File: RationalsTree.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1678 lines) | stat: -rw-r--r-- 55,381 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# SB,CW N with same X,Y is those N which are palindromes below high 1-bit
# as noted Claudio Bonanno and Stefano Isola, ``Orderings of the Rationals
# and Dynamical Systems'', May 16, 2008.
# cf A006995 binary palindromes, so always odd
#    A178225 characteristic of binary palindromes
#    A048700 binary palindromes odd length
#    A048701 binary palindromes even length
# A044051 binary palindromes (B+1)/2, B odd so B+1 even
# A044051-1 = (B-1)/2 strips low 1-bit to be palindromes below high 1-bit

# Boyko B. Bantchev, "Fraction Space Revisited"
# http://www.math.bas.bg/bantchev/articles/fractions.pdf

# cf Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete
# Mathematics: A Foundation for Computer Science, Second
# Edition. Addison-Wesley. 1994.
# On Stern-Brocot tree.

# cf A054429 permutation reverse within binary row
#    A065249 - permutation SB X -> X/2
#    A065250 - permutation SB X -> 2X
#    A057114 - permutation SB X -> X+1
#    A057115 - permutation SB X -> X-1
#

#                    high-to-low   low-to-high
# (X+Y)/Y  Y/(X+Y)     HCS            AYT
# X/(X+Y)  (X+Y)/Y      CW            SB    \ alt bit flips
# Y/(X+Y)  (X+Y)/X     Drib          Bird   /
#
#     9  10                    12  10
# 8      11                 8      14
#        12  13                     9  13
#            14                        11
#            15                        15
#
# Stern-Brocot              Calkin-Wilf


#------------------------------------------------------------------------------
# HCS turn left when even number of 1-bits in N+1
#     turn right when odd number of 1-bits in N+1
#
# A010059 start=0: 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0
#   match 1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0
#   PlanePathTurn planepath=RationalsTree,tree_type=HCS,  turn_type=Left
#
# A010060 start=0: 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1
#   match 0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0,1,1,0,1
#   PlanePathTurn planepath=RationalsTree,tree_type=HCS,  turn_type=Right
#
# 10  |     768        50                  58       896
#  9  |     384   49        52   60        57  448       640
#  8  |     192        27        31       224       320
#  7  |      96   25   26   30   29  112       160   41   42
#  6  |      48                  56        80
#  5  |      24   13   15   28        40   21   23   44
#  4  |      12        14        20        22        36
#  3  |       6    7        10   11        18   19        34
#  2  |       3         5         9        17        33
#  1  |       1    2    4    8   16   32   64  128  256  512
# Y=0 |
#     +-----------------------------------------------------
#       X=0   1    2    3    4    5    6    7    8    9   10
#
#                               1/1
#                  /------------- -------------\
#               2/1                             1/2               2,3 L,R
#          /----   ----\                   /----   ----\
#       3/1             3/2             1/3             2/3    4,5,6,7 L,L,R,R
#      /   \           /   \           /   \           /   \      8        12
#   4/1     5/2     4/3     5/3     1/4     2/5     3/4     3/5   L,L,R,L, R,R,L,R
#  /   \   /   \   /   \   /   \   /   \   /   \   /   \   /   \
# 5/1 7/2 7/3 8/3 5/4 7/5 7/4 8/5 1/5 2/7 3/7 3/8 4/5 5/7 4/7 5/8
#
#         *
#        / \                        U=0 = X+Y, Y           shear
#       /   *                       D=1 = Y,   X+Y         shear+transpose
#      /     \a  = 0.1^k.1
#     N
#      \     /b  = 1.0^k.0
#       \   *
#        \ / \c  = 1.0^k.1         c=even bits, left
#         *
#
# F[-1]=1 F[0]=0 F[1]=1 F[2]=1 F[3]=2 F[4]=3 F[5]=5 ...
# 1^k is F[k-1]*X+F[k]*Y, F[k]*X+F[k+1]*Y
#  X   ,     Y    0
#     Y,  X+ Y    1
#  X+ Y,  X+2Y    2
#  X+2Y, 2X+3Y    3
# 2X+3Y, 3X+5Y    4
#
# then aX = F[k]*X+F[k+1]*Y + F[k+1]*X+F[k+2]*Y
#         = (F[k]+F[k+1])*X + (F[k+1]+F[k+2])*Y
#         = F[k+2]*X + F[k+3]*Y
#      aY = F[k+1]*X + F[k+2]*Y                 near X=phi*Y big
#
# 0^k is X+k*Y, Y
# so bX = Y
#    bY = X+k*Y + Y = X+(k+1)*Y                 near Y axis
#
# c1X = Y
# c1Y = X+Y
# c2X = Y + k*(X+Y) = k*X + (k+1)*Y
# c2Y = X+Y
# cX = X+Y
# cY = k*X + (k+1)*Y + X+Y = (k+1)X + (k+2)Y    near X=Y

#
#         *
#        / \ /a  = 0.1^k.0
#       /   *
#      /     \b  = 0.1^k.1
#     N
#      \     /c  = 1.0^k.1     c=even bits, left
#       \   *
#        \ /
#         *
#------------------------------------------------------------------------------

package Math::PlanePath::RationalsTree;
use 5.004;
use strict;
use Carp 'croak';
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_join_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;

use Math::PlanePath::CoprimeColumns;
*_coprime = \&Math::PlanePath::CoprimeColumns::_coprime;

# uncomment this to run the ### lines
#use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'tree_type',
      share_key       => 'tree_type_rationalstree',
      display         => 'Tree Type',
      type            => 'enum',
      default         => 'SB',
      choices         => ['SB','CW','AYT','HCS','Bird','Drib','L',],
      choices_display => ['SB','CW','AYT','HCS','Bird','Drib','L',],
    },
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;
sub x_minimum {
  my ($self) = @_;
  return ($self->{'tree_type'} eq 'L' ? 0 : 1);
}
use constant y_minimum => 1;
use constant gcdxy_maximum => 1;  # no common factor
use constant tree_num_children_list => (2); # complete binary tree
use constant tree_n_to_subheight => undef; # complete tree, all infinity

{
  my %absdy_minimum = (# SB   => 0,
                       CW   => 1,
                       # AYT  => 0,
                       # Bird => 0,
                       # Drib => 0,
                       L    => 1);
  sub absdy_minimum {
    my ($self) = @_;
    return $absdy_minimum{$self->{'tree_type'}} || 0;
  }
}

{
  # Drib apparent minimum dX=k dY=2*k+1 approaches dX=1,dY=2
  my %dir_minimum_dxdy = (CW   => [0,1],
                          Drib => [1,2],
                          L    => [1,1], # at N=0 dX=1,dY=1
                         );
  sub dir_minimum_dxdy {
    my ($self) = @_;
    return @{$dir_minimum_dxdy{$self->{'tree_type'}} || [1,0]};
  }
}
{
  my %dir_maximum_dxdy
    = (SB   => [1,-1],
       # CW   => [0,0],

       Bird => [1,-1],
       # Drib => [0,0],

       HCS  => [2,-1],
       # AYT  => [0,0],
       # L    => [0,0], # at 2^k-1 dX=k+1,dY=-1 so approach Dir=4
      );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{$self->{'tree_type'}} || [0,0]};
  }
}

#------------------------------------------------------------------------------

my %attributes = (CW   => [ n_start => 1, ],
                  SB   => [ n_start => 1, reverse_bits => 1 ],
                  Drib => [ n_start => 1, alternating => 1 ],
                  Bird => [ n_start => 1, alternating => 1, reverse_bits => 1 ],
                  AYT  => [ n_start => 1, sep1s => 1 ],
                  HCS  => [ n_start => 1, sep1s => 1, reverse_bits => 1 ],
                  L    => [ n_start => 0 ],
                 );

sub new {
  my $self = shift->SUPER::new(@_);

  my $tree_type = ($self->{'tree_type'} ||= 'SB');
  my $attributes = $attributes{$tree_type}
    || croak "Unrecognised tree type: ",$tree_type;
  %$self = (%$self, @$attributes);

  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### RationalsTree n_to_xy(): "$n"

  if ($n < $self->{'n_start'}) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  # what to do for fractional $n?
  {
    my $int = int($n);
    if ($n != $int) {
      ### frac ...
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      ### x1,y1: "$x1, $y1"
      ### x2,y2: "$x2, $y2"
      ### dx,dy: "$dx, $dy"
      ### result: ($frac*$dx + $x1).', '.($frac*$dy + $y1)
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  my $zero = ($n * 0);  # inherit bignum 0
  my $one = $zero + 1;  # inherit bignum 1

  if ($self->{'n_start'} == 0) {
    # L tree adjust;
    $n += 2;
  }

  my @nbits = bit_split_lowtohigh($n);
  pop @nbits;
  ### lowtohigh sans high: @nbits

  if (! $self->{'reverse_bits'}) {
    @nbits = reverse @nbits;
    ### reverse to: @nbits
  }

  my $x = $one;
  my $y = $one;

  if ($self->{'sep1s'}) {
    foreach my $nbit (@nbits) {
      $x += $y;
      if ($nbit) {
        ($x,$y) = ($y,$x);
      }
    }

  } elsif ($self->{'alternating'}) {
    foreach my $nbit (@nbits) {
      ($x,$y) = ($y,$x);
      if ($nbit) {
        $x += $y;     # (x,y) -> (x+y,x), including swap
      } else {
        $y += $x;     # (x,y) -> (y,x+y), including swap
      }
    }

  } elsif ($self->{'tree_type'} eq 'L') {
    my $sub = 2;
    foreach my $nbit (@nbits) {
      if ($nbit) {
        $y += $x;     # (x,y) -> (x,x+y)
        $sub = 0;
      } else {
        $x += $y;     # (x,y) -> (x+y,y)
      }
    }
    $x -= $sub;   # -2 at N=00...000 all zero bits

  } else {
    ### nbits apply CW: @nbits
    foreach my $nbit (@nbits) {   # high to low
      if ($nbit) {
        $x += $y;     # (x,y) -> (x+y,y)
      } else {
        $y += $x;     # (x,y) -> (x,x+y)
      }
    }
  }
  ### result: "$x, $y"
  return ($x,$y);
}

sub xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($self->{'tree_type'} eq 'L' && $x == 0 && $y == 1) {
    return 1;
  }
  if ($x < 1
      || $y < 1
      || ! _coprime($x,$y)) {
    return 0;
  }
  return 1;
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  $x = round_nearest ($x);
  $y = round_nearest ($y);
  ### RationalsTree xy_to_n(): "$x,$y   $self->{'tree_type'}"

  if ($x < $self->{'n_start'} || $y < 1) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  if (is_infinite($y)) {
    return $y;
  }

  my @quotients = _xy_to_quotients($x,$y)
    or return undef;  # $x,$y have a common factor
  ### @quotients

  my @nbits;
  if ($self->{'sep1s'}) {
    $quotients[0]++;  # the integer part, making it 1 or more
    foreach my $q (@quotients) {
      push @nbits, (0) x ($q-1), 1;   # runs of "000..0001"
    }
    pop @nbits;  # no high 1-bit separator

  } else {
    if ($quotients[0] < 0) {   # X=0,Y=1 in tree_type="L"
      return $self->{'n_start'};
    }

    my $bit = 1;
    foreach my $q (@quotients) {
      push @nbits, ($bit) x $q;
      $bit ^= 1;     # alternate runs of "00000" or "11111"
    }
    ### nbits in quotient order: @nbits

    if ($self->{'alternating'}) {
      # Flip every second bit, starting from the second lowest.
      for (my $i = 1; $i <= $#nbits; $i += 2) {
        $nbits[$i] ^= 1;
      }
    }

    if ($self->{'tree_type'} eq 'L') {
      # Flip all bits.
      my $anyones = 0;
      foreach my $nbit (@nbits) {
        $nbit ^= 1;   # mutate array
        $anyones ||= $nbit;
      }
      unless ($anyones) {
        push @nbits, 0,0;
      }
    }
  }

  if ($self->{'reverse_bits'}) {
    @nbits = reverse @nbits;
  }
  push @nbits, 1;   # high 1-bit

  ### @nbits
  my $n = digit_join_lowtohigh (\@nbits, 2,
                                $x*0*$y);   # inherit bignum 0
  if ($self->{'tree_type'} eq 'L') {
    return $n-2;
  } else {
    return $n;
  }
}

# Return a list of the quotients from Euclid's greatest common divisor
# algorithm on X,Y.  This is also the terms of the continued fraction
# expansion of rational X/Y.
#
# The last term, the last in the list, is decremented since this is what the
# code above requires.  This term is the top-most quotient in for example
# gcd(7,1) is 7=7*1+0 with q=7 returned as 6.
#
# If $x,$y have a common factor then the return is an empty list.
# If $x,$y have no common factor then the returned list is always one or
# more quotients.
#
sub _xy_to_quotients {
  my ($x,$y) = @_;
  my @ret;
  for (;;) {
    my ($q, $r) = _divrem($x,$y);
    push @ret, $q;
    last unless $r;
    $x = $y;
    $y = $r;
  }

  if ($y > 1) {
    ### found Y>1 common factor, no N at this X,Y ...
    return;
  }
  $ret[-1]--;
  return @ret;
}


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### rect_to_n_range()

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### $x2
  ### $y2

  if ($x2 < 1 || $y2 < 1) {
    ### no values, rect below first quadrant
    if ($self->{'n_start'}) {
      return (1,0);
    } else {
      return (0,0);
    }
  }

  my $zero = ($x1 * 0 * $y1 * $x2 * $y2);  # inherit bignum
  ### $zero

  if ($x1 < 1) { $x1 = 1; }
  if ($y1 < 1) { $y1 = 1; }

  # # big x2, small y1
  # # big y2, small x1
  # my $level = _bingcd_max ($y2,$x1);
  # ### $level
  # {
  #   my $l2 = _bingcd_max ($x2,$y1);
  #   ### $l2
  #   if ($l2 > $level) { $level = $l2; }
  # }

  my $level = max($x1,$x2,$y1,$y2);

  return ($self->{'n_start'},
          $self->{'n_start'} + (2+$zero) ** ($level + 3));
}

sub _bingcd_max {
  my ($x,$y) = @_;
  ### _bingcd_max(): "$x,$y"

  if ($x < $y) { ($x,$y) = ($y,$x) }

  ### div: int($x/$y)
  ### bingcd: int($x/$y) + $y

  return int($x/$y) + $y + 1;
}

#   ### fib: _fib_log($y)
# # ENHANCE-ME: log base PHI, or something close for BigInt
# # 2*log2() means log base sqrt(2)=1.4 instead of PHI=1.6
# #
# # use constant 1.02; # for leading underscore
# # use constant _PHI => (1 + sqrt(5)) / 2;
# #
# sub _fib_log {
#   my ($x) = @_;
#   ### _fib_log(): $x
#   my $f0 = ($x * 0);
#   my $f1 = $f0 + 1;
#   my $count = 0;
#   while ($x > $f0) {
#     $count++;
#     ($f0,$f1) = ($f1,$f0+$f1);
#   }
#   return $count;
# }

#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

# N=1 basis children 2N,2N+1
# N=S basis 2(N-(S-1))+(S-1)
#           = 2N - 2(S-1) + (S-1)
#           = 2N - (S-1)
sub tree_n_children {
  my ($self, $n) = @_;
  my $n_start = $self->{'n_start'};
  if ($n >= $n_start) {
    $n = 2*$n - $n_start;
    return ($n+1, $n+2);
  } else {
    return;
  }
}
sub tree_n_num_children {
  my ($self, $n) = @_;
  return ($n >= $self->{'n_start'} ? 2 : undef);
}
sub tree_n_parent {
  my ($self, $n) = @_;
  $n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef
  if ($n > 0) {
    return int(($n-1)/2) + $self->{'n_start'};
  } else {
    return undef;
  }
}
sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### RationalsTree tree_n_to_depth(): $n
  $n = $n - $self->{'n_start'}; # N=0 basis, and warn if $n==undef
  unless ($n >= 0) {
    return undef;
  }
  my ($pow, $exp) = round_down_pow ($n+1, 2);
  return $exp;
}

sub tree_depth_to_n {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? 2**$depth + $self->{'n_start'}-1
          : undef);
}
# (2^(d+1)+s-1)-1 = 2^(d+1)+s-2
sub tree_depth_to_n_end {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? 2**($depth+1) + $self->{'n_start'}-2
          : undef);
}
sub tree_depth_to_n_range {
  my ($self, $depth) = @_;
  if ($depth >= 0) {
    my $pow = 2**$depth;
    return ($pow + $self->{'n_start'}-1, 2*$pow + $self->{'n_start'}-2);
  }
  return; # no such $depth
}
sub tree_depth_to_width {
  my ($self, $depth) = @_;
  return ($depth >= 0
          ? 2**$depth
          : undef);
}

1;
__END__


  # xy_to_n() post-processing CW to make AYT
  #
  # if ($self->{'tree_type'} eq 'AYT') {
  #   # AYT shift-xor "N xor (N<<1)" each bit xor with the one below it.  But
  #   # the high 1-bit is left unchanged, hence "$#nbits-1".  At the low end
  #   # for "N<<1" a 1-bit is shifted in, which is arranged by letting $i-1
  #   # become -1 to get the endmost array element which is the high 1-bit.
  #   foreach my $i (reverse 0 .. $#nbits-1) {
  #     $nbits[$i] ^= $nbits[$i-1];
  #   }
  # }


=for stopwords eg Ryde OEIS ie Math-PlanePath coprime encodings Moritz Achille Brocot Stern-Brocot mediant Calkin Wilf Calkin-Wilf 1abcde 1edcba Andreev Yu-Ting Shen AYT Ralf Hinze Haskell subtrees xoring Drib RationalsTree unflipped GCD Luschny Jerzy Czyz Minkowski Nstart Shallit's HCS Ndepth N-Ndepth Nparent subtree LRRL parameterization parameterized Jacobsthal Thue-Morse ceil Matematicheskoe Prosveshchenie Ser DOI

=head1 NAME

Math::PlanePath::RationalsTree -- rationals by tree

=head1 SYNOPSIS

 use Math::PlanePath::RationalsTree;
 my $path = Math::PlanePath::RationalsTree->new (tree_type => 'SB');
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path enumerates reduced rational fractions X/Y E<gt> 0, ie. X and Y
having no common factor.

The rationals are traversed by rows of a binary tree which represents a
coprime pair X,Y by steps of a subtraction-only greatest common divisor
algorithm which proves them coprime.  Or equivalently by bit runs with
lengths which are the quotients in the division-based Euclidean GCD
algorithm and which are also the terms in the continued fraction
representation of X/Y.

The SB, CW, AYT, HCS, Bird and Drib trees all have the same set of X/Y
rationals in a row, but in a different order due to different encodings of
the N value.  See the author's mathematical write-up for a proof that these
are the only trees with a fixed set of matrices.

=over

L<http://user42.tuxfamily.org/rationals/index.html>

=back

The bit runs mean that N values are quite large for relatively modest sized
rationals.  For example in the SB tree 167/3 is N=288230376151711741, a
58-bit number.  The tendency is for the tree to make excursions out to large
rationals while only slowly filling in small ones.  The worst is the integer
X/1 for which N has X many bits, and similarly 1/Y is Y bits.

See F<examples/rationals-tree.pl> in the Math-PlanePath sources for a
printout of all the trees.

=head2 Stern-Brocot Tree

X<Stern, Moritz>X<Brocot, Achille>The default C<tree_type=E<gt>"SB"> is the
tree of Moritz Stern and Achille Brocot.

    depth    N                                                  
    -----  -------                                              
      0      1                         1/1                      
                                 ------   ------
      1    2 to 3             1/2               2/1             
                             /    \            /   \
      2    4 to 7         1/3      2/3      3/2      3/1        
                          | |      | |      | |      | |
      3    8 to 15     1/4  2/5  3/5 3/4  4/3 5/3  5/2 4/1      

Within a row the fractions increase in value.  Each row of the tree is a
repeat of the previous row as first X/(X+Y) and then (X+Y)/Y.  For example

    depth=1    1/2, 2/1

    depth=2    1/3, 2/3    X/(X+Y) of previous row
               3/2, 3/1    (X+Y)/Y of previous row

Plotting the N values by X,Y is as follows.  The unused X,Y positions are
where X and Y have a common factor.  For example X=6,Y=2 has common factor 2
so is never reached.

    tree_type => "SB"

    10  |    512        35                  44       767
     9  |    256   33        39   40        46  383       768
     8  |    128        18        21       191       384
     7  |     64   17   19   20   22   95       192   49   51
     6  |     32                  47        96
     5  |     16    9   10   23        48   25   26   55
     4  |      8        11        24        27        56
     3  |      4    5        12   13        28   29        60
     2  |      2         6        14        30        62
     1  |      1    3    7   15   31   63  127  255  511 1023
    Y=0 |
         ----------------------------------------------------
         X=0   1    2    3    4    5    6    7    8    9   10

The X=1 vertical is the fractions 1/Y which is at the left of each tree row,
at N value

    Nstart = 2^depth

The Y=1 horizontal is the X/1 integers at the end each row which is

    Nend = 2^(depth+1)-1

Numbering nodes of the tree by rows starting from 1 means N without the high
1 bit is the offset into the row.  For example binary N="1011" is "011"=3
into the row.  Those bits after the high 1 are also the directions to follow
down the tree to a node, with 0=left and 1=right.  So N="1011" binary goes
from the root 0=left then twice 1=right to reach X/Y=3/4 at N=11 decimal.

=cut

# O/O O/E E/O   X/(X+Y) -> O/E O/O E/O        A B C -> B A C
#               (X+Y)/Y -> E/O O/E O/O              -> C B A

=pod

=head2 Stern-Brocot Mediant

Writing the parents between the children as an "in-order" tree traversal to
a given depth has all values in increasing order (the same as each row
individually is in increasing order).

                 1/1
         1/2      |      2/1
     1/3  |  2/3  |  3/2  |  3/1
      |   |   |   |   |   |   |

     1/3 1/2 2/3 1/1 3/2 2/1 3/1
                    ^
                    |
                    next level (1+3)/(1+2) = 4/3 mediant

New values at the next level of this flattening are a "mediant"
(x1+x2)/(y1+y2) formed from the left and right parent.  So the next level
4/3 shown is left parent 1/1 and right parent 3/2 giving mediant
(1+3)/(1+2)=4/3.  At the left end a preceding 0/1 is imagined.  At the right
end a following 1/0 is imagined, so as to have 1/(depth+1) and (depth+1)/1
at the ends for a total 2^depth many new values.

The turn sequence left or right along the row depth E<gt>= 2 is by a
repeating LRRL pattern, except the first and last are always R.  (See the
author's mathematical write-up for details.)

    RRRL,LRRL,LRRL,LRRL,LRRL,LRRL,LRRL,LRRR   # row N=32 to N=63

=head2 Calkin-Wilf Tree

X<Calkin, Neil>X<Wilf, Herbert>C<tree_type=E<gt>"CW"> selects the tree of
Calkin and Wilf,

=over

Neil Calkin and Herbert Wilf, "Recounting the Rationals", American
Mathematical Monthly, volume 107, number 4, April 2000, pages 360-363.

L<http://www.math.upenn.edu/~wilf/reprints.html>
L<http://www.math.upenn.edu/~wilf/website/recounting.pdf>
L<http://www.jstor.org/stable/2589182>

=back

As noted above, the values within each row are the same as the Stern-Brocot,
but in a different order.

    N=1                             1/1
                              ------   ------
    N=2 to N=3             1/2               2/1
                          /    \            /    \
    N=4 to N=7         1/3      3/2      2/3      3/1
                       | |      | |      | |      | |
    N=8 to N=15     1/4  4/3  3/5 5/2  2/5 5/3  3/4 4/1

Going by rows the denominator of one value becomes the numerator of the
next.  So at 4/3 the denominator 3 becomes the numerator of 3/5 to the
right.  These values are Stern's diatomic sequence.

Each row is symmetric in reciprocals, ie. reading from right to left is the
reciprocals of reading left to right.  The numerators read left to right are
the denominators read right to left.

A node descends as

          X/Y
        /     \
    X/(X+Y)  (X+Y)/Y

Taking these formulas in reverse up the tree shows how it relates to a
subtraction-only greatest common divisor.  At a given node the smaller of P
or Q is subtracted from the bigger,

       P/(Q-P)         (P-Q)/P
      /          or        \
    P/Q                    P/Q

Plotting the N values by X,Y is as follows.  The X=1 vertical and Y=1
horizontal are the same as the SB above, but the values in between are
re-ordered.

    tree_type => "CW"

    10  |      512        56                  38      1022
     9  |      256   48        60   34        46  510       513
     8  |      128        20        26       254       257
     7  |       64   24   28   18   22  126       129   49   57
     6  |       32                  62        65
     5  |       16   12   10   30        33   25   21   61
     4  |        8        14        17        29        35
     3  |        4    6         9   13        19   27        39
     2  |        2         5        11        23        47
     1  |        1    3    7   15   31   63  127  255  511 1023
    Y=0 |
         -------------------------------------------------------------
           X=0   1    2    3    4    5    6    7    8    9   10

At each node the left leg is S<X/(X+Y) E<lt> 1> and the right leg is
S<(X+Y)/Y E<gt> 1>, which means N is even above the X=Y diagonal and odd
below.  In general each right leg increments the integer part of the
fraction,

    X/Y                       right leg each time
    (X+Y)/Y   = 1 + X/Y
    (X+2Y)/Y  = 2 + X/Y
    (X+3Y)/Y  = 3 + X/Y
    etc

This means the integer part is the trailing 1-bits of N,

    floor(X/Y) = count trailing 1-bits of N
    eg. 7/2 is at N=23 binary "10111"
        which has 3 trailing 1-bits for floor(7/2)=3

N values for the SB and CW trees are converted by reversing bits except the
highest.  So at a given X,Y position

    SB  N = 1abcde         SB <-> CW by reversing bits
    CW  N = 1edcba         except the high 1-bit

For example at X=3,Y=4 the SB tree has N=11 = "1011" binary and the CW has
N=14 binary "1110", a reversal of the bits below the high 1.

N to X/Y in the CW tree can be calculated keeping track of just an X,Y pair
and descending to X/(X+Y) or (X+Y)/Y using the bits of N from high to low.
The relationship between the SB and CW N's means the same can be used to
calculate the SB tree by taking the bits of N from low to high instead.

See also L<Math::PlanePath::ChanTree> for a generalization of CW to ternary
or higher trees, ie. descending to 3 or more children at each node.

=head2 Yu-Ting and Andreev Tree

X<Andreev, D.N.>X<Yu-Ting, Shen>C<tree_type=E<gt>"AYT"> selects the tree
described independently by Yu-Ting and Andreev.

=over

Shen Yu-Ting, "A Natural Enumeration of Non-Negative Rational Numbers
-- An Informal Discussion", American Mathematical Monthly, 87, 1980,
pages 25-29.  L<http://www.jstor.org/stable/2320374>

D. N. Andreev, "On a Wonderful Numbering of Positive Rational Numbers",
Matematicheskoe Prosveshchenie, Ser. 3, 1, 1997, pages 126-134
L<http://mi.mathnet.ru/mp12>

=back

=cut

# Andreev also at
# L<http://files.school-collection.edu.ru/dlrstore/d62f7b96-a780-11dc-945c-d34917fee0be/i2126134.pdf>

=pod

Their constructions are a one-to-one mapping between integer N and rational
X/Y as a way of enumerating the rationals.  This is not designed to be a
tree as such, but the result is the same 2^level rows as the above trees.
The X/Y values within each row are the same, but in a different order.

    N=1                             1/1
                              ------   ------
    N=2 to N=3             2/1               1/2
                          /    \            /    \
    N=4 to N=7         3/1      1/3      3/2      2/3
                       | |      | |      | |      | |
    N=8 to N=15     4/1  1/4  4/3 3/4  5/2 2/5  5/3 3/5

Each fraction descends as follows.  The left is an increment and the right
is reciprocal of the increment.

            X/Y
          /     \
    X/Y + 1     1/(X/Y + 1)

which means

          X/Y
        /     \
    (X+Y)/Y  Y/(X+Y)

The left leg (X+Y)/Y is the same the CW has on its right leg.  But Y/(X+Y)
is not the same as the CW (the other there being X/(X+Y)).

The left leg increments the integer part, so the integer part is given by
(in a fashion similar to CW 1-bits above)

    floor(X/Y) = count trailing 0-bits of N
                 plus one extra if N=2^k

N=2^k is one extra because its trailing 0-bits started from N=1 where
floor(1/1)=1 whereas any other odd N starts from some floor(X/Y)=0.

X<Fibonacci numbers>The Y/(X+Y) right leg forms the Fibonacci numbers
F(k)/F(k+1) at the end of each row, ie. at Nend=2^(level+1)-1.  And as noted
by Andreev, successive right leg fractions N=4k+1 and N=4k+3 add up to 1,

    X/Y at N=4k+1  +  X/Y at N=4k+3  =  1
    Eg. 2/5 at N=13 and 3/5 at N=15 add up to 1

Plotting the N values by X,Y gives

=cut

# math-image --path=RationalsTree,tree_type=AYT --all --output=numbers_xy --size=70x11

=pod

    tree_type => "AYT"

    10  |     513        41                  43       515
     9  |     257   49        37   39        51  259       514
     8  |     129        29        31       131       258
     7  |      65   25   21   23   27   67       130   50   42
     6  |      33                  35        66
     5  |      17   13   15   19        34   26   30   38
     4  |       9        11        18        22        36
     3  |       5    7        10   14        20   28        40
     2  |       3         6        12        24        48
     1  |       1    2    4    8   16   32   64  128  256  512
    Y=0 |
         ----------------------------------------------------
          X=0   1    2    3    4    5    6    7    8    9   10

N=1,2,4,8,etc on the Y=1 horizontal is the X/1 integers at
Nstart=2^level=2^X.  N=1,3,5,9,etc in the X=1 vertical is the 1/Y
fractions.  Those fractions always immediately follow the
corresponding integer, so N=Nstart+1=2^(Y-1)+1 in that column.

In each node the left leg (X+Y)/Y E<gt> 1 and the right leg Y/(X+Y) E<lt> 1,
which means odd N is above the X=Y diagonal and even N is below.

X<Kepler, Johannes>The tree structure corresponds to Johannes Kepler's tree
of fractions (see L<Math::PlanePath::FractionsTree>).  That tree starts from
1/2 and makes fractions A/B with AE<lt>B by descending to A/(A+B) and
B/(A+B).  Those descents are the same as the AYT tree and the two are
related simply by

    A = Y        AYT denominator is Kepler numerator
    B = X+Y      AYT sum num+den is the Kepler denominator

    X = B-A      inverse
    Y = A

=head2 HCS Continued Fraction

X<Hanna, Paul D.>X<Czyz, Jerzy>X<Self, Will>C<tree_type=E<gt>"HCS"> selects
continued fraction terms coded as bit runs 1000...00 from high to low, as
per Paul D. Hanna and independently Czyz and Self.

=over

L<http://oeis.org/A071766>

Jerzy Czyz and William Self, "The Rationals Are Countable: Euclid's
Proof", The College Mathematics Journal, volume 34, number 5,
November 2003, page 367.
L<http://www.jstor.org/stable/3595818>

L<http://www.cut-the-knot.org/do_you_know/countRatsCF.shtml>
L<http://www.dm.unito.it/~cerruti/doc-html/tremattine/tre_mattine.pdf>

=back

This arises also in a radix=1 variation of Jeffrey Shallit's digit-based
continued fraction encoding.  See L<Math::PlanePath::CfracDigits/Radix 1>.

If the continued fraction of X/Y is

                 1
    X/Y = a + ------------             a >= 0
                     1
              b + -----------         b,c,etc >= 1
                        1
                  c + -------
                    ... +  1
                          ---          z >= 2
                           z

then the N value is bit runs of lengths a,b,c etc.

    N = 1000 1000 1000 ... 1000
        \--/ \--/ \--/     \--/
         a+1   b    c       z-1

Each group is 1 or more bits.  The +1 in "a+1" makes the first group 1 or
more bits, since a=0 occurs for any X/YE<lt>=1.  The -1 in "z-1" makes the
last group 1 or more since zE<gt>=2.

    N=1                             1/1
                              ------   ------
    N=2 to N=3             2/1               1/2
                          /    \            /    \
    N=4 to N=7         3/1      3/2      1/3      2/3
                       | |      | |      | |      | |
    N=8 to N=15      4/1 5/2  4/3 5/3  1/4 2/5  3/4 3/5

The result is a bit reversal of the N values in the AYT tree.

    AYT  N = binary "1abcde"      AYT <-> HCS bit reversal
    HCS  N = binary "1edcba"

For example at X=4,Y=7 the AYT tree is N=11 binary "10111" whereas HCS there
has N=30 binary "11110", a reversal of the bits below the high 1.

Plotting by X,Y gives

=cut

# math-image --path=RationalsTree,tree_type=HCS --all --output=numbers_xy --size=70x11

=pod

    tree_type => "HCS"

    10  |     768        50                  58       896
     9  |     384   49        52   60        57  448       640
     8  |     192        27        31       224       320
     7  |      96   25   26   30   29  112       160   41   42
     6  |      48                  56        80
     5  |      24   13   15   28        40   21   23   44
     4  |      12        14        20        22        36
     3  |       6    7        10   11        18   19        34
     2  |       3         5         9        17        33
     1  |       1    2    4    8   16   32   64  128  256  512
    Y=0 |
        +-----------------------------------------------------
          X=0   1    2    3    4    5    6    7    8    9   10

N=1,2,4,etc in the row Y=1 are powers-of-2, being integers X/1 having just a
single group of bits N=1000..000.

N=1,3,6,12,etc in the column X=1 are 3*2^(Y-1) corresponding to continued
fraction S<0 + 1/Y> so terms 0,Y making runs 1,Y-1 and so bits N=11000...00.

X<Thue-Morse>The turn sequence left or right following successive X,Y points
is the Thue-Morse sequence.  A proof of this can be found in the author's
mathematical write-up (above).

    count 1-bits in N+1      turn at N
    -------------------      ---------
           odd                 right
           even                left

=head2 Bird Tree

X<Hinze, Ralf>C<tree_type=E<gt>"Bird"> selects the Bird tree,

=over

Ralf Hinze, "Functional Pearls: The Bird tree", Journal of Functional
Programming, volume 19, issue 5, September 2009, pages 491-508.  DOI
10.1017/S0956796809990116
L<http://www.cs.ox.ac.uk/ralf.hinze/publications/Bird.pdf>

=back

It's expressed recursively, illustrating Haskell programming features.  The
left subtree is the tree plus one and take the reciprocal.  The right
subtree is conversely the reciprocal first then add one,

       1             1
    --------  and  ---- + 1
    tree + 1       tree

which means Y/(X+Y) and (X+Y)/X taking N bits low to high.

    N=1                             1/1
                              ------   ------
    N=2 to N=3             1/2               2/1
                          /    \            /    \
    N=4 to N=7         2/3      1/3      3/1      3/2
                       | |      | |      | |      | |
    N=8 to N=15     3/5  3/4  1/4 2/5  5/2 4/1  4/3 5/3

Plotting by X,Y gives

    tree_type => "Bird"

    10  |     682        41                  38       597
     9  |     341   43        45   34        36  298       938
     8  |     170        23        16       149       469
     7  |      85   20   22   17   19   74       234   59   57
     6  |      42                  37       117
     5  |      21   11    8   18        58   28   31   61
     4  |      10         9        29        30        50
     3  |       5    4        14   15        25   24        54
     2  |       2         7        12        27        52
     1  |       1    3    6   13   26   53  106  213  426  853
    Y=0 |
         ----------------------------------------------------
          X=0   1    2    3    4    5    6    7    8    9   10

Notice that unlike the other trees N=1,2,5,10,etc in the X=1 vertical for
fractions 1/Y is not the row start or end, but instead are on a zigzag
through the middle of the tree binary N=1010...etc alternate 1 and 0 bits.
The integers X/1 in the Y=1 vertical are similar, but N=11010...etc starting
the alternation from a 1 in the second highest bit, since those integers are
in the right hand half of the tree.

The Bird tree N values are related to the SB tree by inverting every second
bit starting from the second after the high 1-bit,

    Bird N=1abcdefg..    binary
             101010..    xor, so b,d,f etc flip 0<->1
    SB   N=1aBcDeFg..         to make B,D,F

For example 3/4 in the SB tree is at N=11 = binary 1011.  Xor with 0010 for
binary 1001 N=9 which is 3/4 in the Bird tree.  The same xor goes back the
other way Bird tree to SB tree.

This xoring is a mirroring in the tree, swapping left and right at each
level.  Only every second bit is inverted because mirroring twice puts it
back to the ordinary way on even rows.

=head2 Drib Tree

X<Hinze, Ralf>C<tree_type=E<gt>"Drib"> selects the Drib tree by Ralf Hinze.

=over

L<http://oeis.org/A162911>

=back

It reverses the bits of N in the Bird tree (in a similar way that the SB and
CW are bit reversals of each other).

    N=1                             1/1
                              ------   ------
    N=2 to N=3             1/2               2/1
                          /    \            /    \
    N=4 to N=7         2/3      3/1      1/3      3/2
                       | |      | |      | |      | |
    N=8 to N=15     3/5  5/2  1/4 4/3  3/4 4/1  2/5 5/3

The descendants of each node are

          X/Y
        /     \
    Y/(X+Y)  (X+Y)/X

X<Fibonacci numbers>The endmost fractions of each row are Fibonacci numbers,
F(k)/F(k+1) on the left and F(k+1)/F(k) on the right.

=cut

# math-image --path=RationalsTree,tree_type=Drib --all --output=numbers_xy

=pod

    tree_type => "Drib"

    10  |     682        50                  44       852
     9  |     426   58        54   40        36  340       683
     8  |     170        30        16       212       427
     7  |     106   18   22   24   28   84       171   59   51
     6  |      42                  52       107
     5  |      26   14    8   20        43   19   31   55
     4  |      10        12        27        23        41
     3  |       6    4        11   15        25   17        45
     2  |       2         7         9        29        37
     1  |       1    3    5   13   21   53   85  213  341  853
    Y=0 |
         -------------------------------------------------------
         X=0    1    2    3    4    5    6    7    8    9   10

In each node descent the left Y/(X+Y) E<lt> 1 and the right (X+Y)/X E<gt> 1,
which means even N is above the X=Y diagonal and odd N is below.

Because Drib/Bird are bit reversals like CW/SB are bit reversals, the xor
procedure described above which relates BirdE<lt>-E<gt>SB applies to
DribE<lt>-E<gt>CW, but working from the second lowest bit upwards, ie. xor
binary "0..01010".  For example 4/1 is at N=15 binary 1111 in the CW tree.
Xor with 0010 for 1101 N=13 which is 4/1 in the Drib tree.

=head2 L Tree

X<Luschny, Peter>C<tree_type=E<gt>"L"> selects the L-tree by Peter Luschny.

=over

L<http://www.oeis.org/wiki/User:Peter_Luschny/SternsDiatomic>

=back

It's a row-reversal of the CW tree with a shift to include zero as 0/1.

    N=0                             0/1
                              ------   ------
    N=1 to N=2             1/2               1/1
                          /    \            /    \
    N=3 to N=8         2/3      3/2      1/3      2/1
                       | |      | |      | |      | |
    N=9 to N=16     3/4  5/3  2/5 5/2  3/5 4/3  1/4 3/1

Notice in the N=9 to N=16 row rationals 3/4 to 1/4 are the same as in the CW
tree but read right-to-left.

=cut

# math-image --path=RationalsTree,tree_type=L --all --output=numbers_xy --size=70x11

=pod

    tree_type => "L"

    10  |    1021        37                  55       511
     9  |     509   45        33   59        47  255      1020
     8  |     253        25        19       127       508
     7  |     125   21   17   27   23   63       252   44   36
     6  |      61                  31       124
     5  |      29    9   11   15        60   20   24   32
     4  |      13         7        28        16        58
     3  |       5    3        12    8        26   18        54
     2  |       1         4        10        22        46
     1  |  0    2    6   14   30   62  126  254  510 1022 2046
    Y=0 |
         -------------------------------------------------------
         X=0    1    2    3    4    5    6    7    8    9   10

N=0,2,6,14,30,etc along the row at Y=1 are powers 2^(X+1)-2.
N=1,5,13,29,etc in the column at X=1 are similar powers 2^Y-3.

=head2 Common Characteristics

The SB, CW, Bird, Drib, AYT and HCS trees have the same set of rationals in
each row, just in different orders.  The properties of Stern's diatomic
sequence mean that within a row the totals are

    row N=2^depth to N=2^(depth+1)-1 inclusive

      sum X/Y     = (3 * 2^depth - 1) / 2
      sum X       = 3^depth
      sum 1/(X*Y) = 1

For example the SB tree depth=2, N=4 to N=7,

    sum X/Y     = 1/3 + 2/3 + 3/2 + 3/1 = 11/2 = (3*2^2-1)/2
    sum X       = 1+2+3+3 = 9 = 3^2
    sum 1/(X*Y) = 1/(1*3) + 1/(2*3) + 1/(3*2) + 1/(3*1) = 1

Many permutations are conceivable within a row, but the ones here have some
relationship to X/Y descendants, tree sub-forms or continued fractions.  As
an encoding of continued fraction terms by bit runs the combinations are

     bit encoding           high to low    low to high
    ----------------        -----------    -----------
    0000 1111 runs              SB             CW
    0101 1010 alternating       Bird           Drib
    1000 1000 runs              HCS            AYT

A run of alternating 101010 ends where the next bit is the oppose of the
expected alternating 0,1.  This is a doubled bit 00 or 11.  An electrical
engineer would think of it as a phase shift.

=head2 Minkowski Question Mark

The Minkowski question mark function is a sum of the terms in the continued
fraction representation of a real number.  If q0,q1,q2,etc are those terms
then the question mark function "?(r)" is

                     1           1           1
    ?(r) = 2 * (1 - ---- * (1 - ---- * (1 - ---- * (1 - ...
                    2^q0        2^q1        2^q2

                     1         1            1
         = 2 * (1 - ---- + --------- - ------------ + ... )
                    2^q0   2^(q0+q1)   2^(q0+q1+q2)

For rational r the continued fraction q0,q1,q2,etc is finite and so the ?(r)
sum is finite and rational.  The pattern of + and - in the terms gives runs
of bits the same as the N values in the Stern-Brocot tree.  The
RationalsTree code can calculate the ?(r) function by

    rational r=X/Y
    N = xy_to_n(X,Y) tree_type=>"SB"
    depth = floor(log2(N))       # row containing N (depth=0 at top)
    Ndepth = 2^depth             # start of row containing N

           2*(N-Ndepth) + 1
    ?(r) = ----------------
                Ndepth

The effect of N-Ndepth is to remove the high 1-bit, leaving an offset into
the row.  2*(..)+1 appends an extra 1-bit at the end.  The division by
Ndepth scales down from integer N to a fraction.

    N    = 1abcdef      integer, in binary
    ?(r) = a.bcdef1     binary fraction

For example ?(2/3) is X=2,Y=3 which is N=5 in the SB tree.  It is at
depth=2, Ndepth=2^2=4, and so ?(2/3)=(2*(5-4)+1)/4=3/4.  Or written in
binary N=101 gives Ndepth=100 and N-Ndepth=01 so 2*(N-Ndepth)+1=011 and
divide by Ndepth=100 for ?=0.11.

In practice this is not a very efficient way to handle the question
function, since the bit runs in the N values may become quite large for
relatively modest fractions.  (L<Math::ContinuedFraction> may be better, and
also allows repeating terms from quadratic irrationals to be represented
exactly.)

=head2 Pythagorean Triples

Pythagorean triples A^2+B^2=C^2 can be generated by A=P^2-Q^2, B=2*P*Q.  If
PE<gt>QE<gt>1 with P,Q no common factor and one odd the other even then this
gives all primitive triples, being primitive in the sense of A,B,C no common
factor (L<Math::PlanePath::PythagoreanTree/PQ Coordinates>).

In the Calkin-Wilf tree the parity of X,Y pairs are as follows.  Pairs X,Y
with one odd the other even are N=0 or 2 mod 3.

    CW tree           X/Y
                   --------
    N=0 mod 3      even/odd
    N=1 mod 3      odd/odd
    N=2 mod 3      odd/even

This occurs because the numerators are the Stern diatomic sequence and the
denominators likewise but offset by 1.  The Stern diatomic sequence is a
repeating pattern even,odd,odd (eg. per L<Math::NumSeq::SternDiatomic/Odd
and Even>).

The XE<gt>Y pairs in the CW tree are the right leg of each node, which is N
odd.  so

    CW tree N=3 or 5 mod 6   gives X>Y one odd the other even

    index t=1,2,3,etc to enumerate such pairs
    N = 3*t   if t odd
        3*t-1 if t even

X<Jacobsthal numbers>2 of each 6 points are used.  In a given row it's
width/3 but rounded up or down according to where the 3,5mod6 falls on the
N=2^depth start, which is either floor or ceil according to depth odd or
even,

    NumPQ(depth) = floor(2^depth / 3) for depth=even
                   ceil (2^depth / 3) for depth=odd
      = 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, ...

These are the Jacobsthal numbers, which in binary are 101010...101 and
1010...1011.

For the other tree types the various bit transformations which map N
positions between the trees can be applied to the above N=3or5 mod 6.  The
simplest is the L tree where the N offset and row reversal gives N=0or4
mod 6.

The SB tree is a bit reversal of the CW, as described above, and for the
Pythagorean N this gives

    SB tree N=0 or 2 mod 2 and N="11...." in binary
     gives X>Y one odd the other even

N="11..." binary is the bit reversal of the CW N=odd "1...1" condition.
This bit pattern is those N in the second half of each row, which is where
the X/Y E<gt> 1 rationals occur.  The N=0or2 mod 3 condition is unchanged by
the bit reversal.  N=0or2 mod 3 precisely when bitreverse(N)=0or2 mod 3.

For SB whether it's odd/even or even/odd at N=0or2 mod 3 alternates between
rows.  The two are both wanted, they just happen to switch in each row.

    SB tree X/Y    depth=even     depth=odd
                   ----------     ---------
    N=0 mod 3      odd/even       even/odd
    N=1 mod 3      odd/odd        odd/odd    <- exclude for Pythagorean
    N=2 mod 3      even/odd       odd/even

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over

=item C<$path = Math::PlanePath::RationalsTree-E<gt>new ()>

=item C<$path = Math::PlanePath::RationalsTree-E<gt>new (tree_type =E<gt> $str)>

Create and return a new path object.  C<tree_type> (a string) can be

    "SB"      Stern-Brocot
    "CW"      Calkin-Wilf
    "AYT"     Yu-Ting, Andreev
    "HCS"
    "Bird"
    "Drib"
    "L"

=item C<$n = $path-E<gt>n_start()>

Return the first N in the path.  This is 1 for SB, CW, AYT, HCS, Bird and
Drib, but 0 for L.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which occur in a rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  The range is inclusive.

For reference, C<$n_hi> can be quite large because within each row there's
only one new X/1 integer and 1/Y fraction.  So if X=1 or Y=1 is included
then roughly C<$n_hi = 2**max(x,y)>.  If min(x,y) is bigger than 1 then it
reduces a little to roughly 2**(max/min + min).

=back

=head2 Tree Methods

X<Complete binary tree>Each point has 2 children, so the path is a complete
binary tree.

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the two children of C<$n>, or an empty list if C<$n E<lt> 1>
(ie. before the start of the path).

This is simply C<2*$n, 2*$n+1>.  Written in binary the children are C<$n>
with an extra bit appended, a 0-bit or a 1-bit.

=item C<$num = $path-E<gt>tree_n_num_children($n)>

Return 2, since every node has two children.  If C<$nE<lt>1>, ie. before the
start of the path, then return C<undef>.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>.  Or return C<undef> if C<$n E<lt>= 1> (the
top of the tree).

This is simply Nparent = floor(N/2), ie. strip the least significant bit
from C<$n>.  (Undo what C<tree_n_children()> appends.)

=item C<$depth = $path-E<gt>tree_n_to_depth($n)>

Return the depth of node C<$n>, or C<undef> if there's no point C<$n>.  The
top of the tree at N=1 is depth=0, then its children depth=1, etc.

This is simply floor(log2(N)) since the tree has 2 nodes per point.  For
example N=4 through N=7 are all depth=2.

The L tree starts at N=0 and the calculation becomes floor(log2(N+1)) there.

=item C<$n = $path-E<gt>tree_depth_to_n($depth)>

=item C<$n = $path-E<gt>tree_depth_to_n_end($depth)>

Return the first or last N at tree level C<$depth> in the path, or C<undef>
if nothing at that depth or not a tree.  The top of the tree is depth=0.

The structure of the tree means the first N is at C<2**$depth>, or for the L
tree S<C<2**$depth - 1>>.  The last N is C<2**($depth+1)-1>, or for the L
tree C<2**($depth+1)>.

=back

=head2 Tree Descriptive Methods

=over

=item C<$num = $path-E<gt>tree_num_children_minimum()>

=item C<$num = $path-E<gt>tree_num_children_maximum()>

Return 2 since every node has 2 children so that's both the minimum and
maximum.

=item C<$bool = $path-E<gt>tree_any_leaf()>

Return false, since there are no leaf nodes in the tree.

=back

=cut

# =head1 FORMULAS

=pod

=head1 OEIS

The trees are in Sloane's Online Encyclopedia of Integer Sequences in
various forms,

=over

L<http://oeis.org/A007305> (etc)

=back

    tree_type=SB
      A007305   X, extra initial 0,1
      A047679   Y
      A057431   X,Y pairs (initial extra 0/1,1/0)
      A007306   X+Y sum, Farey 0 to 1 part (extra 1,1)
      A153036   int(X/Y), integer part
      A088696   length of continued fraction SB left half (X/Y<1)

    tree_type=CW
      A002487   X and Y, Stern diatomic sequence (extra 0)
      A070990   Y-X diff, Stern diatomic first diffs (less 0)
      A070871   X*Y product
      A007814   int(X/Y), integer part, count trailing 1-bits
                  which is count trailing 0-bits of N+1
      A086893   N position of Fibonacci F[n+1]/F[n], N = binary 1010..101
      A061547   N position of Fibonacci F[n]/F[n+1], N = binary 11010..10
      A047270   3or5 mod 6, being N positions of X>Y not both odd
                  which can generate primitive Pythagorean triples

    tree_type=AYT
      A020650   X
      A020651   Y (Kepler numerator)
      A086592   X+Y sum (Kepler denominator)
      A135523   int(X/Y), integer part,
                   count trailing 0-bits plus 1 extra if N=2^k

    tree_type=HCS
      A229742   X, extra initial 0/1
      A071766   Y
      A071585   X+Y sum

    tree_type=Bird
      A162909   X
      A162910   Y
      A081254   N of row Y=1,    N = binary 1101010...10
      A000975   N of column X=1, N = binary  101010...10

    tree_type=Drib
      A162911   X
      A162912   Y
      A086893   N of row Y=1,    N = binary 110101..0101 (ending 1)
      A061547   N of column X=1, N = binary  110101..010 (ending 0)

    tree_type=L
      A174981   X
      A002487   Y, same as CW X,Y, Stern diatomic
      A047233   0or4 mod 6, being N positions of X>Y not both odd
                  which can generate primitive Pythagorean triples

    tree_type=SB,CW,AYT,HCS,Bird,Drib,L
      A008776   total X+Y in row, being 2*3^depth

    A000523  tree_n_to_depth(), being floor(log2(N))

    A059893  permutation SB<->CW, AYT<->HCS, Bird<->Drib
               reverse bits below highest
    A153153  permutation CW->AYT, reverse and un-Gray
    A153154  permutation AYT->CW, reverse and Gray code
    A154437  permutation AYT->Drib, Lamplighter low to high
    A154438  permutation Drib->AYT, un-Lamplighter low to high
    A003188  permutation SB->HCS, Gray code shift+xor
    A006068  permutation HCS->SB, Gray code inverse
    A154435  permutation HCS->Bird, Lamplighter bit flips
    A154436  permutation Bird->HCS, Lamplighter variant

    A054429  permutation SB,CW,Bird,Drib N at transpose Y/X,
               (mirror binary tree, runs 0b11..11 down to 0b10..00)
    A004442  permutation AYT N at transpose Y/X, from N=2 onwards
               (xor 1, ie. flip least significant bit)
    A063946  permutation HCS N at transpose Y/X, extra initial 0
               (xor 2, ie. flip second least significant bit)

    A054424  permutation DiagonalRationals -> SB
    A054426  permutation SB -> DiagonalRationals
    A054425  DiagonalRationals -> SB with 0s at non-coprimes
    A054427  permutation coprimes -> SB right hand X/Y>1

    A044051  N+1 of those N where SB and CW have same X,Y
               same Bird<->Drib and HCS<->AYT
               begin N+1 of N binary palindrome below high 1-bit

The sequences marked "extra ..." have one or two extra initial values over
what the RationalsTree here gives, but are the same after that.  And the
Stern first differences "less ..." means it has one less term than what the
code here gives.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::FractionsTree>,
L<Math::PlanePath::CfracDigits>,
L<Math::PlanePath::ChanTree> 

L<Math::PlanePath::CoprimeColumns>,
L<Math::PlanePath::DiagonalRationals>,
L<Math::PlanePath::FactorRationals>,
L<Math::PlanePath::GcdRationals>,
L<Math::PlanePath::PythagoreanTree>

L<Math::NumSeq::SternDiatomic>,
L<Math::ContinuedFraction>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut

#
# =head2 Calkin-Wilf Tree -- X,Y to Next X,Y
#
# Successive values of the CW tree can be calculated using a method be Moshe
# Newman.
# 
#           X                     Y
#     N is ---      N+1 is ---------------
#           Y              X+Y - 2*(X % Y)      0 <= X%Y < Y
#
# This means that the tree X,Y values can be iterated by keeping just a
# current X,Y pair.
# 
#     dX = Y - X
#     dY = X+Y - 2*(X%Y) - Y
#        = X - 2*(X%Y)
#
# floor(X/Y) = count trailing 1-bits of N
#    10111
#    11000  increment
# floor(X/Y) = integer part = first term of continued fraction