File: TerdragonCurve.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1187 lines) | stat: -rw-r--r-- 33,833 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.



# points singles A052548 2^n + 2
# points doubles A000918 2^n - 2
# points triples A028243 3^(n-1) - 2*2^(n-1) + 1     cf A[k] = 2*3^(k-1) - 2*2^(k-1)

# T(3*N)   = (w+1)*T(N)                dir(N)=w^(2*count1digits)
# T(3*N+1) = (w+1)*T(N) + 1*dir(N)
# T(3*N+2) = (w+1)*T(N) + w*dir(N)

# T(0*3^k + N)  =             T(N)
# T(1*3^k + N)  = 2^k   + w^2*T(N)    # rotate and offset
# T(2*3^k + N)  = w*2^k +     T(N)    # offset only



package Math::PlanePath::TerdragonCurve;
use 5.004;
use strict;
use List::Util 'first';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest',
  'xy_is_even';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh',
  'digit_join_lowtohigh',
  'round_down_pow';

use vars '$VERSION', '@ISA';
$VERSION = 117;
@ISA = ('Math::PlanePath');

use Math::PlanePath::TerdragonMidpoint;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array =>
  [ { name      => 'arms',
      share_key => 'arms_6',
      display   => 'Arms',
      type      => 'integer',
      minimum   => 1,
      maximum   => 6,
      default   => 1,
      width     => 1,
      description => 'Arms',
    } ];

{
  my @x_negative_at_n = (undef, 13, 5, 5, 6, 7, 8);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef, 159, 75, 20, 11, 9, 10);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
sub dx_minimum {
  my ($self) = @_;
  return ($self->{'arms'} == 1 ? -1 : -2);
}
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;

sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  return ($self->{'arms'} == 1
          ? Math::PlanePath::_UNDOCUMENTED__dxdy_list_three()
          : Math::PlanePath::_UNDOCUMENTED__dxdy_list_six());
}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 4, 9, 13, 7, 8, 5);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;

# arms=1 curve goes at 0,120,240 degrees
# arms=2 second +60 to 60,180,300 degrees
# so when arms==1 dir maximum is 240 degrees
sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'arms'} == 1
          ? (-1,-1)    # 0,2,4 only           South-West
          : ( 1,-1));  # rotated to 1,3,5 too South-East
}

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
  return $self;
}

my @dir6_to_si = (1,0,0, -1,0,0);
my @dir6_to_sj = (0,1,0, 0,-1,0);
my @dir6_to_sk = (0,0,1, 0,0,-1);

sub n_to_xy {
  my ($self, $n) = @_;
  ### TerdragonCurve n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $zero = ($n * 0);  # inherit bignum 0

  my $i = 0;
  my $j = 0;
  my $k = 0;
  my $si = $zero;
  my $sj = $zero;
  my $sk = $zero;

  # initial rotation from arm number
  {
    my $int = int($n);
    my $frac = $n - $int;  # inherit possible BigFloat
    $n = $int;             # BigFloat int() gives BigInt, use that

    my $rot = _divrem_mutate ($n, $self->{'arms'});

    my $s = $zero + 1;  # inherit bignum 1
    if ($rot >= 3) {
      $s = -$s;         # rotate 180
      $frac = -$frac;
      $rot -= 3;
    }
    if ($rot == 0)    { $i = $frac; $si = $s; } # rotate 0
    elsif ($rot == 1) { $j = $frac; $sj = $s; } # rotate +60
    else              { $k = $frac; $sk = $s; } # rotate +120
  }

  foreach my $digit (digit_split_lowtohigh($n,3)) {
    ### at: "$i,$j,$k   side $si,$sj,$sk"
    ### $digit

    if ($digit == 1) {
      ($i,$j,$k) = ($si-$j, $sj-$k, $sk+$i);  # rotate +120 and add
    } elsif ($digit == 2) {
      $i -= $sk;   # add rotated +60
      $j += $si;
      $k += $sj;
    }

    # add rotated +60
    ($si,$sj,$sk) = ($si - $sk,
                     $sj + $si,
                     $sk + $sj);
  }

  ### final: "$i,$j,$k   side $si,$sj,$sk"
  ### is: (2*$i + $j - $k).",".($j+$k)

  return (2*$i + $j - $k, $j+$k);
}


# all even points when arms==6
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  if ($self->{'arms'} == 6) {
    return xy_is_even($self,$x,$y);
  } else {
    return defined($self->xy_to_n($x,$y));
  }
}

# maximum extent -- no, not quite right
#
#          .----*
#           \
#       *----.
#
# Two triangle heights, so
#     rnext = 2 * r * sqrt(3)/2
#           = r * sqrt(3)
#     rsquared_next = 3 * rsquared
# Initial X=2,Y=0 is rsquared=4
# then X=3,Y=1 is 3*3+3*1*1 = 9+3 = 12 = 4*3
# then X=3,Y=3 is 3*3+3*3*3 = 9+3 = 36 = 4*3^2
#
my @try_dx = (2, 1, -1, -2, -1,  1);
my @try_dy = (0, 1,  1, 0,  -1, -1);

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### TerdragonCurve xy_to_n_list(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);

  if (is_infinite($x)) {
    return $x;  # infinity
  }
  if (is_infinite($y)) {
    return $y;  # infinity
  }

  my @n_list;
  my $xm = 2*$x;  # doubled out
  my $ym = 2*$y;
  foreach my $i (0 .. $#try_dx) {
    my $t = $self->Math::PlanePath::TerdragonMidpoint::xy_to_n
      ($xm+$try_dx[$i], $ym+$try_dy[$i]);

    ### try: ($xm+$try_dx[$i]).",".($ym+$try_dy[$i])
    ### $t

    next unless defined $t;

    # function call here to get our n_to_xy(), not the overridden method
    # when in TerdragonRounded or other subclass
    my ($tx,$ty) = n_to_xy($self,$t)
      or next;

    if ($tx == $x && $ty == $y) {
      ### found: $t
      if (@n_list && $t < $n_list[0]) {
        unshift @n_list, $t;
      } elsif (@n_list && $t < $n_list[-1]) {
        splice @n_list, -1,0, $t;
      } else {
        push @n_list, $t;
      }
      if (@n_list == 3) {
        return @n_list;
      }
    }
  }
  return @n_list;
}

# minimum  -- no, not quite right
#
#                *----------*
#                 \
#                  \   *
#               *   \
#                    \
#          *----------*
#
# width = side/2
# minimum = side*sqrt(3)/2 - width
#         = side*(sqrt(3)/2 - 1)
#
# minimum 4/9 * 2.9^level roughly
# h = 4/9 * 2.9^level
# 2.9^level = h*9/4
# level = log(h*9/4)/log(2.9)
# 3^level = 3^(log(h*9/4)/log(2.9))
#         = h*9/4, but big bigger for log
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### TerdragonCurve rect_to_n_range(): "$x1,$y1  $x2,$y2"
  my $xmax = int(max(abs($x1),abs($x2)));
  my $ymax = int(max(abs($y1),abs($y2)));
  return (0,
          ($xmax*$xmax + 3*$ymax*$ymax + 1)
          * 2
          * $self->{'arms'});
}

my @dir6_to_dx   = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy   = (0, 1, 1, 0, -1,-1);
my @digit_to_nextturn = (2,-2);
sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  if ($n < 0) {
    return;  # first direction at N=0
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $int = int($n);  # integer part
  $n -= $int;         # fraction part

  # initial direction from arm
  my $dir6 = _divrem_mutate ($int, $self->{'arms'});

  my @ndigits = digit_split_lowtohigh($int,3);
  $dir6 += 2 * scalar(grep {$_==1} @ndigits);  # count 1s for total turn
  $dir6 %= 6;
  my $dx = $dir6_to_dx[$dir6];
  my $dy = $dir6_to_dy[$dir6];

  if ($n) {
    # fraction part

    # find lowest non-2 digit, or zero if all 2s or no digits at all
    $dir6 += $digit_to_nextturn[ first {$_!=2} @ndigits, 0];
    $dir6 %= 6;
    $dx += $n*($dir6_to_dx[$dir6] - $dx);
    $dy += $n*($dir6_to_dy[$dir6] - $dy);
  }
  return ($dx, $dy);
}


#-----------------------------------------------------------------------------
# eg. arms=5 0 .. 5*3^k    step by 5s
#            1 .. 5*3^k+1  step by 5s
#            4 .. 5*3^k+4  step by 5s
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,
          3**$level * $self->{'arms'} + ($self->{'arms'}-1));
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_down_pow ($n - 1, 3);
  return $exp + 1;
}

#-----------------------------------------------------------------------------
# right boundary N

# mixed radix binary, ternary
# no 11, 12, 20
# 11 -> 21, including low digit
# run of 11111 becomes 22221
# low to high 1 or 0 <- 0   cannot 20 can 10 00
#             2 or 0 <- 1   cannot 11 can 21 01
#             2 or 0 <- 2   cannot 12 can 02 22
sub _UNDOCUMENTED__right_boundary_i_to_n {
  my ($self, $i) = @_;
  my @digits = _digit_split_mix23_lowtohigh($i);
  for (my $i = $#digits; $i >= 1; $i--) {   # high to low
    if ($digits[$i] == 1 && $digits[$i-1] != 0) {
      $digits[$i] = 2;
    }
  }
  return digit_join_lowtohigh(\@digits, 3, $i*0);

  # {
  #   for (my $i = 0; $i < $#digits; $i++) {   # low to high
  #     if ($digits[$i+1] == 1 && ($digits[$i] == 1 || $digits[$i] == 2)) {
  #       $digits[$i+1] = 2;
  #     }
  #   }
  #   return digit_join_lowtohigh(\@digits,3);
  # }
}

# Return a list of digits, low to high, which is a mixed radix
# representation low digit ternary and the rest binary.
sub _digit_split_mix23_lowtohigh {
  my ($n) = @_;
  if ($n == 0) {
    return ();
  }
  my $low = _divrem_mutate($n,3);
  return ($low, digit_split_lowtohigh($n,2));
}

{
  # disallowed digit pairs $disallowed[high][low]
  my @disallowed;
  $disallowed[1][1] = 1;
  $disallowed[1][2] = 1;
  $disallowed[2][0] = 1;

  sub _UNDOCUMENTED__n_segment_is_right_boundary {
    my ($self, $n) = @_;
    if (is_infinite($n)) { return 0; }
    unless ($n >= 0) { return 0; }
    $n = int($n);

    # no boundary when arms=6, right boundary is only in arm 0
    {
      my $arms = $self->{'arms'};
      if ($arms == 6) { return 0; }
      if (_divrem_mutate($n,$arms)) { return 0; }
    }

    my $prev = _divrem_mutate($n,3);
    while ($n) {
      my $digit = _divrem_mutate($n,3);
      if ($disallowed[$digit][$prev]) {
        return 0;
      }
      $prev = $digit;
    }
    return 1;
  }
}

#-----------------------------------------------------------------------------
# left boundary N


# mixed 0,1, 2, 10, 11, 12, 100, 101, 102, 110, 111, 112, 1000, 1001, 1002, 1010, 1011, 1012, 1100, 1101, 1102,
# vals  0,1,12,120,121,122,1200,1201,1212,1220,1221,1222,12000,12001,12012,12120,12121,12122,12200,12201,12212,
{
  my @_UNDOCUMENTED__left_boundary_i_to_n = ([0,2],  # 0
                                             [0,2],  # 1
                                             [1,2]); # 2
  sub _UNDOCUMENTED__left_boundary_i_to_n {
    my ($self, $i, $level) = @_;
    ### _UNDOCUMENTED__left_boundary_i_to_n(): $i
    ### $level

    if (defined $level && $level < 0) {
      if ($i <= 2) {
        return $i;
      }
      $i += 2;
    }

    my @digits = _digit_split_mix23_lowtohigh($i);
    ### @digits

    if (defined $level) {
      if ($level >= 0) {
        if (@digits > $level) {
          ### beyond given level ...
          return undef;
        }
        # pad for $level, total $level many digits
        push @digits, (0) x ($level - scalar(@digits));
      } else {
        ### union all levels ...
        pop @digits;
        if ($digits[-1]) {
          push @digits, 0;     # high 0,1  or 0,2 when i=3
        } else {
          $digits[-1] = 1;     # high   1
        }
      }
    } else {
      ### infinite curve, an extra high 0 ...
      push @digits, 0;
    }
    ### @digits

    my $prev = $digits[0];
    foreach my $i (1 .. $#digits) {
      $prev = $digits[$i] = $_UNDOCUMENTED__left_boundary_i_to_n[$prev][$digits[$i]];
    }
    ### ternary: @digits
    return digit_join_lowtohigh(\@digits, 3, $i*0);
  }
}

{
  # disallowed digit pairs $disallowed[high][low]
  my @disallowed;
  $disallowed[0][2] = 1;
  $disallowed[1][0] = 1;
  $disallowed[1][1] = 1;

  sub _UNDOCUMENTED__n_segment_is_left_boundary {
    my ($self, $n, $level) = @_;
    ### _UNDOCUMENTED__n_segment_is_left_boundary(): $n
    ### $level

    if (is_infinite($n)) { return 0; }
    unless ($n >= 0) { return 0; }
    $n = int($n);

    if (defined $level && $level == 0) {
      ### level 0 curve, N=0 is only segment: ($n == 0)
      return ($n == 0);
    }

    {
      my $arms = $self->{'arms'};
      if ($arms == 6) {
        return 0;
      }
      my $arm = _divrem_mutate($n,$arms);
      if ($arm != $arms-1) {
        return 0;
      }
    }

    my $prev = _divrem_mutate($n,3);
    if (defined $level) { $level -= 1; }

    for (;;) {
      if (defined $level && $level == 0) {
        ### end of level many digits, must be N < 3**$level
        return ($n == 0);
      }
      last unless $n;

      my $digit = _divrem_mutate($n,3);
      if ($disallowed[$digit][$prev]) {
        return 0;
      }
      if (defined $level) { $level -= 1; }
      $prev = $digit;
    }

    return ((defined $level && $level < 0)   # union all levels
            || ($prev != 2));                # not high 2 otherwise
  }

  sub _UNDOCUMENTED__n_segment_is_any_left_boundary {
    my ($self, $n) = @_;
    my $prev = _divrem_mutate($n,3);
    while ($n) {
      my $digit = _divrem_mutate($n,3);
      if ($disallowed[$digit][$prev]) {
        return 0;
      }
      $prev = $digit;
    }
    return 1;
  }

  # sub left_boundary_n_pred {
  #   my ($n) = @_;
  #   my $n3 = '0' . Math::BaseCnv::cnv($n,10,3);
  #   return ($n3 =~ /02|10|11/ ? 0 : 1);
  # }
}
sub _UNDOCUMENTED__n_segment_is_boundary {
  my ($self, $n, $level) = @_;
  return $self->_UNDOCUMENTED__n_segment_is_right_boundary($n)
    || $self->_UNDOCUMENTED__n_segment_is_left_boundary($n,$level);
}

1;
__END__


# old n_to_xy()
#
# # initial rotation from arm number
# my $arms = $self->{'arms'};
# my $rot = $n % $arms;
# $n = int($n/$arms);

# my @digits;
# my (@si, @sj, @sk);  # vectors
# {
#   my $si = $zero + 1; # inherit bignum 1
#   my $sj = $zero;     # inherit bignum 0
#   my $sk = $zero;     # inherit bignum 0
#
#   for (;;) {
#     push @digits, ($n % 3);
#     push @si, $si;
#     push @sj, $sj;
#     push @sk, $sk;
#     ### push: "digit $digits[-1]   $si,$sj,$sk"
#
#     $n = int($n/3) || last;
#
#     # straight + rot120 + straight
#     ($si,$sj,$sk) = (2*$si - $sj,
#                      2*$sj - $sk,
#                      2*$sk + $si);
#   }
# }
# ### @digits
#
# my $i = $zero;
# my $j = $zero;
# my $k = $zero;
# while (defined (my $digit = pop @digits)) {  # digits high to low
#   my $si = pop @si;
#   my $sj = pop @sj;
#   my $sk = pop @sk;
#   ### at: "$i,$j,$k  $digit   side $si,$sj,$sk"
#   ### $rot
#
#   $rot %= 6;
#   if ($rot == 1)    { ($si,$sj,$sk) = (-$sk,$si,$sj); }
#   elsif ($rot == 2) { ($si,$sj,$sk) = (-$sj,-$sk,$si); }
#   elsif ($rot == 3) { ($si,$sj,$sk) = (-$si,-$sj,-$sk); }
#   elsif ($rot == 4) { ($si,$sj,$sk) = ($sk,-$si,-$sj); }
#   elsif ($rot == 5) { ($si,$sj,$sk) = ($sj,$sk,-$si); }
#
#   if ($digit) {
#     $i += $si;  # digit=1 or digit=2
#     $j += $sj;
#     $k += $sk;
#     if ($digit == 2) {
#       $i -= $sj;  # digit=2, straight+rot120
#       $j -= $sk;
#       $k += $si;
#     } else {
#       $rot += 2;  # digit=1
#     }
#   }
# }
#
# $rot %= 6;
# $i = $frac * $dir6_to_si[$rot] + $i;
# $j = $frac * $dir6_to_sj[$rot] + $j;
# $k = $frac * $dir6_to_sk[$rot] + $k;
#
# ### final: "$i,$j,$k"
# return (2*$i + $j - $k, $j+$k);


=for stopwords eg Ryde Dragon Math-PlanePath Nlevel Knuth et al vertices doublings OEIS Online terdragon ie morphism si,sj,sk dX,dY Pari rhombi dX si

=head1 NAME

Math::PlanePath::TerdragonCurve -- triangular dragon curve

=head1 SYNOPSIS

 use Math::PlanePath::TerdragonCurve;
 my $path = Math::PlanePath::TerdragonCurve->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Davis>X<Knuth, Donald>This is the terdragon curve by Davis and Knuth,

=over

Chandler Davis and Donald Knuth, "Number Representations and Dragon Curves
-- I", Journal Recreational Mathematics, volume 3, number 2 (April 1970),
pages 66-81 and "Number Representations and Dragon Curves -- II", volume 3,
number 3 (July 1970), pages 133-149.

Reprinted with addendum in Knuth "Selected Papers on Fun and Games", 2010,
pages 571--614.

=back

Points are a triangular grid using every second integer X,Y as per
L<Math::PlanePath/Triangular Lattice>, beginning

              \         /       \
           --- 26,29,32 ---------- 27                          6
              /         \
      \      /           \
   -- 24,33,42 ---------- 22,25                                5
      /      \           /     \
              \         /       \
           --- 20,23,44 -------- 12,21            10           4
              /        \        /      \        /     \
      \      /          \      /        \      /       \
        18,45 --------- 13,16,19 ------ 8,11,14 -------- 9     3
             \          /       \      /       \
              \        /         \    /         \
                  17              6,15 --------- 4,7           2
                                       \        /    \
                                        \      /      \
                                          2,5 ---------- 3     1
                                              \
                                               \
                                    0 ----------- 1         <-Y=0

          ^        ^        ^       ^      ^      ^      ^
         -3       -2       -1      X=0     1      2      3

The base figure is an "S" shape

       2-----3
        \
         \
    0-----1

which then repeats in self-similar style, so N=3 to N=6 is a copy rotated
+120 degrees, which is the angle of the N=1 to N=2 edge,

    6      4          base figure repeats
     \   / \          as N=3 to N=6,
      \/    \         rotated +120 degrees
      5 2----3
        \
         \
    0-----1

Then N=6 to N=9 is a plain horizontal, which is the angle of N=2 to N=3,

          8-----9       base figure repeats
           \            as N=6 to N=9,
            \           no rotation
       6----7,4
        \   / \
         \ /   \
         5,2----3
           \
            \
       0-----1

Notice X=1,Y=1 is visited twice as N=2 and N=5.  Similarly X=2,Y=2 as N=4
and N=7.  Each point can repeat up to 3 times.  "Inner" points are 3 times
and on the edges up to 2 times.  The first tripled point is X=1,Y=3 which as
shown above is N=8, N=11 and N=14.

The curve never crosses itself.  The vertices touch as triangular corners
and no edges repeat.

The curve turns are the same as the C<GosperSide>, but here the turns are by
120 degrees each whereas C<GosperSide> is 60 degrees each.  The extra angle
here tightens up the shape.

=head2 Spiralling

The first step N=1 is to the right along the X axis and the path then slowly
spirals anti-clockwise and progressively fatter.  The end of each
replication is

    Nlevel = 3^level

That point is at level*30 degrees around (as reckoned with Y*sqrt(3) for a
triangular grid).

    Nlevel      X, Y     Angle (degrees)
    ------    -------    -----
       1        1, 0        0
       3        3, 1       30
       9        3, 3       60
      27        0, 6       90
      81       -9, 9      120
     243      -27, 9      150
     729      -54, 0      180

The following is points N=0 to N=3^6=729 going half-circle around to 180
degrees.  The N=0 origin is marked "0" and the N=729 end is marked "E".

=cut

# the following generated by
#   math-image --path=TerdragonCurve --expression='i<=729?i:0' --text --size=132x40

=pod

                               * *               * *
                            * * * *           * * * *
                           * * * *           * * * *
                            * * * * *   * *   * * * * *   * *
                         * * * * * * * * * * * * * * * * * * *
                        * * * * * * * * * * * * * * * * * * *
                         * * * * * * * * * * * * * * * * * * * *
                            * * * * * * * * * * * * * * * * * * *
                           * * * * * * * * * * * *   * *   * * *
                      * *   * * * * * * * * * * * *           * *
     * E           * * * * * * * * * * * * * * * *           0 *
    * *           * * * * * * * * * * * *   * *
     * * *   * *   * * * * * * * * * * * *
    * * * * * * * * * * * * * * * * * * *
     * * * * * * * * * * * * * * * * * * * *
        * * * * * * * * * * * * * * * * * * *
       * * * * * * * * * * * * * * * * * * *
        * *   * * * * *   * *   * * * * *
                 * * * *           * * * *
                * * * *           * * * *
                 * *               * *

=head2 Tiling

The little "S" shapes of the base figure N=0 to N=3 can be thought of as a
rhombus

       2-----3
      .     .
     .     .
    0-----1

The "S" shapes of each 3 points make a tiling of the plane with those rhombi

        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \
     \ /     /   \     \ /     /   \     \ /
    --*-----*     *-----*-----*     *-----*--
     / \     \   /     / \     \   /     / \
        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \
     \ /     /   \     \ /     /   \     \ /
    --*-----*     *-----o-----*     *-----*--
     / \     \   /     / \     \   /     / \
        \     \ /     /   \     \ /     /
         *-----*-----*     *-----*-----*
        /     / \     \   /     / \     \

Which is an ancient pattern,

=over

L<http://tilingsearch.org/HTML/data23/C07A.html>

=back

=head2 Arms

The curve fills a sixth of the plane and six copies rotated by 60, 120, 180,
240 and 300 degrees mesh together perfectly.  The C<arms> parameter can
choose 1 to 6 such curve arms successively advancing.

For example C<arms =E<gt> 6> begins as follows.  N=0,6,12,18,etc is the
first arm (the same shape as the plain curve above), then N=1,7,13,19 the
second, N=2,8,14,20 the third, etc.

                  \         /             \           /
                   \       /               \         /
                --- 8/13/31 ---------------- 7/12/30 ---
                  /        \               /         \
     \           /          \             /           \          /
      \         /            \           /             \        /
    --- 9/14/32 ------------- 0/1/2/3/4/5 -------------- 6/17/35 ---
      /         \            /           \             /        \
     /           \          /             \           /          \
                  \        /               \         /
               --- 10/15/33 ---------------- 11/16/34 ---
                  /        \               /         \
                 /          \             /           \

With six arms every X,Y point is visited three times, except the origin 0,0
where all six begin.  Every edge between points is traversed once.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new ()>

=item C<$path = Math::PlanePath::TerdragonCurve-E<gt>new (arms =E<gt> 6)>

Create and return a new path object.

The optional C<arms> parameter can make 1 to 6 copies of the curve, each arm
successively advancing.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The curve can visit an C<$x,$y> up to three times.  C<xy_to_n()> returns the
smallest of the these N values.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.  There can be
none, one, two or three N's for a given C<$x,$y>.

=back

=head2 Descriptive Methods

=over

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=item C<$dx = $path-E<gt>dx_minimum()>

=item C<$dx = $path-E<gt>dx_maximum()>

=item C<$dy = $path-E<gt>dy_minimum()>

=item C<$dy = $path-E<gt>dy_maximum()>

The dX,dY values on the first arm take three possible combinations, being
120 degree angles.

    dX,dY   for arms=1
    -----
     2, 0        dX minimum = -1, maximum = +2
    -1, 1        dY minimum = -1, maximum = +1
     1,-1

For 2 or more arms the second arm is rotated by 60 degrees so giving the
following additional combinations, for a total six.  This changes the dX
minimum.

    dX,dY   for arms=2 or more
    -----
    -2, 0        dX minimum = -2, maximum = +2
     1, 1        dY minimum = -1, maximum = +1
    -1,-1

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 3**$level)>, or for multiple arms return C<(0, $arms *
3**$level + ($arms-1))>.

There are 3^level segments in a curve level, so 3^level+1 points numbered
from 0.  For multiple arms there are arms*(3^level+1) points, numbered from
0 so n_hi = arms*(3^level+1)-1.

=back

=head1 FORMULAS

Various formulas for boundary length and area can be found in the author's
mathematical write-up

=over

L<http://user42.tuxfamily.org/terdragon/index.html>

=back

=head2 N to X,Y

There's no reversals or reflections in the curve so C<n_to_xy()> can take
the digits of N either low to high or high to low and apply what is
effectively powers of the N=3 position.  The current code goes low to high
using i,j,k coordinates as described in L<Math::PlanePath/Triangular
Calculations>.

    si = 1    # position of endpoint N=3^level
    sj = 0    #    where level=number of digits processed
    sk = 0

    i = 0     # position of N for digits so far processed
    j = 0
    k = 0

    loop base 3 digits of N low to high
       if digit == 0
          i,j,k no change
       if digit == 1
          (i,j,k) = (si-j, sj-k, sk+i)  # rotate +120, add si,sj,sk
       if digit == 2
          i -= sk      # add (si,sj,sk) rotated +60
          j += si
          k += sj

       (si,sj,sk) = (si - sk,      # add rotated +60
                     sj + si,
                     sk + sj)

The digit handling is a combination of rotate and offset,

    digit==1                   digit 2
    rotate and offset          offset at si,sj,sk rotated

         ^                          2------>
          \
           \                          \
    *---  --1                  *--   --*

The calculation can also be thought of in term of w=1/2+I*sqrt(3)/2, a
complex number sixth root of unity.  i is the real part, j in the w
direction (60 degrees), and k in the w^2 direction (120 degrees).  si,sj,sk
increase as if multiplied by w+1.

=head2 Turn

At each point N the curve always turns 120 degrees either to the left or
right, it never goes straight ahead.  If N is written in ternary then the
lowest non-zero digit gives the turn

   ternary lowest
   non-zero digit     turn
   --------------     -----
         1            left
         2            right

At N=3^level or N=2*3^level the turn follows the shape at that 1 or 2 point.
The first and last unit step in each level are in the same direction, so the
next level shape gives the turn.

       2*3^k-------3*3^k
          \
           \
    0-------1*3^k

=head2 Next Turn

The next turn, ie. the turn at position N+1, can be calculated from the
ternary digits of N similarly.  The lowest non-2 digit gives the turn.

   ternary lowest
     non-2 digit       turn
   --------------      -----
          0            left
          1            right

If N is all 2s then the lowest non-2 is taken to be a 0 above the high end.
For example N=8 is 22 ternary so considered 022 for lowest non-2 digit=0 and
turn left after the segment at N=8, ie. at point N=9 turn left.

This rule works for the same reason as the plain turn above.  The next turn
of N is the plain turn of N+1 and adding +1 turns trailing 2s into trailing
0s and increments the 0 or 1 digit above them to be 1 or 2.

=head2 Total Turn

The direction at N, ie. the total cumulative turn, is given by the number of
1 digits when N is written in ternary,

    direction = (count 1s in ternary N) * 120 degrees

For example N=12 is ternary 110 which has two 1s so the cumulative turn at
that point is 2*120=240 degrees, ie. the segment N=16 to N=17 is at angle
240.

The segments for digit 0 or 2 are in the "current" direction unchanged.  The
segment for digit 1 is rotated +120 degrees.

=head2 X,Y to N

The current code applies C<TerdragonMidpoint> C<xy_to_n()> to calculate six
candidate N from the six edges around a point.  Those N values which convert
back to the target X,Y by C<n_to_xy()> are the results for
C<xy_to_n_list()>.

The six edges are three going towards the point and three going away.  The
midpoint calculation gives N-1 for the towards and N for the away.  Is there
a good way to tell which edge will be the smaller?  Or just which 3 edges
lead away?  It would be directions 0,2,4 for the even arms and 1,3,5 for the
odd ones, but identifying the boundaries of those arms to know which is
which is difficult.

=head2 X,Y Visited

When arms=6 all "even" points of the plane are visited.  As per the
triangular representation of X,Y this means

    X+Y mod 2 == 0        "even" points

=head1 OEIS

The terdragon is in Sloane's Online Encyclopedia of Integer Sequences as,

=over

L<http://oeis.org/A080846> (etc)

=back

    A080846   next turn 0=left,1=right, by 120 degrees
                (n=0 is turn at N=1)

    A060236   turn 1=left,2=right, by 120 degrees
                (lowest non-zero ternary digit)
    A137893   turn 1=left,0=right (morphism)
    A189640   turn 0=left,1=right (morphism, extra initial 0)
    A189673   turn 1=left,0=right (morphism, extra initial 0)
    A038502   strip trailing ternary 0s,
                taken mod 3 is turn 1=left,2=right

A189673 and A026179 start with extra initial values arising from their
morphism definition.  That can be skipped to consider the turns starting
with a left turn at N=1.

    A026225   N positions of left turns,
                being (3*i+1)*3^j so lowest non-zero digit is a 1
    A026179   N positions of right turns (except initial 1)
    A060032   bignum turns 1=left,2=right to 3^level

    A062756   total turn, count ternary 1s
    A005823   N positions where total turn == 0, ternary no 1s

    A111286   boundary length, N=0 to N=3^k, skip initial 1
    A003945   boundary/2
    A002023   boundary odd levels N=0 to N=3^(2k+1),
              or even levels one side N=0 to N=3^(2k),
                being 6*4^k
    A164346   boundary even levels N=0 to N=3^(2k),
              or one side, odd levels, N=0 to N=3^(2k+1),
                being 3*4^k
    A042950   V[k] boundary length

    A056182   area enclosed N=0 to N=3^k, being 2*(3^k-2^k)
    A081956     same
    A118004   1/2 area N=0 to N=3^(2k+1), odd levels, 9^n-4^n
    A155559   join area, being 0 then 2^k

    A092236   count East segments N=0 to N=3^k
    A135254   count North-West segments N=0 to N=3^k, extra 0
    A133474   count South-West segments N=0 to N=3^k
    A057083   count segments diff from 3^(k-1)

    A057682   level X, at N=3^level
                also arms=2 level Y, at N=2*3^level
    A057083   level Y, at N=3^level
                also arms=6 level X at N=6*3^level

    A057681   arms=2 level X, at N=2*3^level
                also arms=3 level Y at 3*3^level
    A103312   same


=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TerdragonRounded>,
L<Math::PlanePath::TerdragonMidpoint>,
L<Math::PlanePath::GosperSide>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::R5DragonCurve>

Larry Riddle's Terdragon page, for boundary and area calculations of the
terdragon as an infinite fractal
L<http://ecademy.agnesscott.edu/~lriddle/ifs/heighway/terdragon.htm>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut