File: SierpinskiCurve.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1300 lines) | stat: -rw-r--r-- 37,211 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::SierpinskiCurve;
use 5.004;
use strict;
use List::Util 'sum','first';
#use List::Util 'min','max';
*min = \&Math::PlanePath::_min;
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;

sub x_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 3);
}
sub y_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 5);
}

use constant parameter_info_array =>
  [
   { name        => 'arms',
     share_key   => 'arms_8',
     display     => 'Arms',
     type        => 'integer',
     minimum     => 1,
     maximum     => 8,
     default     => 1,
     width       => 1,
     description => 'Arms',
   },

   { name        => 'straight_spacing',
     display     => 'Straight Spacing',
     type        => 'integer',
     minimum     => 1,
     default     => 1,
     width       => 1,
     description => 'Spacing of the straight line points.',
   },
   { name        => 'diagonal_spacing',
     display     => 'Diagonal Spacing',
     type        => 'integer',
     minimum     => 1,
     default     => 1,
     width       => 1,
     description => 'Spacing of the diagonal points.',
   },
  ];

# Ntop = (4^level)/2 - 1
# Xtop = 3*2^(level-1) - 1
# fill = Ntop / (Xtop*(Xtop-1)/2)
#      -> 2 * ((4^level)/2 - 1) / (3*2^(level-1) - 1)^2
#      -> 2 * ((4^level)/2) / (3*2^(level-1))^2
#      =  4^level / (9*4^(level-1)
#      =  4/9 = 0.444

sub x_negative_at_n {
  my ($self) = @_;
  return $self->arms_count >= 3 ? 2 : undef;
}
sub y_negative_at_n {
  my ($self) = @_;
  return $self->arms_count >= 5 ? 4 : undef;
}

{
  # Note: shared by Math::PlanePath::SierpinskiCurveStair
  my @x_minimum = (undef,
                   1,  # 1 arm
                   0,  # 2 arms
                  );   # more than 2 arm, X goes negative
  sub x_minimum {
    my ($self) = @_;
    return $x_minimum[$self->arms_count];
  }
}
{
  # Note: shared by Math::PlanePath::SierpinskiCurveStair
  my @sumxy_minimum = (undef,
                       1,  # 1 arm, octant and X>=1 so X+Y>=1
                       1,  # 2 arms, X>=1 or Y>=1 so X+Y>=1
                       0,  # 3 arms, Y>=1 and X>=Y, so X+Y>=0
                      );   # more than 3 arm, Sum goes negative so undef
  sub sumxy_minimum {
    my ($self) = @_;
    return $sumxy_minimum[$self->arms_count];
  }
}
use constant sumabsxy_minimum => 1;

# Note: shared by Math::PlanePath::SierpinskiCurveStair
#                 Math::PlanePath::AlternatePaper
#                 Math::PlanePath::AlternatePaperMidpoint
sub diffxy_minimum {
  my ($self) = @_;
  return ($self->arms_count == 1
          ? 1       # octant Y<=X-1 so X-Y>=1
          : undef); # more than 1 arm, DiffXY goes negative
}
use constant absdiffxy_minimum => 1; # X=Y never occurs
use constant rsquared_minimum => 1; # minimum X=1,Y=0

sub dx_minimum {
  my ($self) = @_;
  return - max($self->{'straight_spacing'},
               $self->{'diagonal_spacing'});
}
*dy_minimum = \&dx_minimum;

sub dx_maximum {
  my ($self) = @_;
  return max($self->{'straight_spacing'},
             $self->{'diagonal_spacing'});
}
*dy_maximum = \&dx_maximum;

sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  my $s = $self->{'straight_spacing'};
  my $d = $self->{'diagonal_spacing'};
  return ($s,0,                    # E     eight scaled
          ($d ? ( $d, $d) : ()),   # NE    except s=0
          ($s ? (  0, $s) : ()),   # N     or d=0 skips
          ($d ? (-$d, $d) : ()),   # NW
          ($s ? (-$s,  0) : ()),   # W
          ($d ? (-$d,-$d) : ()),   # SW
          ($s ? (  0,-$s) : ()),   # S
          ($d ? ( $d,-$d) : ()));  # SE

}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef,
                                       21, 20, 27, 36,
                                       29, 12, 12, 13);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}
sub dsumxy_minimum {
  my ($self) = @_;
  return - max($self->{'straight_spacing'},
               2*$self->{'diagonal_spacing'});
}
sub dsumxy_maximum {
  my ($self) = @_;
  return max($self->{'straight_spacing'},
             2*$self->{'diagonal_spacing'});
}
*ddiffxy_minimum = \&dsumxy_minimum;
*ddiffxy_maximum = \&dsumxy_maximum;

use constant dir_maximum_dxdy => (1,-1); # South-East


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);

  $self->{'arms'} = max(1, min(8, $self->{'arms'} || 1));
  $self->{'straight_spacing'} ||= 1;
  $self->{'diagonal_spacing'} ||= 1;
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### SierpinskiCurve n_to_xy(): $n

  if ($n < 0) {
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $int = int($n); # BigFloat int() gives BigInt, use that
  $n -= $int;   # preserve possible BigFloat
  ### $int
  ### $n

  my $arm = _divrem_mutate ($int, $self->{'arms'});

  my $s = $self->{'straight_spacing'};
  my $d = $self->{'diagonal_spacing'};
  my $base = 2*$d+$s;
  my $x = my $y = ($int * 0);  # inherit big 0
  my $len = $x + $base;      # inherit big

  foreach my $digit (digit_split_lowtohigh($int,4)) {
    ### at: "$x,$y  digit=$digit"

    if ($digit == 0) {
      $x = $n*$d + $x;
      $y = $n*$d + $y;
      $n = 0;

    } elsif ($digit == 1) {
      ($x,$y) = ($n*$s - $y + $len-$d-$s,   # rotate +90
                 $x + $d);
      $n = 0;

    } elsif ($digit == 2) {
      # rotate -90
      ($x,$y) = ($n*$d + $y  + $len-$d,
                 -$n*$d - $x + $len-$d-$s);
      $n = 0;

    } else { # digit==3
      $x += $len;
    }
    $len *= 2;
  }

  # n=0 or n=33..33
  $x = $n*$d + $x;
  $y = $n*$d + $y;

  $x += 1;
  if ($arm & 1) {
    ($x,$y) = ($y,$x);   # mirror 45
  }
  if ($arm & 2) {
    ($x,$y) = (-1-$y,$x);   # rotate +90
  }
  if ($arm & 4) {
    $x = -1-$x;   # rotate 180
    $y = -1-$y;
  }

  # use POSIX 'floor';
  # $x += floor($x/3);
  # $y += floor($y/3);

  # $x += floor(($x-1)/3) + floor(($x-2)/3);
  # $y += floor(($y-1)/3) + floor(($y-2)/3);


  ### final: "$x,$y"
  return ($x,$y);
}

my @digit_to_dir = (0, -2, 2, 0);
my @dir8_to_dx = (1, 1, 0,-1, -1, -1,  0, 1);
my @dir8_to_dy = (0, 1, 1, 1,  0, -1, -1,-1);
my @digit_to_nextturn = (-1,   # after digit=0
                         2,    #       digit=1
                         -1);  #       digit=2
sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  if ($n < 0) {
    return;  # first direction at N=0
  }

  my $int = int($n);
  $n -= $int;

  my $arm = _divrem_mutate($int,$self->{'arms'});
  my $lowbit = _divrem_mutate($int,2);
  ### $lowbit
  ### $int

  if (is_infinite($int)) {
    return ($int,$int);
  }
  my @ndigits = digit_split_lowtohigh($int,4);
  ### @ndigits

  my $dir8 = sum(0, map {$digit_to_dir[$_]} @ndigits);
  if ($arm & 1) {
    $dir8 = - $dir8;  # mirrored on second,fourth,etc arm
  }
  $dir8 += ($arm|1);  # NE,NW,SW, or SE

  my $turn;
  if ($n || $lowbit) {
    # next turn

    # lowest non-3 digit, or zero if all 3s (implicit 0 above high digit)
    $turn = $digit_to_nextturn[ first {$_!=3} @ndigits, 0 ];
    if ($arm & 1) {
      $turn = - $turn;  # mirrored on second,fourth,etc arm
    }
  }

  if ($lowbit) {
    $dir8 += $turn;
  }

  my $s = $self->{'straight_spacing'};
  my $d = $self->{'diagonal_spacing'};

  $dir8 &= 7;
  my $spacing = ($dir8 & 1 ? $d : $s);
  my $dx = $spacing * $dir8_to_dx[$dir8];
  my $dy = $spacing * $dir8_to_dy[$dir8];

  if ($n) {
    $dir8 += $turn;
    $dir8 &= 7;
    $spacing = ($dir8 & 1 ? $d : $s);
    $dx += $n*($spacing * $dir8_to_dx[$dir8]
               - $dx);
    $dy += $n*($spacing * $dir8_to_dy[$dir8]
               - $dy);
  }

  return ($dx, $dy);
}

# 2| . 3 .
# 1| 1 . 2
# 0| . 0 .
#  +------
#    0 1 2
#
# 4| . . . 3 .          # diagonal_spacing == 3
# 3| . . . . 2 4        # mod=2*3+1=7
# 2| . . . . . . .
# 1| 1 . . . . . . .
# 0| . 0 . . . . . . 6
#  +------------------
#    0 1 2 3 4 5 6 7 8
#
sub _NOTWORKING__xy_is_visited {
  my ($self, $x, $y) = @_;
  $x = round_nearest($x);
  $y = round_nearest($y);
  my $mod = 2*$self->{'diagonal_spacing'} + $self->{'straight_spacing'};
  return (_rect_within_arms($x,$y, $x,$y, $self->{'arms'})
          && ((($x%$mod)+($y%$mod)) & 1));
}

#   x1    *  x2 *
#    +-----*-+y2*
#    |      *|  *
#    |       *  *
#    |       |* *
#    |       | **
#    +-------+y1*
#   ----------------
#
# arms=5 x1,y2 after X=Y-1 line, so x1 > y2-1, x1 >= y2
# ************
#      x1   *   x2
#      +---*----+y2
#      |  *     |
#      | *      |
#      |*       |
#      *        |
#     *+--------+y1
#    *
#
# arms=7 x1,y1 after X=-2-Y line, so x1 > -2-y1
# ************
# ** +------+
# * *|      |
# *  *      |
# *  |*     |
# *  | *    |
# *y1+--*---+
# * x1   *
#
# _rect_within_arms() returns true if rectangle x1,y1,x2,y2 has some part
# within the extent of the $arms set of octants.
#
sub _rect_within_arms {
  my ($x1,$y1, $x2,$y2, $arms) = @_;
  return ($arms <= 4
          ? ($y2 >= 0  # y2 top edge must be positive
             && ($arms <= 2
                 ? ($arms == 1 ? $x2 > $y1   # arms==1  bottom right
                    :            $x2 >= 0)   # arms==2  right edge
                 : ($arms == 4               # arms==4  anything
                    || $x2 >= -$y2)))        # arms==3  top right

          # arms >= 5
          : ($y2 >= 0  # y2 top edge positive is good, otherwise check
             || ($arms <= 6
                 ? ($arms == 5 ? $x1 < $y2   # arms==5  top left
                    :            $x1 < 0)    # arms==6  left edge
                 : ($arms == 8               # arms==8  anything
                    || $x1 <= -2-$y1))));    # arms==7  bottom left
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### SierpinskiCurve xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  my $arm = 0;
  if ($y < 0) {
    $arm = 4;
    $x = -1-$x;  # rotate -180
    $y = -1-$y;
  }
  if ($x < 0) {
    $arm += 2;
    ($x,$y) = ($y, -1-$x);  # rotate -90
  }
  if ($y > $x) {       # second octant
    $arm++;
    ($x,$y) = ($y,$x); # mirror 45
  }

  my $arms = $self->{'arms'};
  if ($arm >= $arms) {
    return undef;
  }

  $x -= 1;
  if ($x < 0 || $x < $y) {
    return undef;
  }
  ### x adjust to zero: "$x,$y"
  ### assert: $x >= 0
  ### assert: $y >= 0

  my $s = $self->{'straight_spacing'};
  my $d = $self->{'diagonal_spacing'};
  my $base = (2*$d+$s);
  my ($len,$level) = round_down_pow (($x+$y)/$base || 1,  2);
  ### $level
  ### $len
  if (is_infinite($level)) {
    return $level;
  }

  # Xtop = 3*2^(level-1)-1
  #
  $len *= 2*$base;
  ### initial len: $len

  my $n = 0;
  foreach (0 .. $level) {
    $n *= 4;
    ### at: "loop=$_ len=$len   x=$x,y=$y  n=$n"
    ### assert: $x >= 0
    ### assert: $y >= 0

    my $len_sub_d = $len - $d;
    if ($x < $len_sub_d) {
      ### digit 0 or 1...
      if ($x+$y+$s < $len) {
        ### digit 0 ...
      } else {
        ### digit 1 ...
        ($x,$y) = ($y-$d, $len-$s-$d-$x);   # shift then rotate -90
        $n += 1;
      }
    } else {
      $x -= $len_sub_d;
      ### digit 2 or 3 to: "x=$x y=$y"
      if ($x < $y) {   # before diagonal
        ### digit 2...
        ($x,$y) = ($len-$d-$s-$y, $x);     # shift y-len then rotate +90
        $n += 2;
      } else {
        #### digit 3...
        $x -= $d;
        $n += 3;
      }
      if ($x < 0) {
        return undef;
      }
    }
    $len /= 2;
  }

  ### end at: "x=$x,y=$y   n=$n"
  ### assert: $x >= 0
  ### assert: $y >= 0

  $n *= 4;
  if ($y == 0 && $x == 0) {
    ### final digit 0 ...
  } elsif ($x == $d && $y == $d) {
    ### final digit 1 ...
    $n += 1;
  } elsif ($x == $d+$s && $y == $d) {
    ### final digit 2 ...
    $n += 2;
  } elsif ($x == $base && $y == 0) {
    ### final digit 3 ...
    $n += 3;
  } else {
    return undef;
  }

  return $n*$arms + $arm;
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### SierpinskiCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  my $arms = $self->{'arms'};
  unless (_rect_within_arms($x1,$y1, $x2,$y2, $arms)) {
    ### rect outside octants, for arms: $arms
    return (1,0);
  }

  my $max = ($x2 + $y2);
  if ($arms >= 3) {
    _apply_max ($max, -1-$x1 + $y2);

    if ($arms >= 5) {
      _apply_max ($max, -1-$x1 - $y1-1);

      if ($arms >= 7) {
        _apply_max ($max, $x2 - $y1-1);
      }
    }
  }

  # base=2d+s
  # level begins at
  #   base*(2^level-1)-s = X+Y     ... maybe
  #   base*2^level = X+base
  #   2^level = (X+base)/base
  #   level = log2((X+base)/base)
  # then
  #   Nlevel = 4^level-1

  my $base = 2 * $self->{'diagonal_spacing'} + $self->{'straight_spacing'};
  my ($power) = round_down_pow (int(($max+$base-2)/$base),
                                2);
  return (0, 4*$power*$power * $arms - 1);
}

sub _apply_max {
  ### _apply_max(): "$_[0] cf $_[1]"
  unless ($_[0] > $_[1]) {
    $_[0] = $_[1];
  }
}

#------------------------------------------------------------------------------

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 4**$level * $self->{'arms'} - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n) + ($self->{'arms'} - 1);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n, 4);
  return $exp + 1;
}

#------------------------------------------------------------------------------
1;
__END__



# #      ...0    ...1
# #      ...1    ...2
# #      ...2    ...3
# #    ..0333  ..1000    any low 3s
# #      ..02    ..03
# #      ..12    ..13
# #      ..22    ..23
# #   ..03332 ..03333
# #   ..13332 ..13333
# #   ..23332 ..23333
#
# my @lowdigit_to_dir = (1,-2, 1, 0);
# my @digit_to_dir    = (0, 2,-2, 0);
# my @dir8_to_dx = (1, 1, 0,-1, -1, -1,  0, 1);
# my @dir8_to_dy = (0, 1, 1, 1,  0, -1, -1,-1);
# my @digit_to_nextturn  = (-1,-1,2);
# my @digit_to_nextturn2 = (2,-1,2);
#
# sub _WORKING_BUT_HAIRY__n_to_dxdy {
#   my ($self, $n) = @_;
#   ### n_to_dxdy(): $n
#
#   if ($n < 0) {
#     return;  # first direction at N=0
#   }
#   if (is_infinite($n)) {
#     return ($n,$n);
#   }
#
#   my $int = int($n);
#   $n -= $int;
#   my @digits = digit_split_lowtohigh($int,4);
#   ### @digits
#
#   # strip low 3s
#   my $any_low3s;
#   while (($digits[0]||0) == 3) {
#     shift @digits;
#     $any_low3s = 1;
#   }
#
#   my $dir8 = $lowdigit_to_dir[$digits[0] || 0];
#   $dir8 += sum(0, map {$digit_to_dir[$_]} @digits);
#   $dir8 &= 7;
#   my $dx = $dir8_to_dx[$dir8];
#   my $dy = $dir8_to_dy[$dir8];
#
#   if ($n) {
#     # fraction part
#
#     if ($any_low3s) {
#       $dir8 += $digit_to_nextturn2[$digits[0]||0];
#     } else {
#       my $digit = $digits[0] || 0;
#       if ($digit == 2) {
#         shift @digits;
#         # lowest non-3 digit
#         do {
#           $digit = shift @digits || 0;  # zero if all 3s or no digits at all
#         } until ($digit != 3);
#         $dir8 += $digit_to_nextturn2[$digit];
#       } else {
#         $dir8 += $digit_to_nextturn[$digit];
#       }
#     }
#     $dir8 &= 7;
#     $dx += $n*($dir8_to_dx[$dir8] - $dx);
#     $dy += $n*($dir8_to_dy[$dir8] - $dy);
#   }
#   return ($dx, $dy);
# }





   #                                              63-64            14
   #                                               |  |
   #                                              62 65            13
   #                                             /     \
   #                                        60-61       66-67      12
   #                                         |              |
   #                                        59-58       69-68      11
   #                                             \     /
   #                                  51-52       57 70            10
   #                                   |  |        |  |
   #                                  50 53       56 71       ...   9
   #                                 /     \     /     \     /
   #                            48-49       54-55       72-73       8
   #                             |
   #                            47-46       41-40                   7
   #                                 \     /     \
   #                      15-16       45 42       39                6
   #                       |  |        |  |        |
   #                      14 17       44-43       38                5
   #                     /     \                 /
   #                12-13       18-19       36-37                   4
   #                 |              |        |
   #                11-10       21-20       35-34                   3
   #                     \     /                 \
   #           3--4        9 22       27-28       33                2
   #           |  |        |  |        |  |        |
   #           2  5        8 23       26 29       32                1
   #         /     \     /     \     /     \     /
   #     0--1        6--7       24-25       30-31                 Y=0
   #
   #  ^
   # X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 ...


# The factor of 3 arises because there's a gap between each level, increasing
# it by a fixed extra each time,
#
#     length(level) = 2*length(level-1) + 2
#                   = 2^level + (2^level + 2^(level-1) + ... + 2)
#                   = 2^level + (2^(level+1)-1 - 1)
#                   = 3*2^level - 2




=for stopwords eg Ryde Waclaw Sierpinski Sierpinski's Math-PlanePath Nlevel Nend Ntop Xlevel OEIS dX dY dX,dY nextturn

=head1 NAME

Math::PlanePath::SierpinskiCurve -- Sierpinski curve

=head1 SYNOPSIS

 use Math::PlanePath::SierpinskiCurve;
 my $path = Math::PlanePath::SierpinskiCurve->new (arms => 2);
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Sierpinski, Waclaw>This is an integer version of the self-similar curve by
Waclaw Sierpinski traversing the plane by right triangles.  The default is a
single arm of the curve in an eighth of the plane.

=cut

# math-image --path=SierpinskiCurve --all --output=numbers_dash --size=79x26

=pod

    10  |                                  31-32
        |                                 /     \
     9  |                               30       33
        |                                |        |
     8  |                               29       34
        |                                 \     /
     7  |                         25-26    28 35    37-38
        |                        /     \  /     \  /     \
     6  |                      24       27       36       39
        |                       |                          |
     5  |                      23       20       43       40
        |                        \     /  \     /  \     /
     4  |                 7--8    22-21    19 44    42-41    55-...
        |               /     \           /     \           /
     3  |              6        9       18       45       54
        |              |        |        |        |        |
     2  |              5       10       17       46       53
        |               \     /           \     /           \
     1  |        1--2     4 11    13-14    16 47    49-50    52
        |      /     \  /     \  /     \  /     \  /     \  /
    Y=0 |  .  0        3       12       15       48       51
        |
        +-----------------------------------------------------------
           ^
          X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16

The tiling it represents is

                    /
                   /|\
                  / | \
                 /  |  \
                /  7| 8 \
               / \  |  / \
              /   \ | /   \
             /  6  \|/  9  \
            /-------|-------\
           /|\  5  /|\ 10  /|\
          / | \   / | \   / | \
         /  |  \ /  |  \ /  |  \
        /  1| 2 X 4 |11 X 13|14 \
       / \  |  / \  |  / \  |  / \ ...
      /   \ | /   \ | /   \ | /   \
     /  0  \|/  3  \|/  12 \|/  15 \
    ----------------------------------

The points are on a square grid with integer X,Y.  4 points are used in each
3x3 block.  In general a point is used if

    X%3==1 or Y%3==1 but not both

    which means
    ((X%3)+(Y%3)) % 2 == 1

The X axis N=0,3,12,15,48,etc are all the integers which use only digits 0
and 3 in base 4.  For example N=51 is 303 base4.  Or equivalently the values
all have doubled bits in binary, for example N=48 is 110000 binary.
(Compare the C<CornerReplicate> which also has these values along the X
axis.)

=head2 Level Ranges

Counting the N=0 point as level=0, and with each level being 4 copies of the
previous, the levels end at

    Nlevel = 4^level - 1     = 0, 3, 15, ...
    Xlevel = 3*2^level - 2   = 1, 4, 10, ...
    Ylevel = 0

For example level=2 is Nlevel = 2^(2*2)-1 = 15 at X=3*2^2-2 = 10.

=for Test-Pari-DEFINE  Nlevel(level) = 4^level - 1

=for Test-Pari-DEFINE  Xlevel(level) = 3*2^level - 2

=for Test-Pari  Nlevel(0) == 0

=for Test-Pari  Nlevel(1) == 3

=for Test-Pari  Nlevel(2) == 15

=for Test-Pari  Xlevel(0) == 1

=for Test-Pari  Xlevel(1) == 4

=for Test-Pari  Xlevel(2) == 10

Doubling a level is the middle of the next level and is the top of the
triangle in that next level.

    Ntop = 2*4^level - 1               = 1, 7, 31, ...
    Xtop = 3*2^level - 1               = 2, 5, 11, ...
    Ytop = 3*2^level - 2  = Xlevel     = 1, 4, 10, ...

For example doubling level=2 is Ntop = 2*4^2-1 = 31 at X=3*2^2-1 = 11 and
Y=3*2^2-2 = 10.

=for Test-Pari-DEFINE  Ntop(level) = 2*4^level - 1

=for Test-Pari-DEFINE  Xtop(level) = 3*2^level - 1

=for Test-Pari-DEFINE  Ytop(level) = 3*2^level - 2

=for Test-Pari  2*4^2-1 == 31

=for Test-Pari  Ntop(2) == 31

=for Test-Pari  X=3*2^2-1 == 11

=for Test-Pari  Xtop(2) == 11

=for Test-Pari  3*2^2-2 == 10

=for Test-Pari  Ytop(2) == 10

The factor of 3 arises from the three steps which make up the N=0,1,2,3
section.  The Xlevel width grows as

    Xlevel(1) = 3
    Xlevel(level) = 2*Xwidth(level-1) + 3

which dividing out the factor of 3 is 2*w+1, giving 2^k-1 (in binary a left
shift and bring in a new 1 bit).

Notice too the Nlevel points as a fraction of the triangular area
Xlevel*(Xlevel-1)/2 gives the 4 out of 9 points filled,

    FillFrac = Nlevel / (Xlevel*(Xlevel-1)/2)
            -> 4/9

=head2 Arms

The optional C<arms> parameter can draw multiple curves, each advancing
successively.  For example 2 arms,


    arms => 2                            ...
                                          |
    11  |     33       39       57       63
        |    /  \     /  \     /  \     /
    10  |  31    35-37    41 55    59-61    62-...
        |    \           /     \           /
     9  |     29       43       53       60
        |      |        |        |        |
     8  |     27       45       51       58
        |    /           \     /           \
     7  |  25    21-19    47-49    50-52    56
        |    \  /     \           /     \  /
     6  |     23       17       48       54
        |               |        |
     5  |      9       15       46       40
        |    /  \     /           \     /  \
     4  |   7    11-13    14-16    44-42    38
        |    \           /     \           /
     3  |      5       12       18       36
        |      |        |        |        |
     2  |      3       10       20       34
        |    /           \     /           \
     1  |   1     2--4     8 22    26-28    32
        |       /     \  /     \  /     \  /
    Y=0 |      0        6       24       30
        |
        +-----------------------------------------
            ^
           X=0 1  2  3  4  5  6  7  8  9 10 11

The N=0 point is at X=1,Y=0 (in all arms forms) so that the second arm is
within the first quadrant.

1 to 8 arms can be done this way.  For example 8 arms are

    arms => 8

           ...                       ...           6
            |                          |
           58       34       33       57           5
             \     /  \     /  \     /
    ...-59    50-42    26 25    41-49    56-...    4
          \           /     \           /
           51       18       17       48           3
            |        |        |        |
           43       10        9       40           2
          /           \     /           \
        35    19-11     2  1     8-16    32        1
          \  /     \           /     \  /
           27        3     .  0       24       <- Y=0

           28        4        7       31          -1
          /  \     /           \     /  \
        36    20-12     5  6    15-23    39       -2
          \           /     \           /
           44       13       14       47          -3
            |        |        |        |
           52       21       22       55          -4
          /           \     /           \
    ...-60    53-45    29 30    46-54    63-...   -5
             /     \  /     \  /     \
           61       37       38       62          -6
            |                          |
           ...                       ...          -7

                           ^
     -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

The middle "." is the origin X=0,Y=0.  It would be more symmetrical to make
the origin the middle of the eight arms, at X=-0.5,Y=-0.5 in the above, but
that would give fractional X,Y values.  Apply an offset X+0.5,Y+0.5 to
centre it if desired.

=head2 Spacing

The optional C<diagonal_spacing> and C<straight_spacing> can increase the
space between points diagonally or vertically+horizontally.  The default for
each is 1.

=cut

# math-image --path=SierpinskiCurve,straight_spacing=2,diagonal_spacing=1 --all --output=numbers_dash --size=79x26
# math-image --path=SierpinskiCurve,straight_spacing=3,diagonal_spacing=3 --all --output=numbers_dash --size=79x26

=pod

    straight_spacing => 2
    diagonal_spacing => 1

                        7 ----- 8
                     /           \
                    6               9
                    |               |
                    |               |
                    |               |
                    5              10              ...
                     \           /                   \
        1 ----- 2       4      11      13 ---- 14      16
     /           \   /           \   /           \   /
    0               3              12              15

   X=0  1   2   3   4   5   6   7   8   9  10  11  12  13 ...


The effect is only to spread the points.  The straight lines are both
horizontal and vertical so when they're stretched the curve remains on a 45
degree angle in an eighth of the plane.

In the level formulas above the "3" factor becomes 2*d+s, effectively being
the N=0 to N=3 section sized as d+s+d.

    d = diagonal_spacing
    s = straight_spacing

    Xlevel = (2d+s)*(2^level - 1)  + 1

    Xtop = (2d+s)*2^(level-1) - d - s + 1
    Ytop = (2d+s)*2^(level-1) - d - s

=head2 Closed Curve

Sierpinski's original conception was a closed curve filling a unit square by
ever greater self-similar detail,

    /\_/\ /\_/\ /\_/\ /\_/\
    \   / \   / \   / \   /
     | |   | |   | |   | |
    / _ \_/ _ \ / _ \_/ _ \
    \/ \   / \/ \/ \   / \/
       |  |         | |
    /\_/ _ \_/\ /\_/ _ \_/\
    \   / \   / \   / \   /
     | |   | |   | |   | |
    / _ \ / _ \_/ _ \ / _ \
    \/ \/ \/ \   / \/ \/ \/
              | |
    /\_/\ /\_/ _ \_/\ /\_/\
    \   / \   / \   / \   /
     | |   | |   | |   | |
    / _ \_/ _ \ / _ \_/ _ \
    \/ \   / \/ \/ \   / \/
       |  |         | |
    /\_/ _ \_/\ /\_/ _ \_/\
    \   / \   / \   / \   /
     | |   | |   | |   | |
    / _ \ / _ \ / _ \ / _ \
    \/ \/ \/ \/ \/ \/ \/ \/

The code here might be pressed into use for this by drawing a mirror image
of the curve N=0 through Nlevel.  Or using the C<arms=E<gt>2> form N=0 to
N=4^level - 1, inclusive, and joining up the ends.

The curve is also usually conceived as scaling down by quarters.  This can
be had with C<straight_spacing =E<gt> 2> and then an offset to X+1,Y+1 to
centre in a 4*2^level square

=head2 Koch Curve Midpoints

The replicating structure is the same as the Koch curve
(L<Math::PlanePath::KochCurve>) in that the curve repeats four times to make
the next level.

The Sierpinski curve points are midpoints of a Koch curve of 90 degree
angles with a unit gap between verticals.

     Koch Curve                  Koch Curve
                          90 degree angles, unit gap

           /\                       |  |
          /  \                      |  |
         /    \                     |  |
    -----      -----          ------    ------

=cut

=pod

   Sierpinski curve points "*" as midpoints

                      |  |
                      7  8
                      |  |
               ---6---    ---9---

               ---5---    --10---
           |  |       |  |       |  |
           1  2       4  11     13  14
           |  |       |  |       |  |
    ---0---    ---3---    --12---    --15---


=head2 Koch Curve Rounded

The Sierpinski curve in mirror image across the X=Y diagonal and rotated -45
degrees is pairs of points on the lines of the Koch curve 90 degree angles
unit gap from above.

    Sierpinski curve mirror image and turn -45 degrees
    two points on each Koch line segment

                          15   16
                           |    |
                          14   17

                  12--13   .    .   18--19

                  11--10   .    .   21--20

           3   4           9   22            27   28
           |   |           |    |             |    |
           2   5           8   23            26   29

    0---1  .   .   6---7   .    .   24--25    .    .   30--31

This is a kind of "rounded" form of the 90-degree Koch, similar what
C<DragonRounded> does for the C<DragonCurve>.  Each 90 turn of the Koch
curve is done by two turns of 45 degrees in the Sierpinski curve here, and
each 180 degree turn in the Koch is two 90 degree turns here.  So the
Sierpinski turn sequence is pairs of the Koch turn sequence, as follows.
The mirroring means a swap leftE<lt>-E<gt>right between the two.

           N=1    2    3    4    5     6      7      8
    Koch     L    R    L    L    L     R      L      R     ...

           N=1,2  3,4  5,6  7,8  9,10  11,12  13,14  15,16
    Sierp    R R  L L  R R  R R  R R   L  L   R  R   L  L  ...

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SierpinskiCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::SierpinskiCurve-E<gt>new (arms =E<gt> $integer, diagonal_spacing =E<gt> $integer, straight_spacing =E<gt> $integer)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 4**$level - 1)>, or for multiple arms return C<(0, $arms *
4**$level - 1)>.

There are 4^level points in a level, or arms*4^level when multiple arms,
numbered starting from 0.

=back

=head1 FORMULAS

=head2 N to dX,dY

The curve direction at N even can be calculated from the base-4 digits of
N/2 in a fashion similar to the Koch curve (L<Math::PlanePath::KochCurve/N
to Direction>).  Counting direction in eighths so 0=East, 1=North-East,
2=North, etc,

    digit     direction
    -----     ---------
      0           0
      1          -2
      2           2
      3           0

    direction = 1 + sum direction[base-4 digits of N/2]
      for N even

For example the direction at N=10 has N/2=5 which is "11" in base-4, so
direction = 1+(-2)+(-2) = -3 = south-west.

The 1 in 1+sum is direction north-east for N=0, then -2 or +2 for the digits
follow the curve.  For an odd arm the curve is mirrored and the sign of each
digit direction is flipped, so a subtract instead of add,

    direction
    mirrored  = 1 - sum direction[base-4 digits of N/2]
       for N even

For odd N=2k+1 the direction at N=2k is calculated and then also the turn
which is made from N=2k to N=2(k+1).  This is similar to the Koch curve next
turn (L<Math::PlanePath::KochCurve/N to Next Turn>).

   lowest non-3      next turn
   digit of N/2   (at N=2k+1,N=2k+2)
   ------------   ----------------
        0           -1 (right)
        1           +2 (left)
        2           -1 (right)

Again the turn is in eighths, so -1 means -45 degrees (to the right).  For
example at N=14 has N/2=7 which is "13" in base-4 so lowest non-3 is "1"
which is turn +2, so at N=15 and N=16 turn by 90 degrees left.


   direction = 1 + sum direction[base-4 digits of k]
                 + if N odd then nextturn[low-non-3 of k]
     for N=2k or 2k+1

   dX,dY = direction to 1,0 1,1 0,1 etc

For fractional N the same nextturn is applied to calculate the direction of
the next segment, and combined with the integer dX,dY as per
L<Math::PlanePath/N to dX,dY -- Fractional>.

   N=2k or 2k+1 + frac

   direction = 1 + sum direction[base-4 digits of k]

   if (frac != 0 or N odd)
     turn = nextturn[low-non-3 of k]

   if N odd then direction += turn
   dX,dY = direction to 1,0 1,1 0,1 etc

   if frac!=0 then
     direction += turn
     next_dX,next_dY = direction to 1,0 1,1 0,1 etc

     dX += frac*(next_dX - dX)
     dY += frac*(next_dY - dY)

For the C<straight_spacing> and C<diagonal_spacing> options the dX,dY values
are not units like dX=1,dY=0 but instead are the spacing amount, either
straight or diagonal so

    direction      delta with spacing
    ---------    -------------------------
        0        dX=straight_spacing, dY=0
        1        dX=diagonal_spacing, dY=diagonal_spacing
        2        dX=0, dY=straight_spacing
        3        dX=-diagonal_spacing, dY=diagonal_spacing
       etc

As an alternative, it's possible to take just base-4 digits of N, without
separate handling for the low-bit of N, but it requires an adjustment on the
low base-4 digit, and the next turn calculation for fractional N becomes
hairier.  A little state table could encode the cumulative and lowest
whatever if desired, to take N by base-4 digits high to low, or equivalently
by bits high to low with an initial state based on high bit at an odd or
even bit position.

=head1 OEIS

The Sierpinski curve is in Sloane's Online Encyclopedia of Integer Sequences
as,

=over

L<http://oeis.org/A039963> (etc)

=back

    A039963   turn 1=right,0=left, doubling the KochCurve turns
    A081706   N-1 of left turn positions
               (first values 2,3 whereas N=3,4 here)
    A127254   abs(dY), so 0=horizontal, 1=vertical or diagonal,
                except extra initial 1
    A081026   X at N=2^k, being successively 3*2^j-1, 3*2^j

A039963 is numbered starting n=0 for the first turn, which is at the point
N=1 in the path here.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::SierpinskiCurveStair>,
L<Math::PlanePath::SierpinskiArrowhead>,
L<Math::PlanePath::KochCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut