File: MultipleRings.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1715 lines) | stat: -rw-r--r-- 47,976 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
# Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# math-image --path=MultipleRings --lines
#
# math-image --wx --path=MultipleRings,ring_shape=polygon,step=5  --scale=50 --figure=ring --all

#
# FIXME: $y equal across bottom side centre ?


package Math::PlanePath::MultipleRings;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

# Math::Trig has asin_real() too, but it just runs the blob of code in
# Math::Complex -- prefer libm
use Math::Libm 'asin', 'hypot';

use vars '$VERSION', '@ISA';
@ISA = ('Math::PlanePath');
use Math::PlanePath;
$VERSION = 117;

use Math::PlanePath::Base::Generic
  'is_infinite';
use Math::PlanePath::SacksSpiral;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant 1.02; # for leading underscore
use constant _PI => 2*atan2(1,0);

use constant figure => 'circle';
use constant n_frac_discontinuity => 0;
use constant gcdxy_minimum => 0;

use constant parameter_info_array =>
  [{ name        => 'step',
     display     => 'Step',
     share_key   => 'step_6_min3',
     type        => 'integer',
     minimum     => 0,
     default     => 6,
     width       => 3,
     description => 'How much longer each ring is than the preceding.',
   },

   { name        => 'ring_shape',
     display     => 'Ring Shape',
     type        => 'enum',
     default     => 'circle',
     choices     => ['circle','polygon'],
     choices_display => ['Circle','Polygon'],
     description     => 'The shape of each ring, either a circle or a polygon of "step" many sides.',
   },
  ];

#------------------------------------------------------------------------------
# Electricity transmission cable in sixes, with one at centre ?
#    7 poppy
#    19 hyacinth
#    37 marigold
#    61 cowslip
#    127 bluebonnet

# An n-gon of points many vertices has each angle
#     alpha = 2*pi/points
# The radius r to a vertex, using a line perpendicular to the line segment
#     sin(alpha/2) = (1/2)/r
#     r = 0.5 / sin(pi/points)
# And with points = d*step, starting from d=1
#     r = 0.5 / sin(pi/(d*step))

# step==0 is a straight line y==0 x=0,1,2,..., anything else whole plane
sub x_negative {
  my ($self) = @_;
  return ($self->{'step'} > 0);
}
*y_negative = \&x_negative;

sub y_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? 0  # step=0 always Y=0
          : undef);
}

sub x_negative_at_n {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? undef  # no negatives
          : $self->{'step'} == 1 ? 3
          : $self->n_start + int($self->{'step'}/4) + 1);
}
sub y_negative_at_n {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? undef  # no negatives
          : $self->{'step'} <= 2 ? 6
          : $self->n_start + int($self->{'step'}/2) + 1);
}

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? 0 : undef);
}
sub sumabsxy_minimum {
  my ($self) = @_;
  # first point N=1 innermost ring
  my ($x,$y) = $self->n_to_xy($self->n_start);
  return $x;
}
*diffxy_minimum = \&sumxy_minimum;

# step=0 X=0,Y=0 AbsDiff=0
# step=3 N=88 X=Y=5.3579957587697 ring of 24 is a multiple of 8

sub rsquared_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step <= 1) {
    # step=0 along X axis starting X=0,Y=0
    # step=1 start at origin
    return 0;
  }

  # step=3  *--___        
  # circle  |     --__         o         0.5/r = sin60 = sqrt(3)/2
  #         |   o   __*      / | \       r = 1/sqrt(3)
  #         |  ___--       /   |   \     r^2 = 1/3
  #         *--           *---------*
  #                              1/2
  # polygon
  #          o         0.5/r = sin60 = sqrt(3)/2
  #        / | \       r = 1/sqrt(3)                 
  #      /   |   \     r^2 = 1/3                
  #     *---------*                             
  #            1/2                              
  # 
  if ($step == 3) {
    return ($self->{'ring_shape'} eq 'polygon' ? 3/4 : 1/3);
  }
  if ($step == 4) {
    # radius = sqrt(2)/2, rsquared=1/2
    return 0.5;
  }

  # _numsides_to_r() returns 1, no need for a special case here
  # if ($step == 6) {
  #   # hexagon
  #   return 1;
  # }

  my $r;
  if ($step >= 6 || $self->{'ring_shape'} eq 'polygon') {
    $r = _numsides_to_r($step,_PI);
  } else {
    $r = $self->{'base_r'} + 1;
  }
  return $r*$r;
}


#------------------------------------------------------------------------------
# dx_minimum() etc

# step <= 6
# R=base_r+d
# theta = 2*$n * $pi / ($d * $step)
#       = 2pi/(d*step)
# dX -> R*sin(theta)
#    -> R*theta
#     = (base_r+d)*2pi/(d*step)
#    -> 2pi/step
#
# step=5 across first ring
# N=6 at X=base_r+2, Y=0
# N=5 at R=base_r+1 theta = 2pi/5
#   X=(base_r+1)*cos(theta)
#   dX = base_r+2 - (base_r+1)*cos(theta)
#
# step=6 across first ring
# base_r = 0.5/sin(_PI/6) - 1
#        = 0.5/0.5 - 1
#        = 0
# N=7 at X=base_r+2, Y=0
# N=6 at R=base_r+1 theta = 2pi/6
#   X=(base_r+1)*cos(theta)
#   dX = base_r+2 - (base_r+1)*cos(theta)
#      = base_r+2 - (base_r+1)*0.5
#      = 1.5*base_r + 1.5
#      = 1.5
#
# step > 6
# R = 0.5 / sin($pi / ($d*$step))
# diff = 0.5 / sin($pi / ($d*$step)) - 0.5 / sin($pi / (($d-1)*$step))
#     -> 0.5 / ($pi / ($d*$step)) - 0.5 / ($pi / (($d-1)*$step))
#      = 0.5 * ($d*$step) / $pi - 0.5 * (($d-1)*$step) / $pi
#      = step*0.5/pi * ($d - ($d-1))
#      = step*0.5/pi
# and extra from N=step to N=step+1
#     * (1-cos(2pi/step))
#
sub dx_minimum {
  my ($self) = @_;
  if ($self->{'step'} == 0) {
    return 1;   # horizontal only
  }

  if ($self->{'step'} > 6) {
    return -1; # supremum, unless polygon and step even
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    # step=3,4,5
    return (-2*_PI()) / $self->{'step'};
  } else {
    return (-2*_PI()) / $self->{'step'};
  }
}

sub dx_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0
          ? 1   # horizontal only

          : $self->{'step'} == 5
          ? $self->{'base_r'}+2 - ($self->{'base_r'}+1)*cos(2*_PI()/5)

          : $self->{'step'} == 6
          ? 1.5

          : $self->{'step'} <= 6
          ? (2*_PI()) / $self->{'step'}

          # step > 6, between rings
          : (0.5/_PI()) * $self->{'step'}
          * (2-cos(2*_PI()/$self->{'step'})));
}

sub dy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0    ? 0    # horizontal only
          : $self->{'step'} <= 6  ? (-2*_PI) / $self->{'step'}
          :                         -1); # supremum
}
sub dy_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0    ? 0    # horizontal only
          : $self->{'step'} <= 6  ? (2*_PI) / $self->{'step'}
          :                         1); # supremum
}
sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  return ($self->{'step'} == 0 ? (1,0) # E only
          : ());  # unlimited
}

sub absdx_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step == 0) {
    return 1;    # horizontal dX=1 always
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step % 2) {
      return 0;  # polygons with odd num sides have left vertical dX=0
    } else {
      return sin(_PI/2 /$step);
    }

    # if ($self->{'step'} % 2 == 1) {
    #
    #   return 0;
    # } else {
    #   return abs($self->dx_minimum);
    # }
  }
  return 0;
}
sub absdy_minimum {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($step == 0) {
    return 0;    # horizontal dX=1 always
  }
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step == 3) {
      return 0.5;  # sin(30 degrees) innermost polygon
    }
    my $frac = ($step+2) % 4;
    if ($frac == 3) { $frac = 1; }
    return sin(_PI/2 * $frac/$step);
  }
  return 0;
}

sub dsumxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0
          ? 1    # horizontal only
          : -1); # infimum
}
use constant dsumxy_maximum => 1;

# FIXME: for step=1 is there a supremum at 9 or thereabouts?
# and for other step<6 too?
# 2*dXmax * sqrt(2) ?
sub ddiffxy_minimum {
  my ($self) = @_;
  return ($self->{'step'} == 0  ? 1     # horizontal only
          : $self->{'step'} <= 6 ? $self->dx_minimum * sqrt(2)
          : -1); # infimum
}
sub ddiffxy_maximum {
  my ($self) = @_;
  return ($self->{'step'} == 0   ? 1     # horizontal only
          : $self->{'step'} <= 6 ? $self->dx_maximum * sqrt(2)
          : 1); # supremum
}

#------------------------------------------------------------------------------
# dir_maximum_dxdy()

# polygon step many sides
#   start at vertical angle 1/4 plus 0.5/step, then k*1/step each side
#   a = 1/4 + (k+1/2)/step
#     = (1 + 4(k+1/2)/step) / 4
#     = ((4*k+2)/step + 1) / 4
#
# maximum want 1 > a >= 1-1/step
#   1/4 + (k+1/2)/step >= 1-1/step
#   (k+1/2)/step >= 3/4-1/step
#   k+1/2 >= 3*step/4-1
#   k >= 3*step/4-3/2
#   k >= (3*step-6)/4
#   k = ceil((3*step-6)/4)
#     = floor((3*step-6)/4 + 3/4)
#     = floor((3*step-3)/4)
# high side
#   1/4 + (k+1/2)/step < 1
#   (k+1/2)/step < 3/4
#   k+1/2 < 3*step/4
#   k < (3*step-2)/4
#   k = floor((3*step-2)/4 - 1/4)
#     = floor((3*step-3)/4)
#
# so
#   a = 1/4 + (floor((3*step-3)/4) + 1/2)/step
#     = (1 + 4*(floor((3*step-3)/4) + 1/2)/step) / 4
#     = ((floor((3*step-3)/4)*4 + 2)/step + 1) / 4
# step=4   a = 7/8
# step=5   a = 19/20
# step=6   a = 5/6
# step=7   a = 25/28
# step=8   a = 15/16
# step=10  a = 9/10
# return (int((3*$step-3)/4) * 4 + 2)/$step + 1;
# is full circle less 4,3,2,1 as step-2 mod 4
#
# sub dir4_maximum {
#   my ($self) = @_;
#   if ($self->{'step'} == 0) {
#     return 0;   # horizontal only
#   }
#   my $step = $self->{'step'};
#   if ($self->{'ring_shape'} eq 'polygon') {
#     return (($step-2)%4 - 4)/$step + 4;
#   }
#   return 4; # supremum, full circle
# }

# want a >= 1
# 1/4 + (k+1/2)/step >= 1
# (k+1/2)/step >= 3/4
# k+1/2 >= 3*step/4
# k >= 3*step/4 - 1/2
# k >= (3*step-2)/4
# k = ceil((3*step-2)/4)
#   = floor((3*step-2)/4 + 3/4)
#   = floor((3*step+1)/4)
# min_a = 1/4 + (floor((3*step+1)/4) + 1/2)/step - 1
#       = (1 + 4*(floor((3*step+1)/4) + 1/2)/step ) / 4
#       = ((4*floor((3*step+1)/4) + 2)/step + 1) / 4 - 1
#       = ((floor((3*step+1)/4)*4 + 2)/step - 3) / 4
# return (int((3*$step+1)/4) * 4 + 2)/$step - 3;
# is 0,1,2,3 as step-2 mod 4
# return (($step-2) % 4) / $step;
#
# but last of ring across to first of next may be shallower
#
# sub dir4_minimum {
#   my ($self) = @_;
#   my $step = $self->{'step'};
#   if ($self->{'ring_shape'} eq 'polygon') {
#     if ($step % 4 != 2) {   # polygon step=2mod4 includes horizontal ...
#       my ($dx,$dy) = $self->n_to_dxdy($self->{'step'});
#       return min (atan2($dy,$dx) * (2/_PI),
#                   (($step-2) % 4) / $step);
#     }
#
#   }
#   return 0; # horizontal
# }

sub dir_minimum_dxdy {
  my ($self) = @_;
  my $step = $self->{'step'};
  if ($self->{'ring_shape'} eq 'polygon') {
    return $self->n_to_dxdy($step == 9
                            ? 9
                            : int((3*$step+5)/4));
  }
  return (1,0); # horizontal
}
sub dir_maximum_dxdy {
  my ($self) = @_;
  if ($self->{'step'} == 0) {
    return (1,0);   # step=0 horizontal always
  }

  if ($self->{'ring_shape'} eq 'polygon') {
    my $step = $self->{'step'};
    return $self->n_to_dxdy(int((3*$step+1)/4));  # 1 before the minimum

    # # just before 3/4 way around, then half back ....
    # # sides   side
    # # -----   ----
    # #   3      1
    # #   4      2
    # #   5      3
    # #   6      3
    # #   7      4
    # #   8      5
    # #   9      6
    # #  10      6
    # return _circlefrac_to_xy (1, int((3*$step-3)/4), $step, _PI);
  }

  return (0,0); # supremum, full circle
}

#------------------------------------------------------------------------------

sub new {
  ### MultipleRings new() ...
  my $self = shift->SUPER::new(@_);

  my $step = $self->{'step'};
  $step = $self->{'step'} = (! defined $step ? 6  # default
                             : $step < 0     ? 0  # minimum
                             : $step);
  ### $step

  my $ring_shape = ($self->{'ring_shape'} ||= 'circle');
  if (! ($ring_shape eq 'circle' || $ring_shape eq 'polygon')) {
    croak "Unrecognised ring_shape option: ", $ring_shape;
  }
  if ($step < 3) {
    # polygon shape only for step >= 3
    $ring_shape = $self->{'ring_shape'} = 'circle';
  }

  if ($ring_shape eq 'polygon') {
    ### polygon ...
    if ($step == 6) {
      ### 0.5/sin(PI/6)=1 exactly ...
      $self->{'base_r'} = 1;
    } elsif ($step == 3) {
      ### 0.5/sin(PI/3)=sqrt(3)/3 ...
      $self->{'base_r'} = sqrt(3)/3;
    } else {
      $self->{'base_r'} = 0.5/sin(_PI/$step);
    }

  } elsif ($step == 6) {
    ### 0.5/sin(PI/6) = 1 exactly ...
    $self->{'base_r'} = 0;

  } elsif ($step == 4) {
    ### 0.5/sin(PI/4) = sqrt(2)/2 ...
    $self->{'base_r'} = sqrt(2)/2 - 1;

  } elsif ($step == 3) {
    ### 0.5/sin(PI/3) = sqrt(3)/3 ...
    $self->{'base_r'} = sqrt(3)/3 - 1;

  } elsif ($step < 6) {
    ### sin: $step>1 && sin(_PI/$step)
    $self->{'base_r'} = ($step > 1 && 0.5/sin(_PI/$step)) - 1;
  }
  ### base r: $self->{'base_r'}

  return $self;
}

# with N decremented
# d = [ 1, 2, 3, 4,  5 ]
# N = [ 0, 1, 3, 6, 10 ]
#
# N = (1/2 d^2 - 1/2 d)
#   = (1/2*$d**2 - 1/2*$d)
#   = ((0.5*$d - 0.5)*$d)
#   = 0.5*$d*($d-1)
#
# d = 1/2 + sqrt(2 * $n + 1/4)
#   = 0.5 + sqrt(2*$n + 0.25)
#   = [ 1 + 2*sqrt(2n + 1/4) ] / 2
#   = [ 1 + sqrt(8n + 1) ] / 2
#
# (d+1)d/2 - d(d-1)/2
#     = [ (d^2 + d) - (d^2-d) ] / 2
#     = [ d^2 + d - d^2 + d ] / 2
#     = 2d/2 = d
#
# radius
#    step > 6     1 / (2 * sin(pi / ($d*$step))
#    step <= 6    Rbase + d
#
# usual polygon formula R = a / 2*sin(pi/n)
# cf inner radius  r = a / 2*tan(pi/n)
# along chord
#
# polygon horizontal when a=1
#   1/4 + (k+1/2)/step = 1
#   (k+1/2)/step = 3/4
#   k+1/2 = 3*step/4
#   k = 3*step/4 - 1/2
#   k = ()/4
#   4*k = 3*step-2
# and when a=1/2
#   1/4 + (k+1/2)/step = 1/2
#   (k+1/2)/step = 1/4
#   k+1/2 = step/4
#   4*k+2 = step

# 1/2 / R = sin(2pi/sides)
# 1/2 / (R^2 - 1/4) = tan(2pi/sides)
# f(x) = 1/2 / R - sin(2pi/sides)     = $f
# f'(x) = -1/2 / R^2 - cos(2pi/sides) = $slope
# $r-$f/$slope better approx
# (1/2 / R - sin(2pi/sides)) / (-1/2 / R^2 - cos(2pi/sides))
#   = (R/2 - R^2 sin(2pi/sides)) / (-1/2 - R^2 * cos(2pi/sides))

sub n_to_xy {
  my ($self, $n) = @_;
  ### MultipleRings n_to_xy(): "n=$n  step=$self->{'step'} shape=$self->{'ring_shape'}"

  # "$n<1" separate test from decrement so as to warn on undef
  # don't have anything sensible for infinity, and _PI / infinity would
  # throw a div by zero
  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }
  $n -= 1;

  ### decremented n: $n
  my $step = $self->{'step'};
  if (! $step) {
    ### step==0 goes along X axis ...
    return ($n, 0);
  }

  my $d = int((sqrt(int(8*$n/$step) + 1) + 1) / 2);

  ### d frac: (sqrt(int(8*$n) + 1) + 1) / 2
  ### d int: "$d"
  ### base: ($d*($d-1)/2).''
  ### next base: (($d+1)*$d/2).''
  ### assert: $n >= ($d*($d-1)/2)
  ### assert: $n < ($step * ($d+1) * $d / 2)

  $n -= $d*($d-1)/2 * $step;
  ### n remainder: "$n"
  ### assert: $n >= 0
  ### assert: $n < $d*$step

  my $zero = $n * 0;
  if (ref $n) {
    if ($n->isa('Math::BigInt')) {
      $n = Math::PlanePath::SacksSpiral::_bigfloat()->new($n);
    } elsif ($n->isa('Math::BigRat')) {
      $n = $n->as_float;
    }
    if ($n->isa('Math::BigFloat')) {
      ### bigfloat ...
      $d = Math::BigFloat->new($d);
    }
  }
  my $pi = _pi($n);
  ### $pi

  # my $base_r = $self->{'base_r'};
  #     $base_r = Math::BigFloat->new($base_r);

  {
    my $numsides;
    my $r;
    if ($self->{'ring_shape'} eq 'circle')  {
      ### circle ...
      $numsides = $d * $step;
      if ($step > 6) {
        $r = 0.5 / sin($pi / $numsides);
      } else {
        my $base_r;
        if ($step == 6) {
          $base_r = 0; # exactly
        } elsif ($step == 4) {
          ### 0.5/sin(PI/4)=sqrt(2)/2 ...
          $base_r = sqrt(0.5 + $zero) - 1;  # sqrt() instead of sin()
        } elsif ($step == 3) {
          ### 0.5/sin(PI/3)=sqrt(3)/3 ...
          $base_r = sqrt(3 + $zero)/3 - 1;  # sqrt() instead of sin()
        } elsif ($step == 1) {
          $base_r = -1;             # so initial d=1 at $r=0
        } else {
          $base_r = 0.5/sin($pi/$step) - 1;
        }
        $r = $base_r + $d;
      }
    } else {
      ### polygon ...
      $numsides = $step;
      my $base_r = _numsides_to_r($step,$pi);
      if ($step > 6) {
        $r = $base_r*$d;
      } else {
        $r = $base_r + ($d-1)/cos($pi/$step);
      }
      $n /= $d;
    }
    ### n with frac: $n

    # numsides even N > numsides/2
    # numsides odd  N >= (numsides+1)/2 = ceil(numsides/2)
    my $y_neg;
    if (2*$n >= $numsides) {
      $n = $numsides - $n;
      $y_neg = 1;
    }

    my $x_neg;
    my $xy_transpose;
    if ($numsides % 2 == 0) {
      if (4*$n >= $numsides) {
        $n = $numsides/2 - $n;
        $x_neg = 1;
      }
      if ($numsides % 4 == 0 && 8*$n >= $numsides) {
        $n = $numsides/4 - $n;
        $xy_transpose = 1;
      }
    }

    my $side = int ($n);
    $n -= $side;

    my ($x, $y) = _circlefrac_to_xy($r, $side, $numsides, $pi);

    if ($n) {
      # fractional $n offset into side

      my ($to_x, $to_y);
      $side += 1;
      if (2*$side == $numsides+1) {
        # vertical at left, so X unchanged Y negate
        $to_x = $x;
        $to_y = - $y;

      } elsif (4*$side == $numsides+2 || 4*$side == 3*$numsides-2) {
        # horizontal at top or bottom, so Y unchanged X negate
        $to_x = - $x;
        $to_y = $y;

      } else {
        ($to_x, $to_y) = _circlefrac_to_xy($r, $side, $numsides, $pi);
      }

      ### $side
      ### $r
      ### from: "$x, $y"
      ### to: "$to_x, $to_y"

      # If vertical or horizontal then don't apply the proportions since the
      # two parts $x*$n and $to_x*(1-$n) can round off giving the sum != to
      # the original $x.
      if ($to_x != $x) {
        $x = $x*(1-$n) + $to_x*$n;
      }
      if ($to_y != $y) {
        $y = $y*(1-$n) + $to_y*$n;
      }
    }

    if ($xy_transpose) {
      ($x,$y) = ($y,$x);
    }
    if ($x_neg) {
      $x = -$x;
    }
    if ($y_neg) {
      $y = -$y;
    }

    ### final: "x=$x y=$y"
    return ($x, $y);
  }

  # {
  #   # && $d != 0 # watch out for overflow making d==0 ??
  #   #
  #   my $d_step = $d*$step;
  #   my $r = ($step > 6
  #            ? 0.5 / sin($pi / $d_step)
  #            : $base_r + $d);
  #   ### r: "$r"
  #
  #   my $n2 = 2*$n;
  #
  #   if ($n2 == int($n2)) {
  #     if (($n2 % $d_step) == 0) {
  #       ### theta=0 or theta=pi, exactly on X axis ...
  #       return ($n ? -$r : $r,  # n remainder 0 means +ve X axis, non-zero -ve
  #               0);
  #     }
  #     if (($d_step % 2) == 0) {
  #       my $n2sub = $n2 - $d_step/2;
  #       if (($n2sub % $d_step) == 0) {
  #         ### theta=pi/2 or theta=3pi/2, exactly on Y axis ...
  #         return (0,
  #                 $n2sub ? -$r : $r);
  #       }
  #     }
  #   }
  #
  #   my $theta = $n2 * $pi / $d_step;
  #
  #   ### theta frac: (($n - $d*($d-1)/2)/$d).''
  #   ### theta: "$theta"
  #
  #   return ($r * cos($theta),
  #           $r * sin($theta));
  # }
}

# $side is 0 to $numsides-1
sub _circlefrac_to_xy {
  my ($r, $side, $numsides, $pi) = @_;
  ### _circlefrac_to_xy(): "r=$r side=$side numsides=$numsides pi=$pi"

  if (2*$side == $numsides) {
    ### 180-degrees, so X=R, Y=0 ...
    return (-$r, 0);

  }
  if (4*$side == $numsides) {
    ### 90-degrees, so X=0, Y=R ...
    return (0, $r);
  }
  if (6*$side == $numsides) {
    ### 60-degrees, so X=R/2, Y=sqrt(3)/2*R ...
    return ($r / 2,
            $r * sqrt(3 + $r*0) / 2);
  }
  if (8*$side == $numsides) {
    ### 45-degrees, so X=Y=R/sqrt(2) ...
    my $x = $r / sqrt(2 + $r*0);
    return ($x, $x);
  }

  # my $two_pi = (ref $r && $r->isa('Math::BigFloat')
  #               ? 2*Math::BigFloat->bpi;
  #               : 2*_PI);
  #
  # if (2*$side == $numsides+1) {
  #   ### first below X axis ...
  #   my $theta = 2*$pi * ($side-1)/$numsides;
  #   return ($r * cos($theta),
  #           - $r * sin($theta));
  # }
  # if (4*$side == $numsides+1) {
  #   ### first past Y axis ...
  #   my $theta = 2*$pi * ($side-1)/$numsides;
  #   return (- $r * cos($theta),
  #           $r * sin($theta));
  # }

  my $theta = 2 * $pi * $side/$numsides;
  return ($r * cos($theta),
          $r * sin($theta));
}

# my $numsides = $step;
# if ($self->{'ring_shape'} eq 'polygon') {
#   $n /= $d;
#   my $base_r = _numsides_to_r($step,$pi);
#   if ($step > 6) {
#     $r = $base_r*$d;
#   } else {
#     $r = $base_r + ($d-1)/cos($pi/$step);
#   }
# } else {
#   $numsides *= $d;
#   if ($step > 6) {
#     $r = _numsides_to_r($numsides,$pi);
#   } else {
#     $r = _numsides_to_r($step,$pi) + $d;
#   }
# }
# my $side = int($n);
# $n -= $side;

sub _numsides_to_r {
  my ($numsides, $pi) = @_;
  if ($numsides == 3) { return sqrt(0.75 + $pi*0); }
  if ($numsides == 4) { return sqrt(0.5 + $pi*0); }
  if ($numsides == 6) { return 1 + $pi*0; }
  return 0.5 / sin($pi/$numsides);
}


# for step=4
#   R   = sqrt(2)/2 + d
#   R^2 = (sqrt(2)/2 + d)^2
#       = 2/4 + 2*sqrt(2)/2*d + d^2
#       = 1/2 + d*sqrt(2) + d^2
#   not an integer
#
sub n_to_rsquared {
  my ($self, $n) = @_;
  ### MultipleRings n_to_rsquared(): "n=$n"
  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  if (defined (my $r = _n_to_radius_exact($self,$n))) {
    return $r*$r;
  }
  if ($self->{'step'} == 1) {
    # $n < 4 covered by _n_to_radius_exact()

    if ($n >= 4 && $n < 7) {
      # triangle numsides=3
      #   N=4 at X=2, Y=0
      #   N=5 at X=-1, Y=sqrt(3)
      #   N=4+f at X=2-3*f Y=f*sqrt(3)
      #     R^2 = (2-3f)^2 + 3*f^2
      #         = 4-12f+9*f^2 + 3*f^2
      #         = 4-12f+12*f^2
      #         = 4*(1 - 3f + 3*f^2)
      #         = 4 - 6*(2*f) + 3*(2*f)^2
      #     f=1/2 is R^2 = 1
      #   N=5+f at X=-1 Y = sqrt(3)*(1-2*f)
      #     R^2 = 1 + 3*(1-2*f)^2
      #         = 1 + 3 - 3*4*f + 3*4*f^2
      #         = 4 - 12*f + 12*f^2
      #         = 4 - 12*(f - f^2)
      #         = 4 - 12*f*(1 - f)

      $n -= int($n);
      return 4 - 12*$n*(1-$n);
    }

    if ($n >= 7 && $n < 11) {
      ### square numsides=4 ...
      # X=3-3*f Y=3*f
      # R^2 = (3-3*f)^2 + (3*f)^2
      #     = 9*[ (1-f)^2 + f^2) ]
      #     = 9*[ 1 - 2f + f^2 + f^2) ]
      #     = 9*[ 1 - 2f + 2f^2 ]
      #     = 9*[ 1 - 2(f - f^2) ]
      #     = 9 - 18*f*(1 - f)
      # eg f=1/2 R^2 = (sqrt(2)/2*3)^2 = 2/4*9 = 9/2

      $n -= int($n);
      return 9 - 18*$n*(1-$n);
    }

    if ($n >= 16 && $n < 22) {
      ### hexagon numsides=6 ...
      # X=5 Y=0  to X=5*1/2 Y=5*sqrt(3)/2
      # R^2 = (5 - 5/2*f)^2 + (5*sqrt(3)/2*f)^2
      #     = 25 - 25*f + 25*f^2
      #     = 25 - 25*f*(1-f)
      # eg f=1/2 R^2 = 18.75
      # or f=1/5 R^2 = 21 exactly, though 1/5 not exact in binary floats

      $n -= int($n);
      return 25 - 25*$n*(1-$n);
    }

    # other numsides don't have sin(pi/numsides) an integer or sqrt so
    # aren't an exact R^2
  }

  # ENHANCE-ME: step=1 various exact values for ring of 4 and ring of 6

  return $self->SUPER::n_to_rsquared($n);
}
sub n_to_radius {
  my ($self, $n) = @_;
  ### n_to_radius(): $n

  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  if (defined (my $r = _n_to_radius_exact($self,$n))) {
    return $r;
  }
  return sqrt($self->n_to_rsquared($n));
  # return $self->SUPER::n_to_radius($n);
}

# step=6 shape=polygon exact integer for some of second ring too
# sub n_to_trsquared {
#   my ($self, $n) = @_;
#   ### MultipleRings n_to_rsquared(): "n=$n"
# }

sub _n_to_radius_exact {
  my ($self, $n) = @_;
  ### _n_to_radius_exact(): "n=$n step=$self->{'step'}"

  if ($n < 1) { return undef; }
  if (is_infinite($n)) { return $n; }

  my $step = $self->{'step'};
  if ($step == 0) {
    return $n - 1;    # step=0 goes along X axis starting X=0,Y=0
  }

  if ($step == 1) {
    if ($n < 4) {
      if ($n < 2) {
        return 0;  # 0,0 only, no jump across to next ring
      }
      $n -= int($n);
      return abs(1-2*$n);
    }
    if ($n == int($n)) {
      ### step=1 radius=integer steps for integer N ...
      return _n0_to_d($self,$n-1) - 1;
    }
    my $two_n = 2*$n;
    if ($two_n == 9 || $two_n == 11 || $two_n == 13) {
      #  N=4.5 at X=1/2 Y=sqrt(3)/2  R^2 = 1/4 + 3/4 = 1 exactly
      #  N=5.5 at X=-1, Y=0 so R^2 = 1 exactly
      #  N=6.5 same as N=4.5
      return 1;
    }

  } elsif ($step == 6) {
    if ($n == int($n)) {
      # step=6 circle all integer N has exact integer radius
      # step=6 polygon only innermost ring N<=6 exact integer radius
      if ($self->{'ring_shape'} eq 'circle'
          || $n <= 6) {   # ring_shape=polygon
        return _n0_to_d($self,$n-1);
      }
    }
  }

  ### no exact radius ...
  return undef;
}
sub _n0_to_d {
  my ($self, $n) = @_;
  return int((sqrt(int(8*$n/$self->{'step'}) + 1) + 1) / 2);
}
sub _d_to_n0base {
  my ($self, $d) = @_;
  return $d*($d-1)/2 * $self->{'step'};
}

# From above
#     r = 0.5 / sin(pi/(d*step))
#
#     sin(pi/(d*step)) = 0.5/r
#     pi/(d*step) = asin(1/(2*r))
#     1/d * pi/step = asin(1/(2*r))
#     d = pi/(step*asin(1/(2*r)))
#
# r1 = 0.5 / sin(pi/(d*step))
# r2 = 0.5 / sin(pi/((d+1)*step))
# r2 - r1 = 0.5 / sin(pi/(d*step)) - 0.5 / sin(pi/((d+1)*step))
# r2-r1 >= 1 when step>=7 ?

sub _xy_to_d {
  my ($self, $x, $y) = @_;
  ### _xy_to_d(): "x=$x y=$y"

  my $r = hypot ($x, $y);
  if ($r < 0.5) {
    ### r smaller than 0.5 ring, treat as d=1
    # 1/(2*r) could be div-by-zero
    # or 1/(2*r) > 1 would be asin()==-nan
    return 1;
  }
  my $two_r = 2*$r;
  if (is_infinite($two_r)) {
    ### 1/inf is a divide by zero, avoid that ...
    return $two_r;
  }
  ### $r

  my $step = $self->{'step'};
  if ($self->{'ring_shape'} eq 'polygon') {
    my $theta_frac = _xy_to_angle_frac($x,$y);
    $theta_frac -= int($theta_frac*$step) / $step;  # modulo 1/step

    my $r = hypot ($x, $y);
    my $alpha = 2*_PI/$step;
    my $theta = 2*_PI * $theta_frac;
    ### $r
    ### x=r*cos(theta): $r*cos($theta)
    ### y=r*sin(theta): $r*sin($theta)

    my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2);
    ### $p
    ### base_r: $self->{'base_r'}
    ### p - base_r: $p - $self->{'base_r'}

    if ($step >= 6) {
      return $p / $self->{'base_r'};
    } else {
      return ($p - $self->{'base_r'}) * cos(_PI/$step) + 1;
    }
  }

  if ($step > 6) {
    ### d frac by asin: _PI / ($step * asin(1/$two_r))
    return _PI / ($step * asin(1/$two_r));
  } else {
    # $step <= 6
    ### d frac by base: $r - $self->{'base_r'}
    return $r - $self->{'base_r'};
  }
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### MultipleRings xy_to_n(): "$x, $y  step=$self->{'step'}  shape=$self->{'ring_shape'}"

  my $n;
  my $step = $self->{'step'};
  if ($step == 0) {
    # step==0
    $n = int ($x + 1.5);

  } else {
    my $theta_frac = _xy_to_angle_frac($x,$y);
    ### $theta_frac
    ### assert: (0 <= $theta_frac && $theta_frac < 1)  || $theta_frac!=$theta_frac

    my $d;
    if ($self->{'ring_shape'} eq 'polygon') {
      $n = int($theta_frac*$step);
      $theta_frac -= $n/$step;
      ### theta modulo 1/step: $theta_frac
      ### $n

      my $r = hypot ($x, $y);
      my $alpha = 2*_PI/$step;
      my $theta = 2*_PI * $theta_frac;
      ### $r
      ### so x=r*cos(theta): $r*cos($theta)
      ### so y=r*sin(theta): $r*sin($theta)

      my $pi = _PI;
      my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2);
      my $base_r = Math::PlanePath::MultipleRings::_numsides_to_r($step,$pi);
      ### $p
      ### $base_r

      if ($step > 6) {
        $d = $p / $base_r;
      } else {
        $d = ($p - $base_r) * cos($pi/$step) + 1;
      }
      ### d frac: $d
      $d = int($d+0.5);
      ### $d
      ### cf _xy_to_d(): _xy_to_d($self,$x,$y)

      my $f = ($p == 0 ? 0 : $r*sin($theta) / ($p*sin($alpha)));
      $n = int(($n+$f)*$d + 0.5);

      ### e: $r*sin($theta) * sin($alpha/2)/cos($alpha/2)
      ### $f
      ### $n

    } else {
      $d = int(_xy_to_d($self,$x,$y) + 0.5);
      ### $d
      $n = int (0.5 + $theta_frac * $d*$step);
      if ($n >= $d*$step) { $n = 0; }
    }

    ### n within ring: $n
    ### n ring start: _d_to_n0base($self,$d) + 1

    $n += _d_to_n0base($self,$d) + 1;
    ### $d
    ### d base: 0.5*$d*($d-1)
    ### d base M: $step * 0.5*$d*($d-1)
    ### $theta_frac
    ### theta offset: $theta_frac*$d
    ### $n
  }

  ### trial n: $n
  if (my ($nx, $ny) = $self->n_to_xy($n)) {
    ### nxy: "nx=$nx ny=$ny  hypot=".hypot($x-$nx,$y-$ny)
    ### cf orig xy: "x=$x y=$y"
    if (hypot($x-$nx, $y-$ny) <= 0.5) {
      return $n;
    }
  }
  return undef;
}

# ENHANCE-ME: step>=3 small rectangles around 0,0 don't cover any pixels
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### MultipleRings rect_to_n_range(): "$x1,$y1, $x2,$y2  step=$self->{'step'}"

  my $zero = ($x1<0) != ($x2<0) || ($y1<0) != ($y2<0);
  my $step = $self->{'step'};

  my ($r_lo, $r_hi) = Math::PlanePath::SacksSpiral::_rect_to_radius_range
    ($x1,$y1, $x2,$y2);
  ### $r_lo
  ### $r_hi
  if (is_infinite($r_hi)) {
    return (1,$r_hi);
  }
  if ($r_hi < 1) { $r_hi = 1; }
  if ($self->{'ring_shape'} eq 'polygon') {
    $r_hi /= cos(_PI/$self->{'step'});
    ### poly increase r_hi: $r_hi
  }

  my ($d_lo, $d_hi);
  if ($self->{'ring_shape'} eq 'polygon') {
    if ($step >= 6) {
      $d_lo = $r_lo / $self->{'base_r'};
      $d_hi = $r_hi / $self->{'base_r'};
    } else {
      $d_lo = ($r_lo - $self->{'base_r'}) * cos(_PI/$step) + 1;
      $d_hi = ($r_hi - $self->{'base_r'}) * cos(_PI/$step) + 1;
    }
  } else {
    if ($step > 6) {
      $d_lo = ($r_lo > 0
               ? _PI / ($step * asin(0.5/$r_lo))
               : 0);
      $d_hi = _PI / ($step * asin(0.5/$r_hi));
    } else {
      $d_lo = $r_lo - $self->{'base_r'};
      $d_hi = $r_hi - $self->{'base_r'};
    }
  }
  ### $d_lo
  ### $d_hi

  $d_lo = int($d_lo - 1);
  $d_hi = int($d_hi + 2);
  if ($d_lo < 1) { $d_lo = 1; }

  if ($step) {
    # start of ring is N= 0.5*$d*($d-1) * $step + 1
    ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1
    ### n_hi: 0.5*$d_hi*($d_hi+1) * $step
    return ($d_lo*($d_lo-1)/2 * $step + 1,
            $d_hi*($d_hi+1)/2 * $step);
  } else {
    # $step == 0
    return ($d_lo, $d_hi);
  }





  # # if x1,x2 pos and neg then 0 is covered and it's the minimum
  # # ENHANCE-ME: might be able to be a little tighter on $d_lo
  # my $d_lo = ($zero
  #             ? 1
  #             : max (1, -2 + int (_xy_to_d ($self,
  #                                           min($x1,$x2),
  #                                           min($y1,$y2)))));
  # my $d_hi = 1 + int (_xy_to_d ($self,
  #                               max($x1,$x2),
  #                               max($y1,$y2)));
  # ### $d_lo
  # ### $d_hi
  # if ((my $step = $self->{'step'})) {
  #   # start of ring is N= 0.5*$d*($d-1) * $step + 1
  #   ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1
  #   ### n_hi: 0.5*$d_hi*($d_hi+1) * $step
  #   return ($d_lo*($d_lo-1)/2 * $step + 1,
  #           $d_hi*($d_hi+1)/2 * $step);
  # } else {
  #   # $step == 0
  #   return ($d_lo, $d_hi);
  # }
}

#------------------------------------------------------------------------------
# generic

# _xy_to_angle_frac() returns the angle of X,Y as a fraction 0 <= angle < 1
# measured anti-clockwise around from the X axis.
#
sub _xy_to_angle_frac {
  my ($x, $y) = @_;

  # perlfunc.pod warns atan2(0,0) is implementation dependent.  The C99 spec
  # is atan2(+/-0, -0) returns +/-pi, both of which would come out 0.5 here.
  # Prefer 0 for any +/-0,+/-0.
  if ($x == 0 && $y == 0) {
    return 0;
  }

  my $frac = atan2($y,$x) * (0.5 / _PI);
  ### $frac
  if ($frac < 0) { $frac += 1; }
  elsif ($frac >= 1) { $frac -= 1; }
  return $frac;
}

# return pi=3.14159 etc, inheriting precision etc from $n if it's a BigFloat
# or other overload
sub _pi {
  my ($n) = @_;
  if (ref $n) {
    if ($n->isa('Math::BigFloat')) {
      my $digits;
      if (defined($digits = $n->accuracy)) {
        ### n accuracy ...
      } elsif (defined($digits = $n->precision)) {
        ### n precision ...
        $digits = -$digits + 1;
      } elsif (defined($digits = Math::BigFloat->accuracy)) {
        ### global accuracy ...
      } elsif (defined($digits = Math::BigFloat->precision)) {
        ### global precision ...
        $digits = -$digits + 1;
      } else {
        ### div_scale ...
        $digits = Math::BigFloat->div_scale+1;
      }
      ### $digits
      $digits = max (1, $digits);
      return Math::BigFloat->bpi($digits);
    }
    ### other overload n class: ref $n
    my $zero = $n * 0;
    return 2*atan2($zero,1+$zero);
  }
  return _PI;
}

1;
__END__

=for stopwords Ryde Math-PlanePath Pentagonals Nring ie OEIS spacings numsides Nrem pronic pronics RSquared

=head1 NAME

Math::PlanePath::MultipleRings -- rings of multiples

=head1 SYNOPSIS

 use Math::PlanePath::MultipleRings;
 my $path = Math::PlanePath::MultipleRings->new (step => 6);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path puts points on concentric rings.  Each ring has "step" many points
more than the previous and the first is also "step".  For example with the
default step==6,

                24  23                    innermost ring  6
             25        22                 next ring      12
                  10                      next ring      18
          26   11     9  21  ...                    ringnum*step

        27  12   3  2   8  20  38

       28  13   4    1   7  19  37        <- Y=0

        29  14   5  6  18  36

          30   15    17  35
                  16
             31        24
                32  33

                  ^
                 X=0

X,Y positions are not integers, except on the axes.  The innermost ring like
N=1to6 above has points 1 unit apart.  Subsequent rings are a unit chord or
unit radial, whichever ensures no overlap.

      step <= 6      unit spacing radially
      step >= 6      unit chords around the rings

For step=6 the two spacings are the same.  Unit radial spacing ensures the X
axis points N=1,7,19,37,etc shown above are 1 unit apart.  Unit chord
spacing ensures adjacent points such as N=7,8,0,etc don't overlap.

The layout is similar to the various spiral paths of corresponding step.
For example step=6 is like the C<HexSpiral>, but rounded out to circles
instead of a hexagonal grid.  Similarly step=4 the C<DiamondSpiral> or
step=8 the C<SquareSpiral>.

The step parameter is also similar to the C<PyramidRows> with the rows
stretched around circles, but C<PyramidRows> starts from a 1-wide initial
row whereas for C<MultipleRings> here the first is "step" many.

=head2 X Axis

The starting Nring=1,7,19,37 etc on the X axis for the default step=6 is
S<6*d*(d-1)/2 + 1>, counting the innermost ring as d=1.  In general Nring is
a multiple of the X<Triangular numbers>triangular numbers d*(d-1)/2, plus 1,

    Nring = step*d*(d-1)/2 + 1

X<Centred polygonal numbers>This is the centred polygonal numbers, being the
cumulative count of points making concentric polygons or rings in the style
of this path.

Straight line radials further around arise from adding multiples of d, so
for example in step=6 shown above the line N=3,11,25,etc is S<Nring + 2*d>.
Multiples k*d with kE<gt>=step give lines which are in between the base ones
from the innermost ring.

=head2 Step 1

For step=1 the first ring is 1 point and each subsequent ring has 1 further
point.

=cut

# math-image --path=MultipleRings,step=1 --expression='i<29?i:0' --output=numbers --size=80x25

=pod

                24
                               23
             18       12    17
    25              8
          13     5

    19     9     3  1  2  4  7 11 16 22     <- Y=0

          14     6
    26             10
             20       15    21
                               28
                27

                    ^
     -5 -4 -3 -2-1 X=0 1  2  3  4  5  6

The rings are

    polygon        radius     N values
    ------------   ------     --------
    single point     0         1
    two points       1         2, 3
    triangle         2         4, 5, 6
    square           3         7, 8, 9,10
    pentagon         4        11,12,13,14,15
    hexagon          5        16,17,18,19,20,21
     etc

The X axis as described above is the triangular numbers plus 1,
ie. S<k*(k+1)/2 + 1>.

=head2 Step 2

For step=2 the arrangement is roughly

=cut

# math-image --path=MultipleRings,step=2 --expression='i<43?i:0' --output=numbers --size=80x25

=pod

                   34
          35                33
                24 15 23
    36 25                      22 32
             16  9  4  8 14

    37 26 17 10  5  2  1  3  7 13 21 31

             18 11  6 12 20
    38 27                      30 42
                28 19 29
          39                41
                   40

The pattern is similar to the C<SacksSpiral> (see
L<Math::PlanePath::SacksSpiral>).  In C<SacksSpiral> each spiral loop is 2
more points than the previous the same as here, but the positioning differs.
Here the X axis is the pronic numbers and the squares are to the left,
whereas in C<SacksSpiral> rotated around to squares on X axis and pronics to
the left.

=head2 Ring Shape

Option C<ring_shape =E<gt> 'polygon'> puts the points on concentric polygons
of "step" many sides, so each concentric polygon has 1 more point on each of
its sides than the previous polygon.  For example step=4 gives 4-sided
polygons, ie. diamonds,

    ring_shape=>'polygon', step=>4

                  16
                /    \
             17    7   15
           /    /     \   \
        18    8    2    6   14
      /     /   /    \    \    \
    19   9    3         1    5   13
      \     \   \    /    /    /
        20   10    4   12   24
           \    \    /    /
             21   11   23
                \    /
                  22

The polygons are scaled to keep points 1 unit apart.  For stepE<gt>=6 this
means 1 unit apart sideways.  step=6 is in fact a honeycomb grid where each
points is 1 away from all six of its neighbours.

For step=3, 4 and 5 the polygon sides are 1 apart radially, as measured in
the centre of each side.  This makes points a little more than 1 apart along
the sides.  Squeezing them up to make the closest points exactly 1 apart is
possible, but may require iterating a square root for each ring.  step=3
squeezed down would in fact become a variable spacing with successively four
close then one wider.

For step=2 and step=1 in the current code the default circle shape is used.
Should that change?  Is there a polygon style with 2 sides or 1 side?

The polygon layout is only a little different from a circle, but it lines up
points on the sides and that might help show a structure for some sets of
points plotted on the path.

=head2 Step 3 Pentagonals

For step=3 the pentagonal numbers 1,5,12,22,etc, P(k) = (3k-1)*k/2, are a
radial going up to the left, and the second pentagonal numbers 2,7,15,26,
S(k) = (3k+1)*k/2 are a radial going down to the left, respectively 1/3 and
2/3 the way around the circles.

As described in L<Math::PlanePath::PyramidRows/Step 3 Pentagonals>, those
P(k) and preceding P(k)-1, P(k)-2, and S(k) and preceding S(k)-1, S(k)-2 are
all composites, so plotting the primes on a step=3 C<MultipleRings> has two
radial gaps where there's no primes.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::MultipleRings-E<gt>new (step =E<gt> $integer)>

=item C<$path = Math::PlanePath::MultipleRings-E<gt>new (step =E<gt> $integer, ring_shape =E<gt> $str)>

Create and return a new path object.

The C<step> parameter controls how many points are added in each circle.  It
defaults to 6 which is an arbitrary choice and the suggestion is to always
pass in a desired count.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.

C<$n> can be any value C<$n E<gt>= 1> and fractions give positions on the
rings in between the integer points.  For C<$n < 1> the return is an empty
list since points begin at 1.

Fractional C<$n> currently ends up on the circle arc between the integer
points.  Would straight line chords between them be better, reflecting the
unit spacing of the points?  Neither seems particularly important.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return an integer point number for coordinates C<$x,$y>.  Each integer N
is considered the centre of a circle of diameter 1 and an C<$x,$y> within
that circle returns N.

The unit spacing of the points means those circles don't overlap, but they
also don't cover the plane and if C<$x,$y> is not within one then the return
is C<undef>.

=item C<$str = $path-E<gt>figure ()>

Return "circle".

=back

=head1 FORMULAS

=head2 N to X,Y - Circle

As per above, each ring begins at

    Nring = step*d*(d-1)/2 + 1

This can be inverted to get the ring number d for a given N, and then
subtract Nring for a remainder into the ring.  (N-1)/step in the formula
effectively converts into triangular number style.

    d = floor((sqrt(8*(N-1)/step + 1) + 1) / 2)
    Nrem = N - Nring

Rings are sized so that points are spaced 1 unit apart.  There are three
cases,

    circle,  step<=6     unit radially on X axis
    polygon, step<=6     unit radially on sides centre
             step>=7     unit chord between points

For the circle shape the integer points are on a circle and fractional N is
on a straight line between those integer points.  This means it's a polygon
too, but one with ever more sides whereas ring_shape=polygon is a fixed
"step" many sides.

    circle       numsides = d*step
    polygon      numsides = step

The radial distance to a polygon corner is calculated as

                           base               varying with d
    ----------------     ---------------------------------------
    circle,  step<=6     0.5/sin(pi/step) + d-1
    polygon, step<=6     0.5/sin(pi/step) + (d-1)/cos(pi/step)
    circle,  step>=7     0                + 0.5/sin(pi/(d*step))
    polygon, step>=7     0                + d * 0.5/sin(pi/step)

The stepE<lt>=6 cases are an initial polygon of "step" many unit sides, then
unit spacing d-1 for circle, or for polygon (d-1)/cos(pi/step) which is
bigger and ensures the middle of the sides have unit spacing radially.

The 0.5/sin(pi/step) for radius of a unit sided polygon arises from

          r      ___---*
           ___---      | 1/2 = half the polygon side
     ___--- alpha      |
    o------------------+

    alpha = (2pi/numsides) / 2 = pi/numsides
    sin(alpha) = (1/2) / base_r
    r = 0.5 / sin(pi/numsides)

The angle theta to a polygon vertex is simply a full circle divided by
numsides.

    side = circle   Nrem
           polygon  floor(Nrem / step)
    theta = side * (2pi / numsides)
    vertex X = r * cos(theta)
           Y = r * sin(theta)

    next_theta = (side+1) * (2pi / numsides)
    next_vertex X = r * cos(next_theta)
                Y = r * sin(next_theta)

    frac into side
    f = circle   frac(Nrem)    = Nrem modulo 1
        polygon  Nrem - side*d = Nrem modulo d

    X = vertex_X + f * (next_vertex_X - vertex_X)
    Y = vertex_Y + f * (next_vertex_Y - vertex_Y)

If Nrem is an integer for circle, or multiple of d for polygon, then the
vertex X,Y is the final X,Y, otherwise a fractional distance between the
vertex X,Y and next vertex X,Y.

For a few cases X or Y are exact integers.  Special case code for these
cases can ensure floating point rounding of pi doesn't give small offsets
from integers.

For step=6 the base r is r=1 exactly since the innermost ring is a little
hexagon.  This means for the circle step=6 case the points on the X axis
(positive and negative) are all integers X=1,2,3,etc.

       P-----P
      /   1 / \ 1  <-- innermost points 1 apart
     /     /   \
    P     o-----P   <--  base_r = 1
     \      1  /
      \       /
       P-----P

If theta=pi, which is when 2*Nrem==d*step, then the point is on the negative
X axis.  Returning Y=0 exactly for that avoids sin(pi) giving some small
non-zero due to rounding.

If theta=pi/2 or theta=3pi/2, which is 4*Nrem==d*step or 4*Nrem==3*d*step,
then N is on the positive or negative Y axis (respectively).  Returning X=0
exactly avoids cos(pi/2) or cos(3pi/2) giving some small non-zero.

Points on the negative X axis points occur when the step is even.  Points on
the Y axis points occur when the step is a multiple of 4.

If theta=pi/4, 3*pi/4, 5*pi/4 or 7*pi/4, which is 8*Nrem==d*step, 3*d*step,
5*d*step or 7*d*step then the points are on the 45-degree lines X=Y or X=-Y.
The current code doesn't try to ensure X==Y in these cases.  The values are
not integers and floating point rounding might mean sin(pi/4)!=cos(pi/4)
resulting in X!=Y.

=head2 N to RSquared - Step 1

For step=1 the rings are point, line, triangle, square, pentagon, etc, with
vertices at radius=numsides-1.  For fractional N the triangle, square and
hexagon cases are quadratics in the fraction part, allowing exact values
from C<n_to_rsquared()>.

           Ring                    R^2
    ---------------------     --------------
    triangle   4 <= N < 7      4 - 12*f*(1-f)
    square     7 <= N < 11     9 - 18*f*(1-f)
    hexagon   16 <= N < 22    25 - 25*f*(1-f)

    f = N - int(N)  fractional part of N

For example for the square at N=7.5 have f=0.5 and R^2=4.5 exactly.  These
quadratics arise because sine of 2pi/3, 2pi/4 and 2pi/6 are square roots,
which on squaring up in R^2=X^2+Y^2 become integer factors for the fraction
f along the polygon side.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to
this path include

=over

L<http://oeis.org/A005448> (etc)

=back

    A005448 A001844 A005891 A003215 A069099     3 to 7
    A016754 A060544 A062786 A069125 A003154     8 to 12
    A069126 A069127 A069128 A069129 A069130    13 to 17
    A069131 A069132 A069133                    18 to 20
        N on X axis of step=k, being the centred pentagonals

    step=1
      A002024    Radius+1, runs of n repeated n times

    step=8
      A090915    permutation N at X,-Y, mirror across X axis

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SacksSpiral>,
L<Math::PlanePath::TheodorusSpiral>,
L<Math::PlanePath::PixelRings>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2010, 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut