagonal
       rows_reverse   => [2,-1], # N=3 to N=4 dX=2,dY=-1
       diagonals_down => [1,-1], # N=5 to N=6 SE diagonal
       diagonals_up   => [2,-1], # N=9 to N=10 dX=2,dY=-1
      );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{$self->{'pairs_order'}}};
  }
}

#------------------------------------------------------------------------------

# all rationals X,Y >= 1 no common factor
use Math::PlanePath::DiagonalRationals;
*xy_is_visited = Math::PlanePath::DiagonalRationals->can('xy_is_visited');

sub new {
  my $self = shift->SUPER::new(@_);

  my $pairs_order = ($self->{'pairs_order'} ||= 'rows');
  (($self->{'pairs_order_n_to_xy'}
    = $self->can("_pairs_order__${pairs_order}__n_to_xy"))
   && ($self->{'pairs_order_xygr_to_n'}
       = $self->can("_pairs_order__${pairs_order}__xygr_to_n")))
    or croak "Unrecognised pairs_order: ",$pairs_order;

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### GcdRationals n_to_xy(): "$n"

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # what to do for fractional $n?
  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my ($x,$y) = $self->{'pairs_order_n_to_xy'}->($n);

  # if ($self->{'pairs_order'} eq 'rows'
  #     || $self->{'pairs_order'} eq 'rows_reverse') {
  #   $y = int((sqrt(8*$n-7) + 1) / 2);
  #   $x = $n - ($y - 1)*$y/2;
  #
  #   if ($self->{'pairs_order'} eq 'rows_reverse') {
  #     $x = $y - ($x-1);
  #   }
  #
  #   # require Math::PlanePath::PyramidRows;
  #   # my ($x,$y) = Math::PlanePath::PyramidRows->new(step=>1)->n_to_xy($n);
  #   # $x+=1;
  #   # $y+=1;
  #
  # } else {
  #   require Math::PlanePath::DiagonalsOctant;
  #   ($x,$y) = Math::PlanePath::DiagonalsOctant->new->n_to_xy($n);
  #   if ($self->{'pairs_order'} eq 'diagonals_up') {
  #     my $d = $x+$y;      # top 0,d measure diag down by x
  #     my $e = int($d/2);  # end e,d-e
  #     ($x,$y) = ($e-$x, $d - ($e-$x));
  #   }
  #   $x+=1;
  #   $y+=1;
  # }
  ### triangle: "$x,$y"

  my $gcd = _gcd($x,$y);
  $x /= $gcd;
  $y /= $gcd;

  ### $gcd
  ### reduced: "$x,$y"
  ### push out to x: $x + ($gcd-1)*$y

  return ($x + ($gcd-1)*$y, $y);
}

sub _pairs_order__rows__n_to_xy {
  my ($n) = @_;
  my $y = int((sqrt(8*$n-7) + 1) / 2);
  return ($n - ($y-1)*$y/2,
          $y);
}
sub _pairs_order__rows_reverse__n_to_xy {
  my ($n) = @_;
  my $y = int((sqrt(8*$n-7) + 1) / 2);
  return ($y*($y+1)/2 + 1 - $n,
          $y);
}
sub _pairs_order__diagonals_down__n_to_xy {
  my ($n) = @_;
  my $d = int(sqrt($n-1));  # eg. N=10 d=3
  $n -= $d*($d+1);          # eg. d=3 subtract 12
  if ($n > 0) {
    return ($n,
            2 - $n + 2*$d);
  } else {
    return ($n + $d,
            1 - $n + $d);
  }
}
sub _pairs_order__diagonals_up__n_to_xy {
  my ($n) = @_;
  my $d = int(sqrt($n-1));
  $n -= $d*($d+1);
  if ($n > 0) {
    return (-$n + $d + 2,
            $n + $d);
  } else {
    return (1 - $n,
            $n + 2*$d);
  }
}


# X=(g-1)*v+u
# Y=v
# u = x % y
# i = u*g
#   = (x % y)*g
#   = (x % y)*(floor(x/y)+1)
#
# Better:
#   g-1 = floor(x/y)
#   Y = j/g
#   X = ((g-1)*j + i)/g
#   j = Y*g
#   (g-1)*j + i = X*g
#   i = X*g - (g-1)*j
#     = X*g - (g-1)*Y*g
#   N = i + j*(j-1)/2
#     = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
#     = X*g + Y*g * (-(g-1) + (Y*g-1)/2)    # but Y*g-1 may be odd
#     = X*g + Y*g * (Y*g-1 - (2g-2))/2
#     = X*g + Y*g * (Y*g-1 - 2g + 2))/2
#     = X*g + Y*g * (Y*g - 2g + 1))/2
#     = X*g + Y*g * ((Y-2)*g + 1) / 2
#     = g * [ X + Y*((Y-2)*g + 1) / 2 ]
#
#   N = X*g - (g-1)*Y*g + Y*g*(Y*g-1)/2
#     = [ 2*X*g - 2*(g-1)*Y*g + Y*g*(Y*g-1) ] / 2
#     = [ 2*X - 2*(g-1)*Y + Y*(Y*g-1) ] * g / 2
#     = [ 2*X + Y*(- 2*(g-1) + (Y*g-1)) ] * g / 2
#     = [ 2*X + Y*(-2g + 2 + Y*g - 1) ] * g / 2
#     = [ 2*X + Y*((Y-2)*g + 1) ] * g / 2
#     = X*g + [(Y-2)*g + 1]*Y*g/2
#
#  if Y and g both odd then (Y-2)*g+1 is odd+1 so even

# q=int(x/y)
# x = qy+r   qy=x-r
# r = x % y
# g-1 = q
# g = q+1
# g*y = (q+1)*y
#     = q*y + y
#     = x-r + y
#
#   N = X*g + Y*g * ((Y-2)*g + 1) / 2
#     = X*g + (X+Y-r) * ((Y-2)*g + 1) / 2
#     = X*g + (X+Y-r) * ((g*Y-2*g + 1) / 2
#     = X*g + (X+Y-r) * (((X+Y-r) - 2*g + 1) / 2
#     ... not much better

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### GcdRationals xy_to_n(): "$x,$y"

  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }
  if ($x < 1 || $y < 1 || ! _coprime($x,$y)) {
    return undef;
  }

  my ($p,$r) = _divrem ($x,$y);
  ### $x
  ### $y
  ### $p
  ### $r
  return $self->{'pairs_order_xygr_to_n'}->($x,$y,$p+1,$r);


  # my $g = int($x/$y) + 1;
  # ### g: "$g"
  # ### halve: ''.$y*(($y-2)*$g + 1)
  # return $self->{'pairs_order_xygr_to_n'}->($x,$y,$g);
}

sub _pairs_order__rows__xygr_to_n {
  my ($x,$y,$g,$r) = @_;
  ### j: $x+$y-$r
  ### i: $g*$r
  $x += $y;
  $x -= $r;  # j=X+Y-r
  return $x*($x-1)/2 + $g*$r;   # i=g*r
}

# i = X*g - (g-1)*g*Y
#   = X*g - (g-1)*(X+Y-r)
#   = X*g - g*(X+Y-r) + *(X+Y-r)
#   = X*g - g*X - g*Y + g*r + (X+Y-r)
#   = X*g - g*X - (X+Y-r) + g*r + (X+Y-r)
#   = g*r
#
# N = j-i+1 + j*(j-1)/2
#   = [2j-2i + 2 + $j*($j-1)] / 2
#   = [-2i + 2 + 2j+ j*(j-1)] / 2
#   = [-2i + 2 + j*(j-1+2)] / 2
#   = [-2i + 2 + j*(j+1)] / 2
#   = 1-i + j*(j+1)/2
#
sub _pairs_order__rows_reverse__xygr_to_n {
  my ($x,$y,$g,$r) = @_;
  $y += $x;
  $y -= $r;    # j = X+Y-r
  if ($r == 0) {
    # Case r=0 which is Y=1 becomes i=0 and that doesn't reverse to the
    # correct place by j-i+1.  Can either set $r=1,$g+=1 or leave $r==0
    # alone and adjust $y.
    $y -= 2;
  }
  return $y*($y+1)/2 - $r*$g + 1;
}

# d = (i-1)+(j-1)+1
#   = i+j-1
#   = rg + X+Y-r - 1
#   = X+Y + r*(g-1) - 1
# if r==0 Y==1 then r=1 g=X-1
# i = r*g = X-1
# j = X+Y-r = X+1-1 = X-1
# d = i+j-1
#   = 2X-2
# N = (d*d - (d%2))/4 + X-1
#   = ((2X-2)*(2X-2) - 0)/4 + X-1
#   = (X-1)^2 + X-1
#
sub _pairs_order__diagonals_down__xygr_to_n {
  my ($x,$y,$g,$r) = @_;

  $y += $x + $r*($g-1) - 1;   # d=X+Y + r*(g-1) - 1
  if ($r == 0) {
    $y *= 2;   # d=2*g-2
  }
  return ($y*$y - ($y % 2))/4 + $r*$g;
}
sub _pairs_order__diagonals_up__xygr_to_n {
  my ($x,$y,$g,$r) = @_;

  $y += $x + $r*($g-1);   # d=X+Y + r*(g-1)
  if ($r == 0) {
    $y = 2*$x - 1;
  }
  return ($y*$y - ($y % 2))/4 - $r*$g + 1;
}


# increase in rows, so right column
# in column increase within g wedge, then drop
#
# int(x2/y2) is slope of top of the wedge containing x2,y2
# g = int(x2/y2)+1 is the slope of the bottom of that wedge
# yw = floor(x2 / g) is the Y of that bottom
# N at x2,yw,g+1 is the top of the wedge underneath, bigger g smaller y
# or x2,y2,g is the top-right corner
#
# Eg.
# x=19 y=2 to 4
# g=int(19/4)+1=5
# yw=int(19/5)=3
# N(19,3,6)=
#
# at X=Y+1 g=2
# nhi = (y*((y-2)*g + 1) / 2 + x)*g
#     = (y*((y-2)*2 + 1) / 2 + y+1)*2
#     = (y*(2y-4 + 1) / 2 + y+1)*2
#     = (y*(2y-3) / 2 + y+1)*2
#     = y*(2y-3)  + 2y+2
#     = 2y^2 - 3y + 2y + 2
#     = 2y^2 - y + 2
#     = y*(2y-1) + 2

# 11  12  13  14      47  49  51  53     108 111 114 117     194 198 202 206
#  7       9      30      34      69      75     124     132     195     205
#  4   5      17  19      39  42      70  74     110 115     159 165     217
#  2       8      18      32      50      72      98     128     162     200
#  1   3   6  10  15  21  28  36  45  55  66  78  91 105 120 136 153 171 190

# 206=20*19/2+16  i=16,j=20 gcd=4
# 19,5 is slope=floor(19/5)=3 so g=4
#
# 205=20*19/2+15  i=15,j=20 gcd=5
# 19,4 is slope=floor(19/4)=4 so g=5
#
# 217=21*20/2 + 7, i=21,j=7  gcd=7
# 19,3 is slope=floor(19/3)=6 so g=7

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### $x2
  ### $y2

  if ($x2 < 1 || $y2 < 1) {
    return (1, 0);  # outside quadrant
  }

  if ($x1 < 1) { $x1 = 1; }
  if ($y1 < 1) { $y1 = 1; }

  if ($self->{'pairs_order'} =~ /^diagonals/) {
    my $d = $x2 + max($x2,$y2);
    return (1, int($d*($d+($d%2)) / 4));  # N end of diagonal d
  }

  my $nhi;
  {
    my $c = max($x2,$y2);
    $nhi = _pairs_order__rows__xygr_to_n($c,$c,2,0);

    # my $rev = ($self->{'pairs_order'} eq 'rows_reverse');
    # my $slope = int($x2/$y2);
    # my $g = $slope + 1;
    #
    # # within top row
    # {
    #   my $x;
    #   if ($rev) {
    #     if ($slope > 0) {
    #       $x = max ($x1, $y2*$slope);  # left-most within this wedge
    #     } else {
    #       $x = $x1;  # top-left corner
    #     }
    #   } else {
    #     # pairs_order=rows
    #     $x = $x2;  # top-right corner
    #   }
    #   $nhi = $self->{'pairs_order_xygr_to_n'}->($x, $y2, $g, 0);
    #
    #   ### $slope
    #   ### $g
    #   ### x for hi: $x
    #   ### nhi for x,y2: $nhi
    # }
    #
    # # within x2 column, top of wedge below
    # #
    # my $yw = int(($x2+$g-1) / $g); # rounded up
    # if ($yw >= $y1) {
    #   $nhi = max ($nhi, $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0));
    #
    #   ### $yw
    #   ### nhi_wedge: $self->{'pairs_order_xygr_to_n'}->($x2,$yw,$g+1,0)
    # }
    #   my $yw = int($x2 / $g) - ($g==1);  # below X=Y diagonal when g==1
    #   if ($yw >= $y1) {
    #     $g = int($x2/$yw) + 1;  # perhaps went across more than one wedge
    #     $nhi = max ($nhi,
    #                 ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
    #     ### $yw
    #     ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
    #   }
  }

  my $nlo;
  {
    $nlo = _pairs_order__rows__xygr_to_n(1,$x1, 1, $x1-1);

    # my $g = int($x1/$y1) + 1;
    # $nlo = $self->{'pairs_order_xygr_to_n'}->($x1,$y1,$g,0);
    #
    # ### glo: $g
    # ### $nlo
    #
    # if ($g > 1) {
    #   my $yw = max (int($x1 / $g),
    #                 1);
    #   ### $yw
    #   if ($yw <= $y2) {
    #     $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
    #     $nlo = min ($nlo, $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0));
    #     ### glo_wedge: $g
    #     ### nlo_wedge: $self->{'pairs_order_xygr_to_n'}->($x1,$yw,$g,0)
    #   }
    # }
    # if ($nlo < 1) {
    #   $nlo = 1;
    # }
  }

  ### $nhi
  ### $nlo
  return ($nlo, $nhi);
}

sub _gcd {
  my ($x, $y) = @_;
  #### _gcd(): "$x,$y"

  # bgcd() available in even the earliest Math::BigInt
  if ((ref $x && $x->isa('Math::BigInt'))
      || (ref $y && $y->isa('Math::BigInt'))) {
    return Math::BigInt::bgcd($x,$y);
  }

  $x = abs(int($x));
  $y = abs(int($y));
  unless ($x > 0) {
    return $y;  # gcd(0,y)=y for y>=0, giving gcd(0,0)=0
  }
  if ($y > $x) {
    $y %= $x;
  }
  for (;;) {
    ### assert: $x >= 1

    if ($y <= 1) {
      return ($y == 0
              ? $x   # gcd(x,0)=x
              : 1);  # gcd(x,1)=1
    }
    ($x,$y) = ($y, $x % $y);
  }
}



# # old code, rows only ...
# sub rect_to_n_range {
#   my ($self, $x1,$y1, $x2,$y2) = @_;
#   ### rect_to_n_range(): "$x1,$y1  $x2,$y2"
#
#   $x1 = round_nearest ($x1);
#   $y1 = round_nearest ($y1);
#   $x2 = round_nearest ($x2);
#   $y2 = round_nearest ($y2);
#
#   ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
#   ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
#   ### $x2
#   ### $y2
#
#   if ($x2 < 1 || $y2 < 1) {
#     return (1, 0);  # outside quadrant
#   }
#
#   if ($x1 < 1) { $x1 = 1; }
#   if ($y1 < 1) { $y1 = 1; }
#
#   my $g = int($x2/$y2) + 1;
#   my $nhi = ($y2*(($y2-2)*$g + 1) / 2 + $x2)*$g;
#   ### ghi: $g
#   ### $nhi
#
#   my $yw = int($x2 / $g) - ($g==1);  # below X=Y diagonal when g==1
#   if ($yw >= $y1) {
#     $g = int($x2/$yw) + 1;  # perhaps went across more than one wedge
#     $nhi = max ($nhi,
#                 ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1));
#     ### $yw
#     ### nhi_wedge: ($yw*(($yw-2)*($g+1) + 1) / 2 + $x2)*($g+1)
#   }
#
#   $g = int($x1/$y1) + 1;
#   my $nlo = ($y1*(($y1-2)*$g + 1) / 2 + $x1)*$g;
#
#   ### glo: $g
#   ### $nlo
#
#   if ($g > 1) {
#     $yw = max (int($x1 / $g),
#                1);
#     ### $yw
#     if ($yw <= $y2) {
#       $g = int($x1/$yw); # no +1, and perhaps up across more than one wedge
#       $nlo = min ($nlo,
#                   ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g);
#       ### glo_wedge: $g
#       ### nlo_wedge: ($yw*(($yw-2)*$g + 1) / 2 + $x1)*$g
#     }
#   }
#
#   return ($nlo, $nhi);
# }


1;
__END__

=for stopwords eg Ryde OEIS ie Math-PlanePath GCD gcd gcds gcd/2 gcd-1 j/gcd Fortnow coprime triangulars numberings pronics incrementing

=head1 NAME

Math::PlanePath::GcdRationals -- rationals by triangular GCD

=head1 SYNOPSIS

 use Math::PlanePath::GcdRationals;
 my $path = Math::PlanePath::GcdRationals->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Fortnow, Lance>This path enumerates X/Y rationals using a method by Lance
Fortnow taking a greatest common divisor out of a triangular position.

=over

L<http://blog.computationalcomplexity.org/2004/03/counting-rationals-quickly.html>

=back

The attraction of this approach is that it's both efficient to calculate and
visits blocks of X/Y rationals using a modest range of N values, roughly a
square N=2*max(num,den)^2 in the default rows style.

    13  |      79  80  81  82  83  84  85  86  87  88  89  90
    12  |      67              71      73              77     278
    11  |      56  57  58  59  60  61  62  63  64  65     233 235
    10  |      46      48              52      54     192     196
     9  |      37  38      40  41      43  44     155 157     161
     8  |      29      31      33      35     122     126     130
     7  |      22  23  24  25  26  27      93  95  97  99 101 103
     6  |      16              20      68              76     156
     5  |      11  12  13  14      47  49  51  53     108 111 114
     4  |       7       9      30      34      69      75     124
     3  |       4   5      17  19      39  42      70  74     110
     2  |       2       8      18      32      50      72      98
     1  |       1   3   6  10  15  21  28  36  45  55  66  78  91
    Y=0 |
         --------------------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10  11  12  13

The mapping from N to rational is

    N = i + j*(j-1)/2     for upper triangle 1 <= i <= j
    gcd = GCD(i,j)
    rational = i/j + gcd-1

which means X=numerator Y=denominator are

    X = (i + j*(gcd-1))/gcd  = j + (i-j)/gcd
    Y = j/gcd

The i,j position is a numbering of points above the X=Y diagonal by rows in
the style of L<Math::PlanePath::PyramidRows> with step=1, but starting from
i=1,j=1.

    j=4  |  7  8  9 10
    j=3  |  4  5  6
    j=2  |  2  3
    j=1  |  1
         +-------------
          i=1  2  3  4

If GCD(i,j)=1 then X/Y is simply X=i,Y=j unchanged.  This means fractions
S<X/Y E<lt> 1> are numbered by rows with increasing numerator, but skipping
positions where i,j have a common factor.

The skipped positions where i,j have a common factor become rationals
S<X/YE<gt>1>, ie. below the X=Y diagonal.  The integer part is GCD(i,j)-1 so
S<rational = gcd-1 + i/j>.  For example

    N=51 is at i=6,j=10 by rows
    common factor gcd(6,10)=2
    so rational R = 2-1 + 6/10 = 1+3/5 = 8/5
    ie. X=8,Y=5

If j is prime then gcd(i,j)=1 and so X=i,Y=j.  This means that in rows with
prime Y are numbered by consecutive N across to the X=Y diagonal.  For
example in row Y=7 above N=22 to N=27.

=head2 Triangular Numbers

X<Triangular numbers>N=1,3,6,10,etc along the bottom Y=1 row is the
triangular numbers N=k*(k-1)/2.  Such an N is at i=k,j=k and has gcd(i,j)=k
which divides out to Y=1.

    N=k*(k-1)/2  i=k,j=k

    Y = j/gcd
      = 1       on the bottom row

    X = (i + j*(gcd-1)) / gcd
      = (k + k*(k-1)) / k
      = k-1     successive points on that bottom row

N=1,2,4,7,11,etc in the column at X=1 immediately follows each of those
bottom row triangulars, ie. N+1.

    N in X=1 column = Y*(Y-1)/2 + 1

=head2 Primes

If N is prime then it's above the sloping line X=2*Y.  If N is composite
then it might be above or below, but the primes are always above.  Here's
the table with dots "..." marking the X=2*Y line.

           primes and composites above
        |
     6  |      16              20      68
        |                                             .... X=2*Y
     5  |      11  12  13  14      47  49  51  53 ....
        |                                     ....
     4  |       7       9      30      34 .... 69
        |                             ....
     3  |       4   5      17  19 .... 39  42      70   only
        |                     ....                      composite
     2  |       2       8 .... 18      32      50       below
        |             ....
     1  |       1 ..3.  6  10  15  21  28  36  45  55
        |     ....
    Y=0 | ....
         ---------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10

Values below X=2*Y such as 39 and 42 are always composite.  Values above
such as 19 and 30 are either prime or composite.  Only X=2,Y=1 is exactly on
the line, which is prime N=3 as it happens.  The rest of the line X=2*k,Y=k
is not visited since common factor k would mean X/Y is not a rational in
least terms.

This pattern of primes and composites occurs because N is a multiple of
gcd(i,j) when that gcd is odd, or a multiple of gcd/2 when that gcd is even.

    N = i + j*(j-1)/2
    gcd = gcd(i,j)

    N = gcd   * (i/gcd + j/gcd * (j-1)/2)  when gcd odd
        gcd/2 * (2i/gcd + j/gcd * (j-1))   when gcd even

If gcd odd then either j/gcd or j-1 is even, to take the "/2" divisor.  If
gcd even then only gcd/2 can come out as a factor since taking out the full
gcd might leave both j/gcd and j-1 odd and so the "/2" not an integer.  That
happens for example to N=70

    N = 70
    i = 4, j = 12     for 4 + 12*11/2 = 70 = N
    gcd(i,j) = 4
    but N is not a multiple of 4, only of 4/2=2

Of course knowing gcd or gcd/2 is a factor of N is only useful when that
factor is 2 or more, so

    odd gcd >= 2                means gcd >= 3
    even gcd with gcd/2 >= 2    means gcd >= 4

    so N composite when gcd(i,j) >= 3

If gcdE<lt>3 then the "factor" coming out is only 1 and says nothing about
whether N is prime or composite.  There are both prime and composite N with
gcdE<lt>3, as can be seen among the values above the X=2*Y line in the table
above.

=head2 Rows Reverse

Option C<pairs_order =E<gt> "rows_reverse"> reverses the order of points
within the rows of i,j pairs,

    j=4 | 10  9  8  7
    j=3 |  6  5  4
    j=2 |  3  2
    j=1 |  1
        +------------
         i=1  2  3  4

The X,Y numbering becomes

=cut

# math-image --path=GcdRationals,pairs_order=rows_reverse --all --output=numbers

=pod

    pairs_order => "rows_reverse"

    11  |      66  65  64  63  62  61  60  59  58  57
    10  |      55      53              49      47     209
     9  |      45  44      42  41      39  38     170 168
     8  |      36      34      32      30     135     131
     7  |      28  27  26  25  24  23     104 102 100  98
     6  |      21              17      77              69
     5  |      15  14  13  12      54  52  50  48     118
     4  |      10       8      35      31      76      70
     3  |       6   5      20  18      43  40      75  71
     2  |       3       9      19      33      51      73
     1  |       1   2   4   7  11  16  22  29  37  46  56
    Y=0 |
         ------------------------------------------------
          X=0   1   2   3   4   5   6   7   8   9  10  11

The triangular numbers, per L</Triangular Numbers> above, are now in the X=1
column, ie. at the left rather than at the Y=1 bottom row.  That bottom row
is now the next after each triangular, ie. T(X)+1.

=head2 Diagonals

Option C<pairs_order =E<gt> "diagonals_down"> takes the i,j pairs by
diagonals down from the Y axis.  C<pairs_order =E<gt> "diagonals_up">
likewise but upwards from the X=Y centre up to the Y axis.  (These
numberings are in the style of L<Math::PlanePath::DiagonalsOctant>.)

    diagonals_down            diagonals_up

    j=7 | 13                   j=7 | 16
    j=6 | 10 14                j=6 | 12 15
    j=5 |  7 11 15             j=5 |  9 11 14
    j=4 |  5  8 12 16          j=4 |  6  8 10 13
    j=3 |  3  6  9             j=3 |  4  5  7
    j=2 |  2  4                j=2 |  2  3
    j=1 |  1                   j=1 |  1
        +------------              +------------
         i=1  2  3  4               i=1  2  3  4

The resulting path becomes

=cut

# math-image --path=GcdRationals,pairs_order=diagonals_down --all --output=numbers --size=40x10

=pod

    pairs_order => "diagonals_down"

     9  |     21 27    40 47    63 72
     8  |     17    28    41    56    74
     7  |     13 18 23 29 35 42    58 76
     6  |     10          30    44
     5  |      7 11 15 20    32 46 62 80
     4  |      5    12    22    48    52
     3  |      3  6    14 24    33 55
     2  |      2     8    19    34    54
     1  |      1  4  9 16 25 36 49 64 81
    Y=0 |
         --------------------------------
          X=0  1  2  3  4  5  6  7  8  9

X<Square numbers>The Y=1 bottom row is the perfect squares which are at i=j
in the C<DiagonalsOctant> and have gcd(i,j)=i thus becoming X=i,Y=1.

=cut

# math-image --path=GcdRationals,pairs_order=diagonals_up --all --output=numbers --size=40x10

=pod

    pairs_order => "diagonals_up"

     9  |     25 29    39 45    58 65
     8  |     20    28    38    50    80
     7  |     16 19 23 27 32 37    63 78
     6  |     12          26    48
     5  |      9 11 14 17    35 46 59 74
     4  |      6    10    24    44    54
     3  |      4  5    15 22    34 51
     2  |      2     8    18    33    52
     1  |      1  3  7 13 21 31 43 57 73
    Y=0 |
         --------------------------------
          X=0  1  2  3  4  5  6  7  8  9

X<Square numbers>X<Pronic numbers>N=1,2,4,6,9 etc in the X=1 column is the
perfect squares k*k and the pronics k*(k+1) interleaved, also called the
X<Quarter square numbers>quarter-squares.  N=2,5,10,17,etc on Y=X+1 above
the leading diagonal are the squares+1, and N=3,8,15,24,etc below on Y=X-1
below the diagonal are the squares-1.

The GCD division moves points downwards and shears them across horizontally.
The effect on diagonal lines of i,j points is as follows

      | 1
      |   1     gcd=1 slope=-1
      |     1
      |       1
      |         1
      |           1
      |             1
      |               1
      |                 1
      |                 .    gcd=2 slope=0
      |               .   2
      |             .     2     3  gcd=3 slope=1
      |           .       2   3           gcd=4 slope=2
      |         .         2 3         4
      |       .           3       4       5     gcd=5 slope=3
      |     .                 4      5
      |   .               4     5
      | .                 5
      +-------------------------------

The line of "1"s is the diagonal with gcd=1 and thus X,Y=i,j unchanged.

The line of "2"s is when gcd=2 so X=(i+j)/2,Y=j/2.  Since i+j=d is constant
within the diagonal this makes X=d fixed, ie. vertical.

Then gcd=3 becomes X=(i+2j)/3 which slopes across by +1 for each i, or gcd=4
has X=(i+3j)/4 slope +2, etc.

Of course only some of the points in an i,j diagonal have a given gcd, but
those which do are transformed this way.  The effect is that for N up to a
given diagonal row all the "*" points in the following are traversed, plus
extras in wedge shaped arms out to the side.

     | *
     | * *                 up to a given diagonal points "*"
     | * * *               all visited, plus some wedges out
     | * * * *             to the right
     | * * * * *
     | * * * * *   /
     | * * * * * /  --
     | * * * * *  --
     | * * * * *--
     +--------------

In terms of the rationals X/Y the effect is that up to N=d^2 with diagonal
d=2j the fractions enumerated are

    N=d^2
    enumerates all num/den where num <= d and num+den <= 2*d

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::GcdRationals-E<gt>new ()>

=item C<$path = Math::PlanePath::GcdRationals-E<gt>new (pairs_order =E<gt> $str)>

Create and return a new path object.  The C<pairs_order> option can be

    "rows"               (default)
    "rows_reverse"
    "diagonals_down"
    "diagonals_up"

=back

=head1 FORMULAS

=head2 X,Y to N -- Rows

The defining formula above for X,Y can be inverted to give i,j and N.  This
calculation doesn't notice if X,Y have a common factor, so a coprime(X,Y)
test must be made separately if necessary (for C<xy_to_n()> it is).

    X/Y = g-1 + (i/g)/(j/g)

The g-1 integer part is recovered by a division X divide Y,

    X = quot*Y + rem   division by Y rounded towards 0
      where 0 <= rem < Y
      unless Y=1 in which case use quot=X-1, rem=1
    g-1 = quot
    g = quot+1

The Y=1 special case can instead be left as the usual kind of division
quot=X,rem=0, so 0E<lt>=remE<lt>Y.  This will give i=0 which is outside the
intended 1E<lt>=iE<lt>=j range, but j is 1 bigger and the combination still
gives the correct N.  It's as if the i=g,j=g point at the end of a row is
moved to i=0,j=g+1 just before the start of the next row.  If only N is of
interest not the i,j then it can be left rem=0.

Equating the denominators in the X/Y formula above gives j by

    Y = j/g          the definition above

    j = g*Y
      = (quot+1)*Y
    j = X+Y-rem      per the division X=quot*Y+rem

And equating the numerators gives i by

    X = (g-1)*Y + i/g     the definition above

    i = X*g - (g-1)*Y*g
      = X*g - quot*Y*g
      = X*g - (X-rem)*g     per the division X=quot*Y+rem
    i = rem*g
    i = rem*(quot+1)

Then N from i,j by the definition above

    N = i + j*(j-1)/2

For example X=11,Y=4 divides X/Y as 11=4*2+3 for quot=2,rem=3 so i=3*(2+1)=9
j=11+4-3=12 and so N=9+12*11/2=75 (as shown in the first table above).

It's possible to use only the quotient p, not the remainder rem, by taking
j=(quot+1)*Y instead of j=X+Y-rem, but usually a division operation gives
the remainder at no extra cost, or a cost small enough that it's worth
swapping a multiply for an add or two.

The gcd g can be recovered by rounding up in the division, instead of
rounding down and then incrementing with g=quot+1.

   g = ceil(X/Y)
     = cquot for division X=cquot*Y - crem

But division in most programming languages is towards 0 or towards
-infinity, not upwards towards +infinity.

=head2 X,Y to N -- Rows Reverse

For pairs_order="rows_reverse", the horizontal i is reversed to j-i+1.  This
can be worked into the triangular part of the N formula as

    Nrrev = (j-i+1) + j*(j-1)/2        for 1<=i<=j
          = j*(j+1)/2 - i + 1

The Y=1 case described above cannot be left to go through with rem=0 giving
i=0 and j+1 since the reversal j-i+1 is then not correct.  Either use rem=1
as described, or if not then compensate at the end,

    if r=0 then j -= 2            adjust
    Nrrev = j*(j+1)/2 - i + 1     same Nrrev as above

For example X=5,Y=1 is quot=5,rem=0 gives i=0*(5+1)=0 j=5+1-0=6.  Without
adjustment it would be Nrrev=6*7/2-0+1=22 which is wrong.  But adjusting
j-=2 so that j=6-2=4 gives the desired Nrrev=4*5/2-0+1=11 (per the table in
L</Rows Reverse> above).

=cut

# No, not quite
#
# =head2 Rectangle N Range -- Rows
#
# An over-estimate of the N range can be calculated just from the X,Y to N
# formula above.
#
# Within a row N increases with increasing X, so for a rectangle the minimum
# is in the left column and the maximum in the right column.
#
# Within a column N values increase until reaching the end of a "g" wedge,
# then drop down a bit.  So the maximum is either the top-right corner of the
# rectangle, or the top of the next lower wedge, ie. smaller Y but bigger g.
# Conversely the minimum is either the bottom right of the rectangle, or the
# bottom of the next higher wedge, ie. smaller g but bigger Y.  (Is that
# right?)
#
# This is an over-estimate because it ignores which X,Y points are coprime and
# thus actually should have N values.
#
# =head2 Rectangle N Range -- Rows Reverse
#
# When row pairs are taken in reverse order increasing X is not increasing N,
# but rather the maximum N of a row is at the left end of the wedge.

=pod

=head1 OEIS

This enumeration of rationals is in Sloane's Online Encyclopedia of Integer
Sequences in the following forms

=over

L<http://oeis.org/A054531> (etc)

=back

    pairs_order="rows" (the default)
      A226314   X coordinate
      A054531   Y coordinate, being N/GCD(i,j)
      A000124   N in X=1 column, triangular+1
      A050873   ceil(X/Y), gcd by rows
      A050873-A023532  floor(X/Y)
                gcd by rows and subtract 1 unless i=j

    pairs_order="diagonals_down"
      A033638   N in X=1 column, quartersquares+1 and pronic+1
      A000290   N in Y=1 row, perfect squares

    pairs_order="diagonals_up"
      A002620   N in X=1 column, squares and pronics
      A002061   N in Y=1 row, central polygonals (extra initial 1)
      A002522   N at Y=X+1 above leading diagonal, squares+1

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DiagonalsOctant>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut