File: PythagoreanTree.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (2617 lines) | stat: -rw-r--r-- 74,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=PythagoreanTree --all --scale=3

# http://sunilchebolu.wordpress.com/pythagorean-triples-and-the-integer-points-on-a-hyperboloid/

# http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/pythagtriple.pdf
#
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras1.pdf
# http://www.math.ou.edu/~dmccullough/teaching/pythagoras2.pdf
#
# http://www.microscitech.com/pythag_eigenvectors_invariants.pdf
#


package Math::PlanePath::PythagoreanTree;
use 5.004;
use strict;
use Carp 'croak';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
*_divrem = \&Math::PlanePath::_divrem;
@ISA = ('Math::PlanePath');

#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';
use Math::PlanePath::GrayCode;

# uncomment this to run the ### lines
# use Smart::Comments;

use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant tree_num_children_list => (3); # complete ternary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity

use constant parameter_info_array =>
  [ { name            => 'tree_type',
      share_key       => 'tree_type_uadfb',
      display         => 'Tree Type',
      type            => 'enum',
      default         => 'UAD',
      choices         => ['UAD','UArD','FB','UMT'],
    },
    { name            => 'coordinates',
      share_key       => 'coordinates_abcpqsm',
      display         => 'Coordinates',
      type            => 'enum',
      default         => 'AB',
      choices         => ['AB','AC','BC','PQ', 'SM','SC','MC',
                          # 'BA'
                          # 'UV',  # q from x=y diagonal down at 45-deg
                          # 'RS','ST',  # experimental
                         ],
    },
    { name            => 'digit_order',
      display         => 'Digit Order',
      type            => 'enum',
      default         => 'HtoL',
      choices         => ['HtoL','LtoH'],
    },
  ];

#------------------------------------------------------------------------------
{
  my %coordinate_minimum = (A => 3,
                            B => 4,
                            C => 5,
                            P => 2,
                            Q => 1,
                            S => 3,
                            M => 4,
                           );
  sub x_minimum {
    my ($self) = @_;
    return $coordinate_minimum{substr($self->{'coordinates'},0,1)};
  }
  sub y_minimum {
    my ($self) = @_;
    return $coordinate_minimum{substr($self->{'coordinates'},1)};
  }
}
{
  my %diffxy_minimum = (PQ => 1, # octant X>=Y+1 so X-Y>=1
                       );
  sub diffxy_minimum {
    my ($self) = @_;
    return $diffxy_minimum{$self->{'coordinates'}};
  }
}
{
  my %diffxy_maximum = (AC => -2, # C>=A+2 so X-Y<=-2
                        BC => -1, # C>=B+1 so X-Y<=-1
                        SM => -1, # S<M so X-Y<=-1
                        SC => -2, # S<M<C so S-C<=-2
                        MC => -1, # M<C so M-C<=-1
                       );
  sub diffxy_maximum {
    my ($self) = @_;
    return $diffxy_maximum{$self->{'coordinates'}};
  }
}
{
  my %absdiffxy_minimum = (PQ => 1,
                           AB => 1, # X=Y never occurs
                           BA => 1, # X=Y never occurs
                           AC => 2, # C>=A+2 so abs(X-Y)>=2
                           BC => 1,
                           SM => 1, # X=Y never occurs
                           SC => 2, # X<=Y-2
                           MC => 1, # X=Y never occurs
                          );
  sub absdiffxy_minimum {
    my ($self) = @_;
    return $absdiffxy_minimum{$self->{'coordinates'}};
  }
}
use constant gcdxy_maximum => 1;  # no common factor

{
  my %absdx_minimum = ('AB,UAD' => 2,
                       'AB,FB'  => 2,
                       'AB,UMT' => 2,

                       'AC,UAD' => 2,
                       'AC,FB'  => 2,
                       'AC,UMT' => 2,

                       'BC,UAD' => 4,  # at N=37
                       'BC,FB'  => 4,  # at N=2 X=12,Y=13
                       'BC,UMT' => 4,  # at N=2 X=12,Y=13

                       'PQ,UAD' => 0,
                       'PQ,FB'  => 0,
                       'PQ,UMT'  => 0,

                       'SM,UAD' => 1,
                       'SM,FB'  => 1,
                       'SM,UMT' => 2,

                       'SC,UAD' => 1,
                       'SC,FB'  => 1,
                       'SC,UMT' => 1,

                       'MC,UAD' => 3,
                       'MC,FB'  => 3,
                       'MC,UMT' => 1,
                      );
  sub absdx_minimum {
    my ($self) = @_;
    return $absdx_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0;
  }
}
{
  my %absdy_minimum = ('AB,UAD' => 4,
                       'AB,FB'  => 4,
                       'AB,UMT' => 4,

                       'AC,UAD' => 4,
                       'AC,FB'  => 4,
                       'BC,UAD' => 4,
                       'BC,FB'  => 4,
                       'PQ,UAD' => 0,
                       'PQ,FB'  => 1,

                       'SM,UAD' => 3,
                       'SM,FB'  => 3,
                       'SM,UMT' => 1,

                       'SC,UAD' => 4,
                       'SC,FB'  => 4,
                       'MC,UAD' => 4,
                       'MC,FB'  => 4,
                      );
  sub absdy_minimum {
    my ($self) = @_;
    return $absdy_minimum{"$self->{'coordinates'},$self->{'tree_type'}"} || 0;
  }
}

{
  my %dir_minimum_dxdy = (# AB apparent minimum dX=16,dY=8
                          'AB,UAD' => [16,8],
                          'AC,UAD' => [1,1],  # it seems
                          # 'BC,UAD' => [1,0], # infimum
                          # 'SM,UAD' => [1,0], # infimum
                          # 'SC,UAD' => [1,0], # N=255 dX=7,dY=0
                          # 'MC,UAD' => [1,0], # infimum

                          # 'SM,FB' => [1,0], # infimum
                          # 'SC,FB' => [1,0], # infimum
                          # 'SM,FB' => [1,0], # infimum

                          'AB,UMT' => [6,12], # it seems

                          # N=ternary 1111111122 dx=118,dy=40
                          # in general dx=3*4k-2 dy=4k
                          'AC,UMT' => [3,1], # infimum
                          #
                          # 'BC,UMT' => [1,0], # N=31 dX=72,dY=0
                          'PQ,UMT' => [1,1], # N=1
                          'SM,UMT' => [1,0],  # infiumum dX=big,dY=3
                          'SC,UMT' => [3,1],  # like AC
                          # 'MC,UMT' => [1,0],  # at N=31
                         );
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"}
               || [1,0] };
  }
}
{
  # AB apparent maximum dX=-6,dY=-12 at N=3
  # AC apparent maximum dX=-6,dY=-12 at N=3 same
  # PQ apparent maximum dX=-1,dY=-1
  my %dir_maximum_dxdy = ('AB,UAD'   => [-6,-12],
                          'AC,UAD'   => [-6,-12],
                          # 'BC,UAD' => [0,0],
                          'PQ,UAD'   => [-1,-1],
                          # 'SM,UAD' => [0,0],   # supremum
                          # 'SC,UAD' => [0,0],   # supremum
                          # 'MC,UAD' => [0,0],   # supremum

                          # 'AB,FB'  => [0,0],
                          # 'AC,FB'  => [0,0],
                          'BC,FB'    => [1,-1],
                          # 'PQ,FB'  => [0,0],
                          # 'SM,FB'  => [0,0],   # supremum
                          # 'SC,FB'  => [0,0],   # supremum
                          # 'MC,FB'  => [0,0],   # supremum

                          # N=ternary 1111111122 dx=118,dy=-40
                          # in general dx=3*4k-2 dy=-4k
                          'AB,UMT' => [3,-1], # supremum
                          #
                          'AC,UMT' => [-10,-20], # at N=9 apparent maximum
                          # 'BC,UMT' => [0,0],  # apparent approach
                          'PQ,UMT' => [1,-1], # N=2
                          # 'SM,UMT' => [0,0],  # supremum dX=big,dY=-1
                          'SC,UMT' => [-3,-5], # apparent approach
                          # 'MC,UMT' => [0,0], # supremum dX=big,dY=-small
                         );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{"$self->{'coordinates'},$self->{'tree_type'}"}
               || [0,0]};
  }
}

#------------------------------------------------------------------------------

sub _noop {
  return @_;
}
my %xy_to_pq = (AB => \&_ab_to_pq,
                AC => \&_ac_to_pq,
                BC => \&_bc_to_pqa, # ignoring extra $a return
                PQ => \&_noop,
                SM => \&_sm_to_pq,
                SC => \&_sc_to_pq,
                MC => \&_mc_to_pq,
                UV => \&_uv_to_pq,
                RS => \&_rs_to_pq,
                ST => \&_st_to_pq,
               );
my %pq_to_xy = (AB => \&_pq_to_ab,
                AC => \&_pq_to_ac,
                BC => \&_pq_to_bc,
                PQ => \&_noop,
                SM => \&_pq_to_sm,
                SC => \&_pq_to_sc,
                MC => \&_pq_to_mc,
                UV => \&_pq_to_uv,
                RS => \&_pq_to_rs,
                ST => \&_pq_to_st,
               );

my %tree_types = (UAD  => 1,
                  UArD => 1,
                  FB   => 1,
                  UMT  => 1);
my %digit_orders = (HtoL  => 1,
                    LtoH => 1);
sub new {
  my $self = shift->SUPER::new (@_);
  {
    my $digit_order = ($self->{'digit_order'} ||= 'HtoL');
    $digit_orders{$digit_order}
      || croak "Unrecognised digit_order option: ",$digit_order;
  }
  {
    my $tree_type = ($self->{'tree_type'} ||= 'UAD');
    $tree_types{$tree_type}
      || croak "Unrecognised tree_type option: ",$tree_type;
  }
  {
    my $coordinates = ($self->{'coordinates'} ||= 'AB');
    $self->{'xy_to_pq'} = $xy_to_pq{$coordinates}
      || croak "Unrecognised coordinates option: ",$coordinates;
    $self->{'pq_to_xy'} = $pq_to_xy{$coordinates};
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### PythagoreanTree n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
  }

  return &{$self->{'pq_to_xy'}}(_n_to_pq($self,$n));
}

# maybe similar n_to_rsquared() as C^2=(P^2+Q^2)^2
sub n_to_radius {
  my ($self, $n) = @_;

  if (($self->{'coordinates'} eq 'AB'
       || $self->{'coordinates'} eq 'BA'
       || $self->{'coordinates'} eq 'SM')
      && $n == int($n)) {
    if ($n < 1) { return undef; }
    if (is_infinite($n)) { return $n; }
    my ($p,$q) = _n_to_pq($self,$n);
    return $p*$p + $q*$q;  # C=P^2+Q^2
  }

  return $self->SUPER::n_to_radius($n);
}

sub _n_to_pq {
  my ($self, $n) = @_;

  my $ndigits = _n_to_digits_lowtohigh($n);
  ### $ndigits

  if ($self->{'tree_type'} eq 'UArD') {
    Math::PlanePath::GrayCode::_digits_to_gray_reflected($ndigits,3);
    ### gray: $ndigits
  }
  if ($self->{'digit_order'} eq 'HtoL') {
    @$ndigits = reverse @$ndigits;
    ### reverse: $ndigits
  }

  my $zero = $n * 0;

  my $p = 2 + $zero;
  my $q = 1 + $zero;

  if ($self->{'tree_type'} eq 'FB') {
    ### FB ...

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          $q = $p-$q;                   # (2p, p-q)  M2
          $p *= 2;
        } else {
          # ($p,$q) = (2*$p, $p+$q);
          $q += $p;                     # (p+q, 2q)  M3
          $p *= 2;
        }
      } else { # $digit == 0
        # ($p,$q) = ($p+$q, 2*$q);
        $p += $q;                       # (p+q, 2q)  M1
        $q *= 2;
      }
    }
  } elsif ($self->{'tree_type'} eq 'UMT') {
    ### UMT ...

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          $q = $p-$q;                 # (2p, p-q)  M2
          $p *= 2;
        } else { # $digit == 2
          $p += 3*$q;                 # T
          $q *= 2;
        }
      } else { # $digit == 0
        # ($p,$q) = ($p+$q, 2*$q);
        ($p,$q) = (2*$p-$q, $p);      # "U" = (2p-q, p)
      }
    }
  } else {
    ### UAD or UArD ...
    ### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD'

    # # Could optimize high zeros as repeated U
    # # high zeros as repeated U: $depth-scalar(@$ndigits)
    # # U^0 = p,    q
    # # U^1 = 2p-q, p          eg. P=2,Q=1 is 2*2-1,2 = 3,2
    # # U^2 = 3p-2q, 2p-q      eg. P=2,Q=1 is 3*2-2*1,2*2-1 = 4,3
    # # U^3 = 4p-3q, 3p-2q
    # # U^k = (k+1)p-kq, kp-(k-1)q   for k>=2
    # #     = p + k*(p-q), k*(p-q)+q
    # # and with initial p=2,q=1
    # # U^k = 2+k, 1+k
    # #
    # $q = $depth - $#ndigits + $zero;  # count high zeros + 1
    # $p = $q + 1 + $zero;

    foreach my $digit (@$ndigits) {  # high to low, possibly $digit=undef
      ### $p
      ### $q
      ### $digit

      if ($digit) {
        if ($digit == 1) {
          ($p,$q) = (2*$p+$q, $p);      # "A" = (2p+q, p)
        } else {
          $p += 2*$q;                   # "D" = (p+2q, q)
        }
      } else { # $digit==0
        ($p,$q) = (2*$p-$q, $p);        # "U" = (2p-q, p)
      }
    }

  }

  ### final pq: "$p, $q"

  return ($p, $q);
}

# _n_to_digits_lowtohigh() returns an arrayref $ndigits which is a list of
# ternary digits 0,1,2 from low to high which are the position of $n within
# its row of the tree.
# The length of the array is the depth.
#
# depth N  N%3      2*N-1   (N-2)/3*2+1
#   0   1   1         1         1/3
#   1   2   2         3          1
#   2   5   2         9          3
#   3   14  2        27          9
#   4   41  2        81         27       28 + (28/2-1) = 41
#
# (N-2)/3*2+1 rounded down to pow=3^k gives depth=k+1 and base=pow+(pow+1)/2
# is the start of the row base=1,2,5,14,41 etc.
#
# An easier calculation is 2*N-1 rounded down to pow=3^d gives depth=d and
# base=2*pow-1, but 2*N-1 and 2*pow-1 might overflow an integer.  Though
# just yet round_down_pow() goes into floats and so doesn't preserve 64-bit
# integer.  So the technique here helps 53-bit float integers, but not right
# up to 64-bits.
#
sub _n_to_digits_lowtohigh {
  my ($n) = @_;
  ### _n_to_digits_lowtohigh(): $n

  my @ndigits;
  if ($n >= 2) {
    my ($pow) = _divrem($n-2, 3);
    ($pow, my $depth) = round_down_pow (2*$pow+1, 3);
    ### $depth
    ### base: $pow + ($pow+1)/2
    ### offset: $n - $pow - ($pow+1)/2
    @ndigits = digit_split_lowtohigh ($n - $pow - ($pow+1)/2, 3);
    push @ndigits, (0) x ($depth - $#ndigits);   # pad to $depth with 0s
  }
  ### @ndigits
  return \@ndigits;


  # {
  #   my ($pow, $depth) = round_down_pow (2*$n-1, 3);
  #
  #   ### h: 2*$n-1
  #   ### $depth
  #   ### $pow
  #   ### base: ($pow + 1)/2
  #   ### rem n: $n - ($pow + 1)/2
  #
  #   my @ndigits = digit_split_lowtohigh ($n - ($pow+1)/2,  3);
  #   $#ndigits = $depth-1;   # pad to $depth with undefs
  #   ### @ndigits
  #
  #   return \@ndigits;
  # }
}

#------------------------------------------------------------------------------
# xy_to_n()

# Nrow(depth+1) - Nrow(depth)
#   = (3*pow+1)/2 - (pow+1)/2
#   = (3*pow + 1 - pow - 1)/2
#   = (2*pow)/2
#   = pow
#
sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### PythagoreanTree xy_to_n(): "$x, $y"

  my ($p,$q) = &{$self->{'xy_to_pq'}}($x,$y)
    or return undef;    # not a primitive A,B,C

  unless ($p >= 2 && $q >= 1) {          # must be P > Q >= 1
    return undef;
  }
  if (is_infinite($p)) {
    return $p;  # infinity
  }
  if (is_infinite($q)) {
    return $q;  # infinity
  }
  if ($p%2 == $q%2) {  # must be opposite parity, not same parity
    return undef;
  }

  my @ndigits;  # low to high
  if ($self->{'tree_type'} eq 'FB') {
    for (;;) {
      unless ($p > $q && $q >= 1) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($q % 2) {
        ### q odd, p even, digit 1 or 2 ...
        $p /= 2;
        if ($q > $p) {
          ### digit 2, M3 ...
          push @ndigits, 2;
          $q -= $p;  # opp parity of p, and < new p
        } else {
          ### digit 1, M2 ...
          push @ndigits, 1;
          $q = $p - $q;  # opp parity of p, and < p
        }
      } else {
        ### q even, p odd, digit 0, M1 ...
        push @ndigits, 0;
        $q /= 2;
        $p -= $q;  # opp parity of q
      }
      ### descend: "$q / $p"
    }

  } elsif ($self->{'tree_type'} eq 'UMT') {
    for (;;) {
      ### at: "p=$p q=$q"
      my $qmod2 = $q % 2;
      unless ($p > $q && $q >= 1) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($p < 2*$q) {
        ($p,$q) = ($q, 2*$q-$p);  # U
        push @ndigits, 0;
      } elsif ($qmod2) {
        $p /= 2;   # M2
        $q = $p - $q;
        push @ndigits, 1;
      } else {
        $q /= 2;    # T
        $p -= 3*$q;
        push @ndigits, 2;
      }
    }

  } else {
    ### UAD or UArD ...
    ### assert: $self->{'tree_type'} eq 'UAD' || $self->{'tree_type'} eq 'UArD'
    for (;;) {
      ### $p
      ### $q
      if ($q <= 0 || $p <= 0 || $p <= $q) {
        return undef;
      }
      last if $q <= 1 && $p <= 2;

      if ($p > 2*$q) {
        if ($p > 3*$q) {
          ### digit 2 ...
          push @ndigits, 2;
          $p -= 2*$q;
        } else {
          ### digit 1
          push @ndigits, 1;
          ($p,$q) = ($q, $p - 2*$q);
        }

      } else {
        ### digit 0 ...
        push @ndigits, 0;
        ($p,$q) = ($q, 2*$q-$p);
      }
      ### descend: "$q / $p"
    }
  }
  ### @ndigits

  if ($self->{'digit_order'} eq 'LtoH') {
    @ndigits = reverse @ndigits;
    ### unreverse: @ndigits
  }
  if ($self->{'tree_type'} eq 'UArD') {
    Math::PlanePath::GrayCode::_digits_from_gray_reflected(\@ndigits,3);
    ### ungray: @ndigits
  }

  my $zero = $x*0*$y;
  ### offset: digit_join_lowtohigh(\@ndigits,3,$zero)
  ### depth: scalar(@ndigits)
  ### Nrow: $self->tree_depth_to_n($zero + scalar(@ndigits))

  return ($self->tree_depth_to_n($zero + scalar(@ndigits))
          + digit_join_lowtohigh(\@ndigits,3,$zero)); # offset into row
}

# numprims(H) = how many with hypot < H
# limit H->inf  numprims(H) / H -> 1/2pi
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### PythagoreanTree rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### x2: "$x2"
  ### y2: "$y2"

  if ($self->{'coordinates'} eq 'BA') {
    ($x2,$y2) = ($y2,$x2);
  }
  if ($self->{'coordinates'} eq 'SM') {
    if ($x2 > $y2) {   # both max
      $y2 = $x2;
    } else {
      $x2 = $y2;
    }
  }

  if ($self->{'coordinates'} eq 'PQ') {
    if ($x2 < 2 || $y2 < 1) {
      return (1,0);
    }
    # P > Q so reduce y2 to at most x2-1
    if ($y2 >= $x2) {
      $y2 = $x2-1;    # $y2 = min ($y2, $x2-1);
    }

    if ($y2 < $y1) {
      ### PQ y range all above X=Y diagonal ...
      return (1,0);
    }
  } else {
    # AB,AC,BC, SM,SC,MC
    if ($x2 < 3 || $y2 < 0) {
      return (1,0);
    }
  }

  my $depth;
  if ($self->{'tree_type'} eq 'FB') {
    ### FB ...
    if ($self->{'coordinates'} eq 'PQ') {
      $x2 *= 3;
    }
    my ($pow, $exp) = round_down_pow ($x2, 2);
    $depth = 2*$exp;
  } else {
    ### UAD or UArD, and UMT ...
    if ($self->{'coordinates'} eq 'PQ') {
      ### PQ ...
      # P=k+1,Q=k diagonal N=100..000 first of row is depth=P-2
      # anything else in that X=P column is smaller depth
      $depth = $x2 - 2;
    } else {
      my $xdepth = int (($x2+1) / 2);
      my $ydepth = int (($y2+31) / 4);
      $depth = min($xdepth,$ydepth);
    }
  }
  ### depth: "$depth"
  return (1, $self->tree_depth_to_n_end($zero+$depth));
}

#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

sub tree_n_children {
  my ($self, $n) = @_;
  unless ($n >= 1) {
    return;
  }
  $n *= 3;
  return ($n-1, $n, $n+1);
}
sub tree_n_num_children {
  my ($self, $n) = @_;
  return ($n >= 1 ? 3 : undef);
}
sub tree_n_parent {
  my ($self, $n) = @_;
  unless ($n >= 2) {
    return undef;
  }
  return int(($n+1)/3);
}
sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### PythagoreanTree tree_n_to_depth(): $n
  unless ($n >= 1) {
    return undef;
  }
  my ($pow, $depth) = round_down_pow (2*$n-1, 3);
  return $depth;
}

sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? (3**$depth + 1)/2
          : undef);
}
# (3^(d+1)+1)/2-1 = (3^(d+1)-1)/2
sub tree_depth_to_n_end {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? (3**($depth+1) - 1)/2
          : undef);
}
sub tree_depth_to_n_range {
  my ($self, $depth) = @_;
  if ($depth >= 0) {
    my $n_lo = (3**$depth + 1) / 2;  # same as tree_depth_to_n()
    return ($n_lo, 3*$n_lo-2);
  } else {
    return;
  }
}
sub tree_depth_to_width {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? 3**$depth
          : undef);
}

#------------------------------------------------------------------------------

# Maybe, or abc_to_pq() perhaps with two of three values.
#
# @EXPORT_OK = ('ab_to_pq','pq_to_ab');
#
# =item C<($p,$q) = Math::PlanePath::PythagoreanTree::ab_to_pq($a,$b)>
#
# Return the P,Q coordinates for C<$a,$b>.  As described above this is
#
#     P = sqrt((C+A)/2)    where C=sqrt(A^2+B^2)
#     Q = sqrt((C-A)/2)
#
# The returned P,Q are integers PE<gt>=0,QE<gt>=0, but the further
# conditions for the path (namely PE<gt>QE<gt>=1 and no common factor) are
# not enforced.
#
# If P,Q are not integers or if BE<lt>0 then return an empty list.  This
# ensures A,B is a Pythagorean triple, ie. that C=sqrt(A^2+B^2) is an
# integer, but it might not be a primitive triple and might not have A odd B
# even.
#
# =item C<($a,$b) = Math::PlanePath::PythagoreanTree::pq_to_ab($p,$q)>
#
# Return the A,B coordinates for C<$p,$q>.  This is simply
#
#     $a = $p*$p - $q*$q
#     $b = 2*$p*$q
#
# This is intended for use with C<$p,$q> satisfying PE<gt>QE<gt>=1 and no
# common factor, but that's not enforced.


# a=p^2-q^2, b=2pq, c=p^2+q^2
# Done as a=(p-q)*(p+q) for one multiply instead of two squares, and to work
# close to a=UINT_MAX.
#
sub _pq_to_ab {
  my ($p, $q) = @_;
  return (($p-$q)*($p+$q), 2*$p*$q);
}

# C=(p-q)^2+B for one squaring instead of two.
# Also possible is C=(p+q)^2-B, but prefer "+B" so as not to round-off in
# floating point if (p+q)^2 overflows an integer.
sub _pq_to_bc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  $p -= $q;
  return ($b, $p*$p+$b);
}

# a=p^2-q^2, b=2pq, c=p^2+q^2
# Could a=(p-q)*(p+q) to avoid overflow if p^2 exceeds an integer as per
# _pq_to_ab(), but c overflows in that case anyway.
sub _pq_to_ac {
  my ($p, $q) = @_;
  $p *= $p;
  $q *= $q;
  return ($p-$q, $p+$q);
}

# a=p^2-q^2, b=2pq, c=p^2+q^2
# a<b
#  p^2-q^2 < 2pq
#  p^2 + 2pq - q^2 < 0
#  (p+q)^2 - 2*q^2 < 0
#  (p+q + sqrt(2)*q)*(p+q - sqrt(2)*q) < 0
#  (p+q - sqrt(2)*q) < 0
#  p + (1-sqrt(2))*q < 0
#  p < (sqrt(2)-1)*q
#
sub _pq_to_sc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  my $p_plus_q = $p + $q;
  $p -= $q;
  return (min($p_plus_q*$p, $b),  # A = P^2-Q^2 = (P+Q)*(P-Q)
          $p*$p+$b);              # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q
}
sub _pq_to_mc {
  my ($p, $q) = @_;
  my $b = 2*$p*$q;
  my $p_plus_q = $p + $q;
  $p -= $q;
  return (max($p_plus_q*$p, $b),  # A = P^2-Q^2 = (P+Q)*(P-Q)
          $p*$p+$b);              # C = P^2+Q^2 = (P-Q)^2 + 2*P*Q
}
sub _pq_to_sm {
  my ($p, $q) = @_;
  my ($a, $b) = _pq_to_ab($p,$q);
  return ($a < $b ? ($a, $b) : ($b, $a));
}

# u = p+q, v=p-q
# at given p, vertical q
# u=p,v=p on diagonal then p+q,p-q is diagonal down
# so mirror p axis to x=y diagonal and measure down diagonal from there
sub _pq_to_uv {
  my ($p, $q) = @_;
  return ($p+$q, $p-$q);
}

# r = b+c = 2pq+p^2+q^2 = (p+q)^2
# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2
sub _pq_to_rs {
  my ($p, $q) = @_;
  return (($p+$q)**2, 2*$q*$q);
}

# s = c-a = p^2+q^2 - (p^2-q^2) = 2*q^2
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q
sub _pq_to_st {
  my ($p, $q) = @_;
  my $q2 = 2*$q;
  return ($q2*$q, ($p-$q)*$q2);
}

#------------------------------------------------------------------------------

# a = p^2 - q^2
# b = 2pq
# c = p^2 + q^2
#
# q = b/2p
# a = p^2 - (b/2p)^2
#   = p^2 - b^2/4p^2
# 4ap^2 = 4p^4 - b^2
# 4(p^2)^2 - 4a*p^2 - b^2 = 0
# p^2 = [ 4a +/- sqrt(16a^2 + 16*b^2) ] / 2*4
#     = [ a +/- sqrt(a^2 + b^2) ] / 2
#     = (a +/- c) / 2   where c=sqrt(a^2+b^2)
# p = sqrt((a+c)/2)    since c>a
#
# a = (a+c)/2 - q^2
# q^2 = (a+c)/2 - a
#     = (c-a)/2
# q = sqrt((c-a)/2)
#
# if c^2 = a^2+b^2 is a perfect square then a,b,c is a pythagorean triple
# p^2 = (a+c)/2
#     = (a + sqrt(a^2+b^2))/2
# 2p^2 = a + sqrt(a^2+b^2)
#
# p>q so a>0
# a+c even is a odd, c odd or a even, c even
# if a odd then c=a^2+b^2 is opp of b parity, must have b even to make c+a even
# if a even then c=a^2+b^2 is same as b parity, must have b even to c+a even
#
# a=6,b=8 is c=sqrt(6^2+8^2)=10
# a=0,b=4 is c=sqrt(0+4^4)=4 p^2=(a+c)/2 = 2 not a square
# a+c even, then (a+c)/2 == 0,1 mod 4 so a+c==0,2 mod 4
#
sub _ab_to_pq {
  my ($a, $b) = @_;
  ### _ab_to_pq(): "A=$a, B=$b"

  unless ($b >= 4 && ($a%2) && !($b%2)) {   # A odd, B even
    return;
  }

  # This used to be $c=hypot($a,$b) and check $c==int($c), but libm hypot()
  # on Darwin 8.11.0 is somehow a couple of bits off being an integer, for
  # example hypot(57,176)==185 but a couple of bits out so $c!=int($c).
  # Would have thought hypot() ought to be exact on integer inputs and a
  # perfect square sum :-(.  Check for a perfect square by multiplying back
  # instead.
  #
  # The condition is "$csquared != $c*$c" with operands that way around
  # since the other way is bad for Math::BigInt::Lite 0.14.
  #
  my $c;
  {
    my $csquared = $a*$a + $b*$b;
    $c = int(sqrt($csquared));
    ### $csquared
    ### $c
    # since A odd and B even should have C odd, but floating point rounding
    # might prevent that
    unless ($csquared == $c*$c) {
      ### A^2+B^2 not a perfect square ...
      return;
    }
  }
  return _ac_to_pq($a,$c);
}

sub _bc_to_pqa {
  my ($b, $c) = @_;
  ### _bc_to_pqa(): "B=$b C=$c"

  unless ($c > $b && $b >= 4 && !($b%2) && ($c%2)) {  # B even, C odd
    return;
  }

  my $a;
  {
    my $asquared = $c*$c - $b*$b;
    unless ($asquared > 0) {
      return;
    }
    $a = int(sqrt($asquared));
    ### $asquared
    ### $a
    unless ($asquared == $a*$a) {
      return;
    }
  }

  # If $c is near DBL_MAX can have $a overflow to infinity, leaving A>C.
  # _ac_to_pq() will detect that.
  my ($p,$q) = _ac_to_pq($a,$c) or return;
  return ($p,$q,$a);
}

sub _ac_to_pq {
  my ($a, $c) = @_;
  ### _ac_to_pq(): "A=$a C=$c"

  unless ($c > $a && $a >= 3 && ($a%2) && ($c%2)) {  # A odd, C odd
    return;
  }
  $a = ($a-1)/2;
  $c = ($c-1)/2;
  ### halved to: "a=$a c=$c"

  my $p;
  {
    # If a,b,c is a triple but not primitive then can have psquared not an
    # integer.  Eg. a=9,b=12 has c=15 giving psquared=(9+15)/2=12 is not a
    # perfect square.  So notice that here.
    #
    my $psquared = $c+$a+1;
    $p = int(sqrt($psquared));
    ### $psquared
    ### $p
    unless ($psquared == $p*$p) {
      ### P^2=A+C not a perfect square ...
      return;
    }
  }

  my $q;
  {
    # If a,b,c is a triple but not primitive then can have qsquared not an
    # integer.  Eg. a=15,b=36 has c=39 giving qsquared=(39-15)/2=12 is not a
    # perfect square.  So notice that here.
    #
    my $qsquared = $c-$a;
    $q = int(sqrt($qsquared));
    ### $qsquared
    ### $q
    unless ($qsquared == $q*$q) {
      return;
    }
  }

  # Might have a common factor between P,Q here.  Eg.
  #     A=27 = 3*3*3, B=36 = 4*3*3
  #     A=45 = 3*3*5, B=108 = 4*3*3*3
  #     A=63, B=216
  #     A=75 =3*5*5  B=100 = 4*5*5
  #     A=81, B=360
  #
  return ($p, $q);
}

sub _sm_to_pq {
  my ($s, $m) = @_;
  unless ($s < $m) {
    return;
  }
  return _ab_to_pq($s % 2
                   ? ($s,$m)    # s odd is A
                   : ($m,$s));  # s even is B
}


# s^2+m^2=c^2
# if s odd then a=s
# ac_to_pq
# b = 2pq check isn't smaller than s
#
# p^2=(c+a)/2
# q^2=(c-a)/2

sub _sc_to_pq {
  my ($s, $c) = @_;
  my ($p,$q);
  if ($s % 2) {
    ($p,$q) = _ac_to_pq($s,$c)     # s odd is A
      or return;
    if ($s > 2*$p*$q) { return; }  # if s>B then s is not the smaller one
  } else {
    ($p,$q,$a) = _bc_to_pqa($s,$c)   # s even is B
      or return;
    if ($s > $a) { return; }         # if s>A then s is not the smaller one
  }
  return ($p,$q);
}

sub _mc_to_pq {
  my ($m, $c) = @_;
  ### _mc_to_pq() ...
  my ($p,$q);
  if ($m % 2) {
    ### m odd is A ...
    ($p,$q) = _ac_to_pq($m,$c)
      or return;
    if ($m < 2*$p*$q) { return; }   # if m<B then m is not the bigger one
  } else {
    ### m even is B ...
    ($p,$q,$a) = _bc_to_pqa($m,$c)
      or return;
    ### $a
    if ($m < $a) { return; }         # if m<A then m is not the bigger one
  }
  return ($p,$q);
}

# u = p+q, v=p-q
# u+v=2p   p = (u+v)/2
# u-v=2q   q = (u-v)/2
sub _uv_to_pq {
  my ($u, $v) = @_;
  return (($u+$v)/2, ($u-$v)/2);
}

# r = (p+q)^2
# s = 2*q^2 so   q = sqrt(r/2)
sub _rs_to_pq {
  my ($r, $s) = @_;

  return if $s % 2;
  $s /= 2;
  return unless $s >= 1;
  my $q = int(sqrt($s));
  return unless $q*$q == $s;

  return unless $r >= 1;
  my $p_plus_q = int(sqrt($r));
  return unless $p_plus_q*$p_plus_q == $r;

  return ($p_plus_q - $q, $q);
}

# s = 2*q^2
# t = a+b-c = p^2-q^2 + 2pq - (p^2+q^2) = 2pq-2q^2 = 2(p-q)q
#
# p=2,q=1  s=2  t=2.1.1=2
#
sub _st_to_pq {
  my ($s, $t) = @_;

  ### _st_to_pq(): "$s, $t"
  return if $s % 2;
  $s /= 2;
  return unless $s >= 1;
  my $q = int(sqrt($s));
  ### $q
  return unless $q*$q == $s;

  return if $t % 2;
  $t /= 2;
  ### rem: $t % $q
  return if $t % $q;
  $t /= $q;  # p-q

  ### pq: ($t+$q).", $q"

  return ($t+$q, $q);
}

1;
__END__



# my $a = 1;
# my $b = 1;
# my $c = 2;
# my $d = 3;

# ### at: "$a,$b,$c,$d   digit $digit"
# if ($digit == 0) {
#   ($a,$b,$c) = ($a,2*$b,$d);
# } elsif ($digit == 1) {
#   ($a,$b,$c) = ($d,$a,2*$c);
# } else {
#   ($a,$b,$c) = ($a,$d,2*$c);
# }
# $d = $b+$c;
#   ### final: "$a,$b,$c,$d"
# #  print "$a,$b,$c,$d\n";
#   my $x = $c*$c-$b*$b;
#   my $y = 2*$b*$c;
#   return (max($x,$y), min($x,$y));

# return $x,$y;




=for stopwords eg Ryde UAD FB Berggren Barning ie PQ parameterized parameterization Math-PlanePath someP someQ Q's coprime mixed-radix Nrow N-Nrow Liber Quadratorum gnomon gnomons Diophantus Nrem OEIS UArD mirrorings Firstov Semigroup Matematicheskie Zametki semigroup UMT LtoH

=head1 NAME

Math::PlanePath::PythagoreanTree -- primitive Pythagorean triples by tree

=head1 SYNOPSIS

 use Math::PlanePath::PythagoreanTree;
 my $path = Math::PlanePath::PythagoreanTree->new
              (tree_type => 'UAD',
               coordinates => 'AB');
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path enumerates primitive Pythagorean triples by a breadth-first
traversal of one of three ternary trees,

    "UAD"    Berggren, Barning, Hall, et al
    "FB"     Price
    "UMT"    a third form

Each X,Y point is a pair of integer A,B sides of a right triangle.  The
points are "primitive" in the sense that the sense that A and B have no
common factor.

     A^2 + B^2 = C^2    gcd(A,B)=1, no common factor
     X=A, Y=B

        ^   *  ^
       /   /|  |      right triangle
      C   / |  B      A side odd
     /   /  |  |      B side even
    v   *---*  v      C hypotenuse  all integers

        <-A->

A primitive triple always has one of A,B odd and the other even.  The trees
here have triples ordered as A odd and B even.

The trees are traversed breadth-first and tend to go out to rather large A,B
values while yet to complete smaller ones.  The UAD tree goes out further
than the FB.  See the author's mathematical write-up for more properties.

=over

L<http://user42.tuxfamily.org/triples/index.html>

=back

=head2 UAD Tree

The UAD tree by Berggren (1934) and later independently by Barning (1963),
Hall (1970), and other authors, uses three matrices U, A and D which can be
multiplied onto an existing primitive triple to form three further new
primitive triples.

    tree_type => "UAD"   (the default)

    Y=40 |          14
         |
         |
         |
         |                                              7
    Y=24 |        5
         |
    Y=20 |                      3
         |
    Y=12 |      2                             13
         |
         |                4
     Y=4 |    1
         |
         +--------------------------------------------------
            X=3         X=15  X=20           X=35      X=45

The UAD matrices are

         1 -2  2         1  2  2         -1  2  2
    U =  2 -1  2     A = 2  1  2     D = -2  1  2
         2 -2  3         2  2  3         -2  2  3

They're multiplied on the right of an (A,B,C) column vector, for example

         / 3 \     /  5 \
     U * | 4 |  =  | 12 |
         \ 5 /     \ 13 /

The starting point is N=1 at X=3,Y=4 which is the well-known triple

    3^2 + 4^2 = 5^2

From it three further points N=2, N=3 and N=4 are derived, then three more
from each of those, etc,

=cut

# printed by tools/pythagorean-tree.pl

=pod

    depth=0   depth=1    depth=2    depth=3
     N=1      N=2..4     N=5..13    N=14...

                      +-> 7,24             A,B coordinates
          +-> 5,12  --+-> 55,48
          |           +-> 45,28
          |
          |           +-> 39,80
    3,4 --+-> 21,20 --+-> 119,120
          |           +-> 77,36
          |
          |           +-> 33,56
          +-> 15,8  --+-> 65,72
                      +-> 35,12

Counting N=1 as depth=0, each level has 3^depth many points and the first N
of a level (C<tree_depth_to_n()>) is at

    Nrow = 1 + (1 + 3 + 3^2 + ... + 3^(depth-1))
         = (3^depth + 1) / 2

The level numbering is like a mixed-radix representation of N where the high
digit is binary (so always 1) and the digits below are ternary.

         +--------+---------+---------+--   --+---------+
    N =  | binary | ternary | ternary |  ...  | ternary |
         +--------+---------+---------+--   --+---------+
              1      0,1,2     0,1,2             0,1,2

The number of ternary digits is the "depth" and their value without the high
binary 1 is the position in the row.

=head2 A Repeatedly

Taking the middle "A" matrix repeatedly gives

    3,4 -> 21,20 -> 119,120 -> 697,696 -> etc

which are the triples with legs A,B differing by 1 and therefore just above
or below the X=Y leading diagonal.  The N values are 1,3,9,27,etc = 3^depth.

=cut

# FIXME: were these known to Fermat?
# PQ coordinates A000129 Pell numbers

=pod

=head2 D Repeatedly

Taking the lower "D" matrix repeatedly gives

   3,4 -> 15,8 -> 35,12 -> 63,16 -> etc

which is the primitives among a sequence of triples known to the ancients
(Dickson's I<History of the Theory of Numbers>, start of chapter IV),

     A = k^2-1       k even for primitives
     B = 2*k
     C = k^2+1       so C=A+2

When k is even these are primitive.  If k is odd then A and B are both even,
ie. a common factor of 2, so not primitive.  These points are the last of
each level, so at N=(3^(depth+1)-1)/2 which is C<tree_depth_to_n_end()>.

=head2 U Repeatedly

Taking the upper "U" matrix repeatedly gives

    3.4 -> 5,12 -> 7,24 -> 9,40 -> etc

with C=B+1 and A the odd numbers.  These are the first of each level so at
Nrow described above.  The resulting triples are a sequence known to
Pythagoras (Dickson's I<History of the Theory of Numbers>, start of chapter
IV).

    A = any odd integer, so A^2 any odd square
    B = (A^2-1)/2
    C = (A^2+1)/2

           / A^2-1 \       / A^2+1 \
    A^2 + | ------  |^2 = |  -----  |^2
           \   2   /       \   2   /

This is also described by X<Fibonacci>Fibonacci in his
X<Liber Quadratorum>I<Liber Quadratorum> (X<Book of Squares>I<Book of
Squares>) in terms of sums of odd numbers

    s = any odd square = A^2
    B^2 = 1 + 3 + 5 + ... + s-2      = ((s-1)/2)^2
    C^2 = 1 + 3 + 5 + ... + s-2 + s  = ((s+1)/2)^2
    so C^2 = A^2 + B^2

    eg. s=25=A^2  B^2=((25-1)/2)^2=144  so A=5,B=12

X<Gnomon>The geometric interpretation is that an existing square of side B
is extended by a X<Gnomon>"gnomon" around two sides making a new larger
square of side C=B+1.  The length of the gnomon is odd and when it's an odd
square then the new total area is the sum of two squares.

       *****gnomon*******     gnomon length an odd square = A^2
       +--------------+ *
       |              | *     so new bigger square area
       |    square    | *     C^2 = A^2 + B^2
       |  with side B | *
       |              | *
       +--------------+ *

See L<Math::PlanePath::Corner> for a path following such gnomons.

=head2 UArD Tree

X<Gray code>Option C<tree_type =E<gt> "UArD"> varies the UAD tree by
applying a left-right reflection under each "A" matrix.  The result is
ternary reflected Gray code order.  The 3 children under each node are
unchanged, just their order.

                      +-> 7,24         tree_type => "UArD"
          +-> 5,12  --+-> 55,48        A,B coordinates
          |           +-> 45,28
          |
          |           +-> 77,36        <-+- U,D legs swapped
    3,4 --+-> 21,20 --+-> 119,120        |
          |           +-> 39,80        <-+
          |
          |           +-> 33,56
          +-> 15,8  --+-> 65,72
                      +-> 35,12

Notice the middle points 77,36 and 39,80 are swapped relative to the UAD
shown above.  In general the whole tree underneath an "A" is mirrored.  If
there's an even number of "A"s above then those mirrorings cancel out to be
plain again.

This tree form is primarily of interest for L</Digit Order Low to High>
described below since it gives points in order clockwise down from the Y
axis.

In L</PQ Coordinates> below, with the default digits high to low, UArD also
makes successive steps across the row either horizontal or 45-degrees NE-SW.

In all cases the Gray coding is applied to N first, then the resulting
digits are interpreted either high to low (the default) or low to high
(C<LtoH> option).

=head2 FB Tree

X<Firstov, V. E.>X<Price, H. Lee>Option C<tree_type =E<gt> "FB"> selects a
tree independently by

=over

V. E. Firstov, "A Special Matrix Transformation
Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples",
Matematicheskie Zametki, 2008, volume 84, number 2, pages 281-299 (in
Russian), and Mathematical Notes, 2008, volume 84, number 2, pages 263-279
(in English)

H. Lee Price, "The Pythagorean Tree: A New Species", 2008,
L<http://arxiv.org/abs/0809.4324> (version 2)

=back

Firstov finds this tree by semigroup transformations.  Price finds it by
expressing triples in certain "Fibonacci boxes" with a box of four values
q',q,p,p' having p=q+q' and p'=p+q so each is the sum of the preceding two
in a fashion similar to the Fibonacci sequence.  A box where p and q have no
common factor corresponds to a primitive triple.  See L</PQ Coordinates> and
L</FB Transformations> below.

    tree_type => "FB"

    Y=40 |         5
         |
         |
         |
         |                                             17
    Y=24 |       4
         |
         |                     8
         |
    Y=12 |     2                             6
         |
         |               3
    Y=4  |   1
         |
         +----------------------------------------------
           X=3         X=15   x=21         X=35

For a given box three transformations can be applied to go to new boxes
corresponding to new primitive triples.  This visits all and only primitive
triples, but in a different order to the UAD above.

The first point N=1 is again at X=3,Y=4, from which three further points
N=2,3,4 are derived, then three more from each of those, etc.

=cut

# printed by tools/pythagorean-tree.pl

=pod

    N=1      N=2..4      N=5..13     N=14...

                      +-> 9,40             A,B coordinates
          +-> 5,12  --+-> 35,12
          |           +-> 11,60
          |
          |           +-> 21,20
    3,4 --+-> 15,8  --+-> 55,48
          |           +-> 39,80
          |
          |           +-> 13,84
          +-> 7,24  --+-> 63,16
                      +-> 15,112

=head2 UMT Tree

X<Firstov, V. E.>Option C<tree_type => "UMT"> is a third tree type by
Firstov (reference above).  It's a combination of "U", "M2" and a third
matrix T = M1*D.

=cut

# printed by tools/pythagorean-tree.pl

=pod

              U       +-> 7,24             A,B coordinates
          +-> 5,12  --+-> 35,12
          |           +-> 65,72
          |
          |   M2      +-> 33,56
    3,4 --+-> 15,8  --+-> 55,48
          |           +-> 45,28
          |
          |   T       +-> 39,80
          +-> 21,20 --+-> 91,60
                      +-> 105,88

The first "T" child 21,20 is the same as the "A" matrix, but it differs at
further levels down.  For example "T" twice is 105,88 which is not the same
as "A" twice 119,120.

=head2 Digit Order Low to High

Option C<digit_order =E<gt> 'LtoH'> applies matrices using the ternary
digits of N taken from low to high.  The points in each row are unchanged,
as is the parent-child N numbering, but the X,Y values are rearranged within
the row.

The UAD matrices send points to disjoint regions and the effect of LtoH is
to keep the tree growing into those separate wedge regions.  The arms grow
roughly as follows

=cut

# math-image --path=PythagoreanTree,digit_order=LtoH --all --output=numbers_xy --size=75x14

=pod

    tree_type => "UAD", digit_order => "LtoH"

    Y=80 |                  6                       UAD LtoH
         |                 /
         |                /
    Y=56 |               /   7     10  9
         |              /   /       / /
         |             /   /       | /  8
         |            /  _/       / /  /
         |           /  /        / /  /
    Y=24 |        5 /  /        | / _/        __--11
         |       / / _/         |/_/      __--
    Y=20 |      / / /         __3     __--       _____----12
         |      |/_/      __--   __---  ____-----
    Y=12 |      2     __--     _/___----  ____13
         |     /  __--     __-- _____-----
         |    /_--_____---4-----
     Y=4 |    1---
         |
         +--------------------------------------------------
            X=3         X=15  X=20           X=35        X=76

Notice the points of the second row N=5 to N=13 are almost clockwise down
from the Y axis, except N=8,9,10 go upwards.  Those N=8,9,10 go upwards
because the A matrix has a reflection (its determinant is -1).

Option C<tree_type =E<gt> "UArD"> reverses the tree underneath each A, and
that plus LtoH gives A,B points going clockwise in each row.  P,Q
coordinates go clockwise too.

=head2 AC Coordinates

Option C<coordinates =E<gt> 'AC'> gives the A and C legs of each triple as
X=A,Y=C.

    coordinates => "AC"

     85 |        122                             10
        |
        |
     73 |                             6
        |
     65 |                  11             40
     61 |       41
        |
        |                        7
        |
        |
     41 |      14
        |                   13
     35 |
        |            3
     25 |     5
        |
     17 |         4
     13 |    2
        |
    Y=5 |   1
        |
        +-------------------------------------------
          X=3 7 9   21      35   45  55   63     77

Since AE<lt>C the coordinates are XE<lt>Y all above the X=Y diagonal.  The
L</D Repeatedly> triples described above have C=A+2 so they are the points
Y=X+2 just above the diagonal.

For the FB tree the set of points visited is the same, but with a different
N numbering.

    tree_type => "FB", coordinates => "AC"

     85 |        11                              35
        |
        |
     73 |                             9
        |
     65 |                  23             12
     61 |       7
        |
        |                        17
        |
        |
     41 |      5
        |                   6
     35 |
        |            8
     25 |     4
        |
     17 |         3
     13 |    2
        |
    Y=5 |   1
        |
        +-------------------------------------------
          X=3 7 9   21      35   45  55   63     77

=head2 BC Coordinates

Option C<coordinates =E<gt> 'BC'> gives the B and C legs of each triple as
X=B,Y=C.  This is the B=even and C=long legs of all primitive triples.  This
combination has points on 45-degree straight lines.

    coordinates => "BC"

    101 |           121
     97 |                                     12
        |
     89 |                                         8
     85 |                   10                      122
        |
        |
     73 |                         6
        |
     65 |         40                  11
     61 |                               41
        |
        |               7
        |
        |
     41 |                     14
        |       13
     35 |
        |           3
     25 |             5
        |
     17 |     4
     13 |       2
        |
    Y=5 |   1
        |
        +--------------------------------------------------
          X=4  12    24      40        60           84

Since BE<lt>C the coordinates are XE<lt>Y above the X=Y leading diagonal.
N=1,2,5,14,41,etc along the X=Y-1 diagonal are the L</U Repeatedly> triples
described above which have C=B+1 and are at the start of each tree row.

For the FB tree the set of points visited is the same, but with a different
N numbering.

    tree_type => "FB", coordinates => "BC"

    101 |           15
     97 |                                     50
        |
     89 |                                         10
     85 |                   35                      11
        |
        |
     73 |                         9
        |
     65 |         12                  23
     61 |                               7
        |
        |               17
        |
        |
     41 |                     5
        |       6
     35 |
        |           8
     25 |             4
        |
     17 |     3
     13 |       2
        |
    Y=5 |   1
        |
        +----------------------------------------------
          X=4  12    24      40        60           84

As seen from the diagrams, the B,C points fall on 45-degree straight lines
going up from X=Y-1.  This occurs because a primitive triple A,B,C with A
odd and B even can be written

    A^2 = C^2 - B^2
        = (C+B)*(C-B)

gcd(A,B)=1 means also gcd(C+B,C-B)=1 and so since C+B and C-B have no common
factor they must each be squares to give A^2.  Call them s^2 and t^2,

    C+B = s^2    and conversely  C = (s^2 + t^2)/2
    C-B = t^2                    B = (s^2 - t^2)/2

      s = odd integer      s >= 3
      t = odd integer  s > t >= 1
      with gcd(s,t)=1 so that gcd(C+B,C-B)=1

When t=1 this is C=(s^2+1)/2 and B=(s^2-1)/2 which is the "U"-repeated
points at Y=X+1 for each s.  As t increases the B,C coordinate combination
makes a line upwards at 45-degrees from those t=1 positions,

     C + B = s^2      anti-diagonal 45-degrees,
                      position along diagonal determined by t

All primitive triples start from a C=B+1 with C=(s^2+1)/2 half an odd
square, and go up from there.  To ensure the triple is primitive must have
gcd(s,t)=1.  Values of t where gcd(s,t)!=1 are gaps in the anti-diagonal
lines.

=head2 PQ Coordinates

Primitive Pythagorean triples can be parameterized as follows for A odd and
B even.  This is per Diophantus, and anonymous Arabic manuscript for
constraining it to primitive triples (Dickson's I<History of the Theory of
Numbers>).

    A = P^2 - Q^2
    B = 2*P*Q
    C = P^2 + Q^2
    with P > Q >= 1, one odd, one even, and no common factor

    P = sqrt((C+A)/2)
    Q = sqrt((C-A)/2)

The first P=2,Q=1 is the triple A=3,B=4,C=5.

Option C<coordinates =E<gt> 'PQ'> gives these as X=P,Y=Q, for either
C<tree_type>.  Because PE<gt>QE<gt>=1 the values fall in the eighth of the
plane below the X=Y diagonal,

=cut

# math-image --path=PythagoreanTree,coordinates=PQ --all --output=numbers_xy --size=75x14

=pod

    tree_type => "UAD", coordinates => "PQ"

     10 |                                                   9842
      9 |                                              3281
      8 |                                         1094        23
      7 |                                     365        32
      6 |                                122                  38
      5 |                            41         8
      4 |                       14        11        12        15
      3 |                   5                   6        16
      2 |              2         3         7        10        22
      1 |         1         4        13        40       121
    Y=0 |
        +--------------------------------------------------------
        X=0  1    2    3    4    5    6    7    8    9   10   11

The diagonal N=1,2,5,14,41,etc is P=Q+1 as per L</U Repeatedly> above.

The one-to-one correspondence between P,Q and A,B means both tree types
visit all P,Q pairs, so all X,Y with no common factor and one odd one even.
There's other ways to iterate through such coprime pairs and any such method
would generate Pythagorean triples too, in a different order from the trees
here.

The letters P and Q here are a little bit arbitrary.  This parameterization
is often written m,n or u,v but don't want "n" to be confused that with N
point numbering or "u" to be confused with the U matrix.

=head2 SM Coordinates

Option C<coordinates =E<gt> 'SM'> gives the small and medium legs from each
triple as X=small,Y=medium.  This is like "AB" except that if AE<gt>B then
they're swapped to X=B,Y=A so XE<lt>Y always.  The effect is to mirror the
AB points below the X=Y diagonal up to the upper eighth,

    coordinates => "SM"

     91 |                                16
     84 |        122
        |                     8
        |                    10
     72 |                                  12
        |
        |
     60 |       41 40
        |                  11
     55 |                          6
        |
        |                7
     40 |      14
        |
     35 |        13
        |
     24 |     5
     21 |            3
        |
     12 |    2 4
        |
    Y=4 |   1
        |
        +----------------------------------------
          X=3  8     20     33     48      60 65

=head2 SC Coordinates

Option C<coordinates =E<gt> 'SC'> gives the small leg and hypotenuse from
each triple,

    coordinates => "SC"

     85 |        122         10
        |
        |
     73 |                          6
        |
        |          40      11
     61 |       41
        |
     53 |                7
        |
        |
     41 |      14
     37 |        13
        |
        |            3
     25 |     5
        |
        |      4
     13 |    2
        |
    Y=5 |   1
        |
        +-----------------------------
          X=3  8     20     33     48

The points are all X E<lt> 0.7*Y since with X as the smaller leg must have
S<X^2 E<lt> Y^2/2> so S<X E<lt> Y*1/sqrt(2)>.

=head2 MC Coordinates

Option C<coordinates =E<gt> 'MC'> gives the medium leg and hypotenuse from
each triple,

    coordinates => "MC"

     65 |                             11 40
     61 |                               41
        |
     53 |                       7
        |
        |
     41 |                     14
     37 |                  13
        |
     29 |           3
     25 |             5
        |
     17 |        4
     13 |       2
        |
    Y=5 |   1
        |
        +-----------------------------------
          X=4   15   24    35 40      56 63

The points are in a wedge 0.7*Y E<lt> X E<lt> Y.  X is the bigger leg and
S<X^2 E<gt> Y^2/2> so S<X E<gt> Y*1/sqrt(2)>.

=cut

# if A=B=C/sqrt(2)
# A^2+B^2 = C^2/2+C^2/2 = C^2
# so X=Y/sqrt(2) = Y*0.7071

=pod

=head2 UAD Coordinates AB, AC, PQ -- Turn Right

In the UAD tree with coordinates AB, AC or PQ the path always turns to the
right.  For example in AB coordinates at N=2 the path turns to the right to
go towards N=3.

    coordinates => "AB"

    20 |                      3           N    X,Y
       |                                 --   ------
    12 |      2                           1    3,4
       |                                  2    5,12
       |                                  3   21,20
     4 |    1
       |                               turn towards the
       +-------------------------        right at N=2
            3 5              21

This can be proved from the transformations applied to seven cases, a
triplet U,A,D, then four crossing a gap within a level, then two wrapping
around at the end of a level.  The initial N=1,2,3 can be treated as a
wrap-around from the end of depth=0 (the last case D to U,A).

    U              triplet U,A,D
    A
    D

    U.D^k.A        crossing A,D to U
    U.D^k.D        across U->A gap
    A.U^k.U         k>=0

    A.D^k.A        crossing A,D to U
    A.D^k.D        across A->D gap
    D.U^k.U         k>=0

    U.D^k.D        crossing D to U,A
    U.U^k.U        across U->A gap
    A.U^k.A         k>=0

    A.D^k.D        crossing D to U,A
    A.U^k.U        across A->D gap
    D.U^k.A         k>=0

    D^k    .A      wraparound A,D to U
    D^k    .D       k>=0
    U^(k+1).U

    D^k            wraparound D to U,A
    U^k.U           k>=0
    U^k.A           (k=0 is initial N=1,N=2,N=3 for none,U,A)

The powers U^k and D^k are an arbitrary number of descents U or D.  In P,Q
coordinates these powers are

    U^k    P,Q   ->  (k+1)*P-k*Q, k*P-(k-1)*Q
    D^k    P,Q   ->  P+2k*Q, Q

For AC coordinates squaring to stretch to P^2,Q^2 doesn't change the turns.
Then a rotate by -45 degrees to A=P^2-Q^2, C=P^2+Q^2 also doesn't change the
turns.

=head2 UAD Coordinates BC -- Turn Left

In the UAD tree with coordinates BC the path always turns to the left.  For
example in BC coordinates at N=2 the path turns to the right to go towards
N=3.

    coordinates => "BC"

    29 |           3                N    X,Y
       |                           --   ------
       |                            1    4,5
       |                            2   12,13
    13 |       2                    3   20,29
       |
     5 |   1                     turn towards the
       |                           left at N=2
       +---------------
           4  12   20

As per above A,C turns to the right, which squared is A^2,C^2 to the right
too, which equals C^2-B^2,C^2.  Negating the X coordinate to B^2-C^2,C^2
mirrors to be a left turn always, and addition shearing to X+Y,Y doesn't
change that, giving B^2,C^2 always left and so B,C always left.

=cut

# U     P -> 2P-Q
#       Q -> P
#
# A     P -> 2P+Q
#       Q -> P
#
# D     P -> P+2Q
#       Q -> Q unchanged
#
# ------------------------------------
# none  (P,Q)
# U     (2P-Q,P)     dx1=P-Q  dy1=P-Q
# A     (2P+Q,P)     dx2=P+Q  dy2=P-Q
# dx2*dy1 - dx1*dy2
#    = (P+Q)*(P-Q) - (P-Q)*(P-Q)
#    = (P-Q) * (P+Q - (P-Q))
#    = (P-Q) * 2Q  > 0 so Right
#
# ------------------------------------
# U    (2P-Q,P)
# A    (2P+Q,P)     dx1=2Q    dy1=0
# D    (P+2Q,Q)     dx2=-P+3Q dy2=Q-P
# dx2*dy1 - dx1*dy2
#    = (-P+3Q)*0 - 2Q * (Q-P)
#    = 2Q*(P-Q) > 0  so Right
#
# ------------------------------------
# crossing A,D to U   from gap U,A
# U.D^k.A = (2*P-Q,P) . D^k . A
#         = (2*P-Q + 2*k*P, P) . A
#         = ((2*k+2)*P-Q, P) . A
#         = 2*((2*k+2)*P-Q) + P,   (2*k+2)*P-Q
#         = (4*k+4)*P - 2*Q + P,  (2*k+2)*P-Q
#         = (4*k+5)*P - 2*Q,      (2*k+2)*P-Q
# U.D^k.D = ((2*k+2)*P-Q, P) . D
#         = (2*k+2)*P-Q + 2*P,  P
#         = (2*k+4)*P-Q,        P
# A.U^k.U = (2*P+Q, P) . U^(k+1)
#         = (k+2)*(2*P+Q) - (k+1)*P,      (k+1)*(2*P+Q) - k*P
#         = (k+3)*P + (k+2)*Q,            (k+2)*P + (k+1)*Q
#  dx1 = (2*k+4)*P-Q       - ((4*k+5)*P - 2*Q)
#  dy1 = P                 - ((2*k+2)*P-Q)
#  dx2 = (k+3)*P + (k+2)*Q - ((4*k+5)*P - 2*Q)
#  dy2 = (k+2)*P + (k+1)*Q - ((2*k+2)*P-Q)
# dx2*dy1 - dx1*dy2
#    =  4*P^2*k^2 + (6*P^2 - 6*Q*P)*k + (2*P^2 - 4*Q*P + 2*Q^2)
#    =  4*P^2*k^2 + 6*P*(P-Q)*k       + 2*(P-Q)^2
#       > 0  turn right
#
# ------------------------------------
# wraparound A,D to U
# D^k    .A  = (P+2kQ, Q) . A
#            = 2*(P+2*k*Q)+Q, P+2*k*Q
#            = 2*P+(4*k+1)*Q, P+2*k*Q
# D^k    .D  = D^(k+1) = P+(2*k+2)*Q, Q
# U^(k+1).U  = U^(k+1) = (k+3)*P-(k+2)*Q, (k+2)*P-(k+1)*Q
#  dx1 = P+(2*k+2)*Q - (2*P+(4*k+1)*Q)
#       = -P + (-2*k+1)*Q
#  dy1 = Q - (P+2*k*Q)
#      = -P + (-2k+1)Q
#  dx2 = (k+3)*P-(k+2)*Q - (2*P+(4*k+1)*Q)
#      = (k+1)*P + (-5*k-3)*Q
#  dy2 = (k+2)*P-(k+1)*Q - (P+2*k*Q)
#      = (k+1)P + (-k-1 -2k)Q
#      = (k+1)*P + (-3k-1)*Q
# dx2*dy1 - dx1*dy2
#    = ((k+1)P + (-5k-3)Q) * (-P + (-2k+1)Q) - (-P + (-2k+1)) * ((k+1)P + (-3k-1)Q)
#    = (2*Q*k + 2*Q)*P + (4*Q^2*k^2 + 2*Q^2*k - 2*Q^2)
#    = (2*k + 2)*P*Q + (4*k^2 + 2*k - 2)*Q^2
#     > 0  turn Right
#
# eg. P=2,Q=1 k=0
# D^k  .A   = 5,2
# D^k  .D   = 4,1
# U^k+1.U   = 4,3
# dx1 = -1
# dy1 = -1
# dx2 = -1
# dy2 = 1
# dx2*dy1 - dx1*dy2 = 2
#
# ------------------------------------
# wraparound D to U,A
# D^k     = P+2*k*Q, Q
# U^k.U   = U^(k+1)
#         = (k+2)*P-(k+1)*Q, (k+1)*P-k*Q
# U^k.A   = (k+1)*P-k*Q, k*P-(k-1)*Q  . A
#         = 2*((k+1)*P-k*Q) + k*P-(k-1)*Q, (k+1)*P-k*Q
#         = (3*k+2)*P + (-3*k+1)*Q,        (k+1)*P-k*Q
#  dx1 = (k+2)*P-(k+1)*Q - (P+2*k*Q)
#      = (k+1)*P + (-3*k-1)*Q
#  dy1 = (k+1)*P-k*Q - Q
#      = (k+1)*P-(k+1)*Q
#  dx2 = (3*k+2)*P + (-3*k+1)*Q - (P+2*k*Q)
#      = (3*k+1)*P + (-5*k+1)*Q
#  dy2 = (k+1)*P-k*Q - Q
#      = (k+1)*P-(k+1)*Q
# dx2*dy1 - dx1*dy2
#   = (2*P^2 - 4*Q*P + 2*Q^2)*k^2 + (2*P^2 - 2*Q*P)*k + (2*Q*P - 2*Q^2)
#   = 2*(P-Q)^2*k^2               + 2*P*(P-Q)*k       + 2*Q*(P-Q)
#     > 0  turn Right
#
# eg. P=2;Q=1;k=1
#  4,1
#  4,3
#  8,3


# 2P-Q,P to 2P+Q,P to P+2Q,Q  P>Q>=1
#
#           right at first "U"
#                 3P-2Q,2P-Q ----- 5P-2Q,2P-Q
#                   |
#                   |
#           2P-Q,P ---- 2P+Q,P right at "A"
#                   |    /
#                   |   /
#    P,Q           P+2Q,Q
#
#                                           3P+2Q,2P+Q
#
#
#              "U" 3P-2Q,2P-Q ----- 5P-2Q,2P-Q "A"
#                                    /
#                                   /
#                                4P-Q,P "D"
#
#
#    P,Q
#
#                     / U 4P-2Q-P,2P-Q = 3P-2Q,2P-Q
#           U 2P-Q,P -- A 4P-2Q+P,2P-Q = 5P-2Q,2P-Q
#         /           \ D 2P-Q+2P,P    = 4P-Q, P
#        /            / U 4P+2Q-P,2P+Q = 3P+2Q,2P+Q
#    P,Q -- A 2P+Q,P -- A
#        \            \ D
#         \           / U
#           D P+2Q,Q -- A
#                     \ D


=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::PythagoreanTree-E<gt>new ()>

=item C<$path = Math::PlanePath::PythagoreanTree-E<gt>new (tree_type =E<gt> $str, coordinates =E<gt> $str)>

Create and return a new path object.  The C<tree_type> option can be

    "UAD"         (the default)
    "UArD"        UAD with Gray code reflections
    "FB"
    "UMT"

The C<coordinates> option can be

    "AB"     odd, even legs     (the default)
    "AC"     odd leg, hypotenuse
    "BC"     even leg, hypotenuse
    "PQ"
    "SM"     small, medium legs
    "SC"     small leg, hypotenuse
    "MC"     medium leg, hypotenuse

The C<digit_order> option can be

    "HtoL"   high to low (the default)
    "LtoH"   low to high (the default)

=item C<$n = $path-E<gt>n_start()>

Return 1, the first N in the path.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 1 and if C<$nE<lt>1> then the return is an empty list.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The return is C<undef> if C<$x,$y> is not a primitive Pythagorean triple,
per the C<coordinates> option.

=item C<$rsquared = $path-E<gt>n_to_radius ($n)>

Return the radial distance R=sqrt(X^2+Y^2) of point C<$n>.  If there's no
point C<$n> then return C<undef>.

For coordinates=AB or SM this is the hypotenuse C and therefore an integer,
for integer C<$n>.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  The range is inclusive.

Both trees go off into large X,Y coordinates while yet to finish values
close to the origin which means the N range for a rectangle can be quite
large.  For UAD C<$n_hi> is roughly C<3**max(x/2)>, or for FB smaller at
roughly C<3**log2(x)>.

=back

=head2 Descriptive Methods

=over

=item C<$x = $path-E<gt>x_minimum()>

=item C<$y = $path-E<gt>y_minimum()>

Return the minimum X or Y occurring in the path.  The value goes according
to the C<coordinates> option,

    coordinate    minimum
    ----------    -------
        A,S          3
        B,M          4
         C           5
         P           2
         Q           1

=back

=head2 Tree Methods

X<Complete ternary tree>Each point has 3 children, so the path is a complete
ternary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the three children of C<$n>, or an empty list if C<$n E<lt> 1>
(ie. before the start of the path).

This is simply C<3*$n-1, 3*$n, 3*$n+1>.  This is appending an extra ternary
digit 0, 1 or 2 to the mixed-radix form for N described above.  Or staying
all in ternary then appending to N+1 rather than N and adjusting back.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return 3, since every node has three children, or return C<undef> if
C<$nE<lt>1> (ie. before the start of the path).

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the top of
the tree).

This is simply C<floor(($n+1)/3)>, reversing the C<tree_n_children()>
calculation above.

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
top of the tree at N=1 is depth=0, then its children depth=1, etc.

The structure of the tree with 3 nodes per point means the depth is
floor(log3(2N-1)), so for example N=5 through N=13 all have depth=2.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth> in the path, or C<undef>
if nothing at that depth or not a tree.  The top of the tree is depth=0.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return 3 since every node has 3 children, making that both the minimum and
maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=head1 FORMULAS

=head2 UAD Matrices

Internally the code uses P,Q and calculates A,B at the end as necessary.
The UAD transformations in P,Q coordinates are

    U     P -> 2P-Q            ( 2 -1 )
          Q -> P               ( 1  0 )

    A     P -> 2P+Q            ( 2  1 )
          Q -> P               ( 1  0 )

    D     P -> P+2Q            ( 1  2 )
          Q -> Q unchanged     ( 0  1 )

The advantage of P,Q for the calculation is that it's 2 values instead of 3.
The transformations can be written with the 2x2 matrices shown, but explicit
steps are enough for the code.

Repeatedly applying "U" gives

    U       2P-Q, P
    U^2     3P-2Q, 2P-Q
    U^3     4P-3Q, 3P-2Q
    ...
    U^k     (k+1)P-kQ, kP-(k-1)Q
          = P+k(P-Q),  Q+k*(P-Q)

If there's a run of k many high zeros in the Nrem = N-Nrow position in the
level then they can be applied to the initial P=2,Q=1 as

    U^k    P=k+2, Q=k+1       start for k high zeros

=head2 FB Transformations

The FB tree is calculated in P,Q and converted to A,B at the end as
necessary.  Its three transformations are

    M1     P -> P+Q         ( 1  1 )
           Q -> 2Q          ( 0  2 )

    M2     P -> 2P          ( 2  0 )
           Q -> P-Q         ( 1 -1 )

    M3     P -> 2P          ( 2  0 )
           Q -> P+Q         ( 1  1 )

Price's paper shows rearrangements of a set of four values q',q,p,p'.  Just
the p and q are enough for the calculation.  The set of four has some
attractive geometric interpretations though.

=head2 X,Y to N -- UAD

C<xy_to_n()> works in P,Q coordinates.  An A,B or other input is converted
to P,Q per the formulas in L</PQ Coordinates> above.  A P,Q point can be
reversed up the UAD tree to its parent point

    if P > 3Q    reverse "D"   P -> P-2Q
                  digit=2      Q -> unchanged

    if P > 2Q    reverse "A"   P -> Q
                  digit=1      Q -> P-2Q

    otherwise    reverse "U"   P -> Q
                  digit=0      Q -> 2Q-P

This gives a ternary digit 2, 1, 0 respectively from low to high.  Those
plus a high "1" bit make N.  The number of steps is the "depth" level.

If at any stage P,Q doesn't satisfy PE<gt>QE<gt>=1, one odd, the other even,
then it means the original point, however it was converted, was not a
primitive triple.  For a primitive triple the endpoint is always P=2,Q=1.

The conditions PE<gt>3Q or PE<gt>2Q work because each matrix sends its
parent P,Q to one of three disjoint regions,

     Q                  P=Q                    P=2Q                P=3Q
     |                    *       U         ----     A        ++++++
     |                  *               ----            ++++++
     |                *             ----          ++++++
     |              *           ----        ++++++
     |            *         ----      ++++++
     |          *       ----    ++++++
     |        *     ----  ++++++                     D
     |      *   ----++++++
     |    * ----++++
     |  ----++
     |
     +------------------------------------------------- P

So U is the upper wedge, A the middle, and D the lower.  The parent P,Q can
be anywhere in PE<gt>QE<gt>=1, the matrices always map to these regions.

=head2 X,Y to N -- FB

After converting to P,Q as necessary, a P,Q point can be reversed up the FB
tree to its parent

    if P odd     reverse M1    P -> P-Q
    (Q even)                   Q -> Q/2

    if P > 2Q    reverse M2    P -> P/2
    (P even)                   Q -> P/2 - Q

    otherwise    reverse M3    P -> P/2
    (P even)                   Q -> Q - P/2

This is a little like the binary greatest common divisor algorithm, but
designed for one value odd and the other even.  Like the UAD ascent above if
at any stage P,Q doesn't satisfy PE<gt>QE<gt>=1, one odd, the other even,
then the initial point wasn't a primitive triple.

The M1 reversal works because M1 sends any parent P,Q to a child which has P
odd.  All odd P,Q comes from M1.  The M2 and M3 always make children with P
even.  Those children are divided between two disjoint regions above and
below the line P=2Q.

     Q                  P=Q                     P=2Q
     |                    *     M3 P=even   ----
     |                  *               ----
     |                *             ----
     |              *           ----
     |            *         ----              M2 P=even
     |          *       ----
     |        *     ----
     |      *   ----
     |    * ----                 M1 P=odd anywhere
     |  ----
     |
     +------------------------------------------------- P

=head2 X,Y to N -- UMT

After converting to P,Q as necessary, a P,Q point can be reversed up the UMT
tree to its parent

    if P > 2Q    reverse "U"     P -> Q
                  digit=0        Q -> 2Q-P

    if P even    reverse "M2"    P -> P/2
    (Q odd)                      Q -> P/2 - Q

    otherwise    reverse "T"     P -> P - 3 * Q/2
    (Q even)                     Q -> Q/2

These reversals work because U sends any parent P,Q to a child PE<gt>2Q
whereas the M2 and T go below that line.  M2 and T are distinguished by M2
giving P even whereas T gives P odd.

     Q                  P=Q                     P=2Q
     |                    *       U         ----
     |                  *               ----
     |                *             ----
     |              *           ----
     |            *         ----        M2 for P=even
     |          *       ----             T for P=odd
     |        *     ----
     |      *   ----
     |    * ----
     |  ----
     |
     +------------------------------------------------- P

=head2 Rectangle to N Range -- UAD

For the UAD tree, the smallest A,B within each level is found at the topmost
"U" steps for the smallest A or the bottom-most "D" steps for the smallest
B.  For example in the table above of level=2 N=5..13 the smallest A is
the top A=7,B=24, and the smallest B is in the bottom A=35,B=12.  In general

    Amin = 2*level + 1
    Bmin = 4*level

In P,Q coordinates the same topmost line is the smallest P and bottom-most
the smallest Q.  The values are

    Pmin = level+1
    Qmin = 1

The fixed Q=1 arises from the way the "D" transformation sends Q-E<gt>Q
unchanged, so every level includes a Q=1.  This means if you ask what range
of N is needed to cover all Q E<lt> someQ then there isn't one, only a P
E<lt> someP has an N to go up to.

=head2 Rectangle to N Range -- FB

For the FB tree, the smallest A,B within each level is found in the topmost
two final positions.  For example in the table above of level=2 N=5..13 the
smallest A is in the top A=9,B=40, and the smallest B is in the next row
A=35,B=12.  In general,

    Amin = 2^level + 1
    Bmin = 2^level + 4

In P,Q coordinates a Q=1 is found in that second row which is the minimum B,
and the smallest P is found by taking M1 steps half-way then a M2 step, then
M1 steps for the balance.  This is a slightly complicated

    Pmin = /  3*2^(k-1) + 1    if even level = 2*k
           \  2^(k+1) + 1      if odd level = 2*k+1
    Q = 1

The fixed Q=1 arises from the M1 steps giving

    P = 2 + 1+2+4+8+...+2^(level-2)
      = 2 + 2^(level-1) - 1
      = 2^(level-1) + 1
    Q = 2^(level-1)

    followed by M2 step
    Q -> P-Q
         = 1

As for the UAD above this means small Q's always remain no matter how big N
gets, only a P range determines an N range.

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path include,

=over

L<http://oeis.org/A007051> (etc)

=back

    A007051   N start of depth=n, (3^n+1)/2, ie. tree_depth_to_n()
    A003462   N end of depth=n-1, (3^n-1)/2, ie. tree_depth_to_n_end()
    A000244   N of row middle line, 3^n

    A058529   possible values taken by abs(A-B),
                being integers with all prime factors == +/-1 mod 8

    "U" repeatedly
      A046092    coordinate B, 2n(n+1) = 4*triangular numbers
      A099776    \ coordinate C, being 2n(n+1)+1
      A001844    /  which is the "centred squares"

    "A" repeatedly
      A046727    \ coordinate A
      A084159    /   "Pell oblongs"
      A046729    coordinate B
      A001653    coordinate C, numbers n where 2*n^2-1 is square
      A000129    coordinate P and Q, the Pell numbers
      A001652    coordinate S, the smaller leg
      A046090    coordinate M, the bigger leg

    "D" repeatedly
      A000466    coordinate A, being 4*n^2-1 for n>=1

    "M1" repeatedly
      A028403    coordinate B,   binary 10..010..000
      A007582    coordinate B/4, binary 10..010..0
      A085601    coordinate C,   binary 10..010..001

    "M2" repeatedly
      A015249    \ coordinate A, binary 111000111000...
      A084152    |
      A084175    /
      A054881    coordinate B, binary 1010..1010000..00

    "M3" repeatedly
      A106624    coordinate P,Q pairs, 2^k-1,2^k

    "T" repeatedly
      A134057    coordinate A, binomial(2^n-1,2)
                   binary 111..11101000..0001
      A093357    coordinate B, binary 10111..111000..000
      A052940    \
      A055010    | coordinate P, 3*2^n-1
      A083329    |   binary 10111..111
      A153893    /

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::Hypot>,
L<Math::PlanePath::RationalsTree>,
L<Math::PlanePath::CoprimeColumns>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut