File: UlamWarburton.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (1320 lines) | stat: -rw-r--r-- 34,749 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


#------------------------------------------------------------------------------
# cf
# Ulam/Warburton with cells turning off too
# A079315 cells OFF -> ON
# A079317 cells ON at stage n
# A079316 cells ON at stage n, in first quadrant
# A151921 net gain ON cells


#------------------------------------------------------------------------------

package Math::PlanePath::UlamWarburton;
use 5.004;
use strict;
use Carp 'croak';
use List::Util 'sum';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';

use Math::PlanePath::UlamWarburtonQuarter;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [
   { name            => 'parts',
     share_key       => 'parts_ulamwarburton',
     display         => 'Parts',
     type            => 'enum',
     default         => '4',
     choices         => ['4','2','1','octant','octant_up' ],
     choices_display => ['4','2','1','Octant','Octant Up' ],
     description     => 'Which parts of the plane to fill.',
   },
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

# octant_up goes up the Y axis spine, dX=0
# all others always have dX!=0
sub absdx_minimum {
  my ($self) = @_;
  return ($self->{'parts'} eq 'octant_up' ? 0 : 1);
}

# used also to validate $self->{'parts'}
my %x_negative = (4         => 1,
                  2         => 1,
                  1         => 0,
                  octant    => 0,
                  octant_up => 0,
                 );
sub x_negative {
  my ($self) = @_;
  return $x_negative{$self->{'parts'}};
}
sub y_negative {
  my ($self) = @_;
  return $self->{'parts'} eq '4';
}

sub x_negative_at_n {
  my ($self) = @_;
  return ($x_negative{$self->{'parts'}} ? $self->n_start + 3 : undef);
}
sub y_negative_at_n {
  my ($self) = @_;
  return ($self->{'parts'} eq '4' ? $self->n_start + 4 : undef);
}

sub diffxy_minimum {
  my ($self) = @_;
  return ($self->{'parts'} eq 'octant' ? 0 : undef);
}
sub diffxy_maximum {
  my ($self) = @_;
  return ($self->{'parts'} eq 'octant_up' ? 0 : undef);
}

{
  my %dir_maximum_dxdy = (4         => [1,-1],  # N=4  South-East
                          2         => [1,-1],  # N=44 South-East
                          1         => [2,-1],  # N=3  ESE
                          octant    => [10,-3], # N=51
                          octant_up => [2,-1],  # N=8  ESE
                         );
  sub dir_maximum_dxdy {
    my ($self) = @_;
    return @{$dir_maximum_dxdy{$self->{'parts'}}};
  }
}

sub tree_num_children_list {
  my ($self) = @_;
  return ($self->{'parts'} eq '4'
          ? (0, 1,    3, 4)
          : (0, 1, 2, 3   ));
}

#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  my $parts = ($self->{'parts'} ||= '4');
  if (! exists $x_negative{$parts}) {
    croak "Unrecognised parts option: ", $parts;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### UlamWarburton n_to_xy(): "$n  parts=$self->{'parts'}"

  if ($n < $self->{'n_start'}) { return; }
  if (is_infinite($n)) { return ($n,$n); }
  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  $n = $n - $self->{'n_start'};  # N=0 basis
  if ($n == 0) { return (0,0); }

  my $parts = $self->{'parts'};
  my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $parts)
    or return $n;  # N=nan or +inf
  ### depthsum: join(',',@$depthsum)
  ### $factor
  ### n rem within row: $nrem

  if ($parts eq '4') {
    $factor /= 4;
  } elsif ($parts eq '2') {
    $factor /= 2;
    $nrem += ($factor-1)/2;
  } elsif ($parts eq 'octant_up') {
    $nrem += $factor;
  } else {
    $nrem += ($factor-1)/2;
  }
  (my $quad, $nrem) = _divrem ($nrem, $factor);

  ### factor modulus: $factor
  ### $quad
  ### n rem within quad: $nrem
  ### assert: $quad >= 0
  ### assert: $quad <= 3

  my $dhigh = shift @$depthsum;  # highest term
  my @ndigits = digit_split_lowtohigh($nrem,3);
  ### $dhigh
  ### ndigits low to high: join(',',@ndigits)

  my $x = 0;
  my $y = 0;
  foreach my $depthterm (reverse @$depthsum) { # depth terms low to high
    my $ndigit = shift @ndigits;              # N digits low to high
    ### $depthterm
    ### $ndigit

    $x += $depthterm;
    ### bit to x: "$x,$y"

    if ($ndigit) {
      if ($ndigit == 2) {
        ($x,$y) = (-$y,$x);   # rotate +90
      }
    } else {
      # $ndigit==0 (or undef when @ndigits shorter than @$depthsum)
      ($x,$y) = ($y,-$x);   # rotate -90
    }
    ### rotate to: "$x,$y"
  }
  $x += $dhigh;

  ### xy before quad: "$x,$y"
  if ($quad & 2) {
    $x = -$x;
    $y = -$y;
  }
  if ($quad & 1) {
    ($x,$y) = (-$y,$x); # rotate +90
  }

  ### final: "$x,$y"
  return $x,$y;
}
# no Smart::Comments;

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### UlamWarburton xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  if ($x == 0 && $y == 0) {
    return $self->{'n_start'};
  }

  my $parts = $self->{'parts'};
  if ($parts ne '4'
      && ($y < 0
          || ($parts ne '2' && $x < ($parts eq 'octant' ? $y : 0))
          || ($parts eq 'octant_up' && $x > $y))) {
    return undef;
  }

  my $quad;
  if ($y > $x) {
    ### quad above leading diagonal ...
    #        /
    # above /
    #      /
    if ($y > -$x) {
      ### quad above opposite diagonal, top quarter ...
      #  top
      # \  /
      #  \/
      $quad = 1;
      ($x,$y) = ($y,-$x);  # rotate -90
    } else  {
      ### quad below opposite diagonal, left quarter ...
      #      \
      # left  \
      #       /
      #      /
      $quad = 2;
      $x = -$x;  # rotate -180
      $y = -$y;
    }
  } else {
    ### quad below leading diagonal ...
    #   /
    #  / below
    # /
    if ($y > -$x) {
      ### quad above opposite diagonal, right quarter ...
      #   /
      #  / right
      #  \
      #   \
      $quad = 0;
    } else {
      ### quad below opposite diagonal, bottom quarter ...
      #  /\
      # /  \
      # bottom
      $quad = 3;
      ($x,$y) = (-$y,$x);  # rotate +90
    }
  }
  ### $quad
  ### quad rotated xy: "$x,$y"
  ### assert: ! ($y > $x)
  ### assert: ! ($y < -$x)

  my ($len, $exp) = round_down_pow ($x + abs($y), 2);
  if (is_infinite($exp)) { return ($exp); }


  my $depth =
    my $ndigits =
      my $n = ($x * 0 * $y);  # inherit bignum 0

  while ($exp-- >= 0) {
    ### at: "$x,$y  n=$n len=$len"

    my $abs_y = abs($y);
    if ($x && $x == $abs_y) {
      return undef;
    }

    # right quarter diamond
    ### assert: $x >= 0
    ### assert: $x >= abs($y)
    ### assert: $x+abs($y) < 2*$len || $x==abs($y)

    if ($x + $abs_y >= $len) {
      # one of the three quarter diamonds away from the origin
      $x -= $len;
      ### shift to: "$x,$y"

      $depth += $len;
      if ($x || $y) {
        $n *= 3;
        $ndigits++;

        if ($y < -$x) {
          ### bottom, digit 0 ...
          ($x,$y) = (-$y,$x);  # rotate +90

        } elsif ($y > $x) {
          ### top, digit 2 ...
          ($x,$y) = ($y,-$x);  # rotate -90
          $n += 2;
        } else {
          ### right, digit 1 ...
          $n += 1;
        }
      }
    }

    $len /= 2;
  }

  ### $n
  ### $depth
  ### $ndigits
  ### npower: 3**$ndigits
  ### $quad
  ### quad powered: $quad*3**$ndigits

  my $npower = 3**$ndigits;
  if ($parts eq 'octant_up') {
     $n -= $npower;
  } elsif ($parts ne '4') {
     $n -= ($npower-1)/2;
  }

  return $n + $quad*$npower + $self->tree_depth_to_n($depth);
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### UlamWarburton rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my ($dlo, $dhi)
    = _rect_to_diamond_range (round_nearest($x1), round_nearest($y1),
                              round_nearest($x2), round_nearest($y2));
  ### $dlo
  ### $dhi

  if ($dlo) {
    ($dlo) = round_down_pow ($dlo,2);
  }
  ($dhi) = round_down_pow ($dhi,2);

  ### rounded to pow2: "$dlo  ".(2*$dhi)

  return ($self->tree_depth_to_n($dlo),
          $self->tree_depth_to_n(2*$dhi) - 1);
}

#     x1       |       x2
#     +--------|-------+ y2          xzero true, yzero false
#     |        |       |             diamond min is y1
#     +--------|-------+ y1
#              |
#    ----------O-------------
#
#     |   x1        x2
#     |    +--------+ y2          xzero false, yzero true
#     |    |        |             diamond min is x1
#    -O--------------------
#     |    |        |
#     |    +--------+ y1
#     |
#
sub _rect_to_diamond_range {
  my ($x1,$y1, $x2,$y2) = @_;

  my $xzero = ($x1 < 0) != ($x2 < 0);  # x range covers x=0
  my $yzero = ($y1 < 0) != ($y2 < 0);  # y range covers y=0

  $x1 = abs($x1);
  $y1 = abs($y1);
  $x2 = abs($x2);
  $y2 = abs($y2);

  if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1) }
  if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1) }

  return (($yzero ? 0 : $y1) + ($xzero ? 0 : $x1),
          $x2+$y2);
}


#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

# ENHANCE-ME: step by the bits, not by X,Y
# ENHANCE-ME: tree_n_to_depth() by probe
sub tree_n_children {
  my ($self, $n) = @_;
  ### UlamWarburton tree_n_children(): $n

  if ($n < $self->{'n_start'}) {
    return;
  }
  my ($x,$y) = $self->n_to_xy($n);
  my @ret;
  my $dx = 1;
  my $dy = 0;
  foreach (1 .. 4) {
    if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) {
      if ($n_child > $n) {
        push @ret, $n_child;
      }
    }
    ($dx,$dy) = (-$dy,$dx);  # rotate +90
  }
  return sort {$a<=>$b} @ret;
}
sub tree_n_parent {
  my ($self, $n) = @_;
  ### UlamWarburton tree_n_parent(): $n

  if ($n <= $self->{'n_start'}) {
    return undef;
  }
  my ($x,$y) = $self->n_to_xy($n);
  my $dx = 1;
  my $dy = 0;
  foreach (1 .. 4) {
    if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) {
      if ($n_parent < $n) {
        return $n_parent;
      }
    }
    ($dx,$dy) = (-$dy,$dx); # rotate +90
  }
  return undef;
}
# sub tree_n_children {
#   my ($self, $n) = @_;
#   my ($power, $exp) = _round_down_pow (3*$n-2, 4);
#   $exp -= 1;
#   $power /= 4;
#
#   ### $power
#   ### $exp
#   ### pow base: 2 + 4*(4**$exp - 1)/3
#
#   $n -= ($power - 1)/3 * 4 + 2;
#   ### n less pow base: $n
#
#   my @$depthsum = (2**$exp);
#   $power = 3**$exp;
#
#   # find the cumulative levelpoints total <= $n, being the start of the
#   # level containing $n
#   #
#   my $factor = 4;
#   while (--$exp >= 0) {
#     $power /= 3;
#     my $sub = 4**$exp * $factor;
#     ### $sub
#     # $power*$factor;
#     my $rem = $n - $sub;
#
#     ### $n
#     ### $power
#     ### $factor
#     ### consider subtract: $sub
#     ### $rem
#
#     if ($rem >= 0) {
#       $n = $rem;
#       push @$depthsum, 2**$exp;
#       $factor *= 3;
#     }
#   }
#
#   $n += $factor;
#   if (1) {
#     return ($n,$n+1,$n+2);
#   } else {
#     return $n,$n+1,$n+2;
#   }
# }

# Converting quarter ...
# (N-start)*4+1+start = 4*N-4*start+1+start
#                     = 4*N-3*start+1
#
sub tree_depth_to_n {
  my ($self, $depth) = @_;
  ### UlamWarburton tree_depth_to_n(): $depth

  if ($depth == 0) {
    return $self->{'n_start'};
  }
  my $n = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n($depth-1);
  if (! defined $n) {
    return undef;
  }
  my $parts = $self->{'parts'};
  if ($parts eq '2') {
    return 2*$n - $self->{'n_start'} + $depth;
  }
  if ($parts eq '1') {
    return $n + $depth;
  }
  if ($parts eq 'octant' || $parts eq 'octant_up') {
    return ($n + 1);
  }
  ### assert: $parts eq '4'
  return 4*$n - 3*$self->{'n_start'} + 1;
}
# sub _NOTWORKING__tree_depth_to_n_range {
#   my ($self, $depth) = @_;
#   my ($nstart, $nend) = $self->Math::PlanePath::UlamWarburtonQuarter::tree_depth_to_n_range($self, $depth)
#     or return;
#   return (4*$nstart-3 + $self->{'n_start'}-1,
#           4*$nend-3 + $self->{'n_start'}-1);
# }


sub tree_n_to_depth {
  my ($self, $n) = @_;
  ### UlamWarburton tree_n_to_depth(): $n

  $n = $n - $self->{'n_start'};  # N=0 basis
  if ($n < 0) {
    return undef;
  }
  $n = int($n);
  if ($n == 0) {
    return 0;
  }
  my ($depthsum) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
    or return $n;  # N=nan or +inf
  return sum(@$depthsum);
}


# 1+3+3+9=16
#
# 0 +1
# 1 +4        <- 0
# 5 +4        <- 1
# 9 +12
# 21 +4     <- 5 + 4+12 = 21 = 5 + 4*(1+3)
# 25 +12
# 37 +12
# 49 +36
# 85 +4     <- 21 + 4+12+12+36  = 21 + 4*(1+3+3+9)
# 89 +12      <- 8   +64
# 101 +12
# 113 +36
# 149
# 161
# 197
# 233
# 341
# 345         <- 16  +256
# 357
# 369

# 1+3 = 4  power 2
# 1+3+3+9 = 16    power 3
# 1+3+3+9+3+9+9+27 = 64    power 4
#
# 4*(1+4+...+4^(l-1)) = 4*(4^l-1)/3
#    l=1 total=4*(4-1)/3 = 4
#    l=2 total=4*(16-1)/3=4*5 = 20
#    l=3 total=4*(64-1)/3=4*63/3 = 4*21 = 84
#
# n = 2 + 4*(4^l-1)/3
# (n-2) = 4*(4^l-1)/3
# 3*(n-2) = 4*(4^l-1)
# 3n-6 = 4^(l+1)-4
# 3n-2 = 4^(l+1)
#
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16
# x+3x+3x+9x = 16x = 256
# 4 quads is 4*16=64
#
# 1+1+3 = 5
# 1+1+3 +1+1+3 +3+3+9 = 25

# 1+4 = 5
# 1+4+4+12 = 21 = 1 + 4*(1+1+3)
# 2  +1
# 3  +3
# 6  +1
# 7  +1
# 10 +3
# 13


# parts=1
#   1+4+...+4^(l-1) + 2^l
#     = (4^l-1)/3 + 2^l
#     = (4^l-1 + 3*2^l)/3
#     = (2^l*(2^l + 3) - 1)/3
#   l=1 total= 3
#   l=2 total= 9
#   l=3 total= 29
#   l=4 total= 101
#
#   N = (4^l-1)/3 + 2^l
#   3*(N-2^l)+1 = 4^l
#   12*(N-2^l)+1 = 4 * 4^l
#
# parts=2
#   N = 2*(4^l-1)/3 + 2^l
#   3/2*(N-2^l)+1 = 4^l
#   6*(N-2^l)+1 = 4 * 4^l
#
# parts=4
#   N = (4^l-1)/3
#   3*N+1 = 4 * 4^l

# use Smart::Comments;

# Return ($aref, $factor, $remaining_n).
# sum(@$aref) = depth starting depth=1
#
sub _n0_to_depthsum_factor_rem {
  my ($n, $parts) = @_;
  ### _n0_to_depthsum_factor_rem(): "$n  parts=$parts"

  my $factor = ($parts eq '4' ? 4 : $parts eq '2' ? 2 : 1);
  if ($n == 0) {
    return ([], $factor, 0);
  }

  my $n3 = 3*$n + 1;
  my $ndepth = 0;
  my $power = $n3;
  my $exp;
  if ($parts eq '4') {
    $power /= 4;
  } elsif ($parts eq '2') {
    $power /= 2;
    $ndepth = -1;
  } elsif ($parts =~ /octant/) {
    $power *= 2;
    $ndepth = 2;
  }
  ($power, $exp) = round_down_pow ($power, 4);
  ### $n3
  ### $power
  ### $exp
  if (is_infinite($exp)) {
    return;
  }

  # ### pow base: ($power - 1)/3 * $factor + 1 + ($parts ne '4' && $exp)
  # $n -= ($power - 1)/3 * $factor + 1;
  # if ($parts ne '4') { $n -= $exp; }
  # ### n less pow base: $n

  my $twopow = 2**$exp;
  my @depthsum;

  for (;
       $exp-- >= 0;
       $power /= 4, $twopow /= 2) {
    ### at: "power=$power twopow=$twopow factor=$factor n3=$n3 ndepth=$ndepth depthsum=".join(',',@depthsum)

    my $nmore = $power * $factor;
    if ($parts ne '4') { $nmore += 3*$twopow; }
    if ($parts =~ /octant/) {
      ### assert: $nmore % 2 == 0
      $nmore = $nmore/2;
    }

    my $ncmp = $ndepth + $nmore;
    ### $nmore
    ### $ncmp

    if ($n3 >= $ncmp) {
      ### go to ncmp, remainder: $n3-$ncmp
      $factor *= 3;
      $ndepth = $ncmp;
      push @depthsum, $twopow;
    }
  }

  if ($parts eq '2') {
    $n3 += 1;
  }

  # ### assert: ($n3 - $ndepth)%3 == 0
  $n = ($n3 - $ndepth) / 3;
  $factor /= 3;

  ### $ndepth
  ### @depthsum
  ### remaining n: $n
  ### assert: $n >= 0
  ### assert: $n < $factor + ($parts ne '4')

  return \@depthsum, $factor, $n;
}

sub tree_n_to_subheight {
  my ($self, $n) = @_;
  ### tree_n_to_subheight(): $n

  $n = int($n - $self->{'n_start'});  # N=0 basis
  if ($n < 0) {
    return undef;
  }
  my ($depthsum, $factor, $nrem) = _n0_to_depthsum_factor_rem($n, $self->{'parts'})
    or return $n;  # N=nan or +inf
  ### $depthsum
  ### $factor
  ### $nrem

  my $parts = $self->{'parts'};
  if ($parts eq '4') {
    $factor /= 4;
  } elsif ($parts eq '2') {
    $factor /= 2;
    $nrem += ($factor-1)/2;
  } elsif ($parts eq 'octant_up') {
  } else {
    $nrem += ($factor-1)/2;
  }
  (my $quad, $nrem) = _divrem ($nrem, $factor);

  my $sub = pop @$depthsum;
  while (_divrem_mutate($nrem,3) == 1) {  # low "1" ternary digits of Nrem
    $sub += pop @$depthsum;
  }
  if (@$depthsum) {
    return $depthsum->[-1] - 1 - $sub;
  } else {
    return undef;  # N all 1-digits, on central infinite spine
  }
}

#------------------------------------------------------------------------------
# levels

sub level_to_n_range {
  my ($self, $level) = @_;
  return ($self->{'n_start'},
          $self->tree_depth_to_n_end(2**($level+1)-1));
}
sub n_to_level {
  my ($self, $n) = @_;
  my $depth = $self->tree_n_to_depth($n);
  if (! defined $depth) { return undef; }
  my ($pow, $exp) = round_down_pow ($depth, 2);
  return $exp + 1;
}

# parts=4
# Ndepth(2^a) = 2 + 4*(4^a-1)/3
# Nend(2^a-1) = 1 + 4*(4^a-1)/3 = (4^(a+1)-1)/3
# parts=2
#
# {
#   my %factor = (4         => 16,
#                 2         => 8,
#                 1         => 4,
#                 octant    => 2,
#                 octant_up => 2,
#                );
#   my %constant = (4         => -4,
#                   2         => -5,
#                   1         => -4,
#                   octant    => 0,
#                   octant_up => 0,
#                  );
#   my %spine = (4         => 0,
#                2         => 2,
#                1         => 2,
#                octant    => 1,
#                octant_up => 1,
#               );
#   sub level_to_n_range {
#     my ($self, $level) = @_;
#     my $parts = $self->{'parts'};
#     return ($self->{'n_start'},
#             $self->{'n_start'}
#             + (4**$level * $factor{$parts} + $constant{$parts}) / 3
#             + 2**$level * $spine{$parts});
#   }
# }

#------------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath Ulam Warburton Ndepth OEIS ie

=head1 NAME

Math::PlanePath::UlamWarburton -- growth of a 2-D cellular automaton

=head1 SYNOPSIS

 use Math::PlanePath::UlamWarburton;
 my $path = Math::PlanePath::UlamWarburton->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Ulam, Stanislaw>X<Warburton>This is the pattern of a cellular automaton
studied by Ulam and Warburton, numbering cells by growth tree row and
anti-clockwise within the rows.

=cut

# math-image --path=UlamWarburton --expression='i<100?i:0' --output=numbers
# and add N=100,N=101 manually

=pod

                               94                                  9
                            95 87 93                               8
                               63                                  7
                            64 42 62                               6
                         65    30    61                            5
                      66 43 31 23 29 41 60                         4
                   69    67    14    59    57                      3
                70 44 68    15  7 13    58 40 56                   2
       96    71    32    16     3    12    28    55    92          1
    97 88 72 45 33 24 17  8  4  1  2  6 11 22 27 39 54 86 91   <- Y=0
       98    73    34    18     5    10    26    53    90         -1
                74 46 76    19  9 21    50 38 52       ...        -2
                   75    77    20    85    51                     -3
                      78 47 35 25 37 49 84                        -4
                         79    36    83                           -5
                            80 48 82                              -6
                               81                                 -7
                            99 89 101                             -8
                              100                                 -9

                               ^
    -9 -8 -7 -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9

The growth rule is that a given cell grows up, down, left and right, but
only if the new cell has no neighbours (up, down, left or right).  So the
initial cell "a" is N=1,

                a                  initial depth=0 cell

The next row "b" cells are numbered N=2 to N=5 anti-clockwise from the
right,

                b
             b  a  b               depth=1
                b

Likewise the next row "c" cells N=6 to N=9.  The "b" cells only grow
outwards as 4 "c"s since the other positions would have neighbours in the
existing "b"s.

                c
                b
          c  b  a  b  c            depth=2
                b
                c

The "d" cells are then N=10 to N=21, numbered following the previous row "c"
cell order and then anti-clockwise around each.

                d
             d  c  d
          d     b     d
       d  c  b  a  b  c  d         depth=3
          d     b     d
             d  c  d
                d

There's only 4 "e" cells since among the "d"s only the X,Y axes won't have
existing neighbours (the "b"s and "d"s).

                e
                d
             d  c  d
          d     b     d
    e  d  c  b  a  b  c  d  e      depth=4
          d     b     d
             d  c  d
                d
                e

In general the pattern always grows by 1 outward along the X and Y axes and
travels into the quarter planes between with a diamond shaped tree pattern
which fills 11 of 16 cells in each 4x4 square block.

=head2 Tree Row Ranges

Counting depth=0 as the N=1 at the origin and depth=1 as the next N=2,3,4,5
generation, the number of cells in a row is

    rowwidth(0) = 1
      then
    rowwidth(depth) = 4 * 3^((count_1_bits(depth) - 1)

So depth=1 has 4*3^0=4 cells, as does depth=2 at N=6,7,8,9.  Then depth=3
has 4*3^1=12 cells N=10 to N=21 because depth=3=0b11 has two 1-bits in
binary.  The N start and end for a row is the cumulative total of those
before it,

    Ndepth(depth) = 1 + (rowwidth(0) + ... + rowwidth(depth-1))

    Nend(depth) = rowwidth(0) + ... + rowwidth(depth)

For example depth 3 ends at N=(1+4+4)=9.

    depth    Ndepth   rowwidth     Nend
      0          1         1           1
      1          2         4           5
      2          6         4           9
      3         10        12          21
      4         22         4          25
      5         26        12          37
      6         38        12          49
      7         50        36          85
      8         86         4          89
      9         90        12         101

For a power-of-2 depth the Ndepth is

    Ndepth(2^a) = 2 + 4*(4^a-1)/3

For example depth=4=2^2 starts at N=2+4*(4^2-1)/3=22, or depth=8=2^3 starts
N=2+4*(4^3-1)/3=86.

Further bits in the depth value contribute powers-of-4 with a tripling for
each bit above.  So if the depth number has bits a,b,c,d,etc in descending
order,

    depth = 2^a + 2^b + 2^c + 2^d ...       a>b>c>d...
    Ndepth = 2 + 4*(-1
                    +       4^a
                    +   3 * 4^b
                    + 3^2 * 4^c
                    + 3^3 * 4^d + ... ) / 3

For example depth=6 = 2^2+2^1 is Ndepth = 2 + (1+4*(4^2-1)/3) + 4^(1+1) =
38.  Or depth=7 = 2^2+2^1+2^0 is Ndepth = 1 + (1+4*(4^2-1)/3) + 4^(1+1) +
3*4^(0+1) = 50.

=head2 Self-Similar Replication

The diamond shape depth=1 to depth=2^level-1 repeats three times.  For
example an "a" part going to the right of the origin "O",

            d
          d d d
    |   a   d   c
  --O a a a * c c c ...
    |   a   b   c
          b b b
            b

The 2x2 diamond shaped "a" repeats pointing up, down and right as "b", "c"
and "d".  This resulting 4x4 diamond then likewise repeats up, down and
right.  The same happens in the other quarters of the plane.

The points in the path here are numbered by tree rows rather than in this
sort of replication, but the replication helps to see the structure of the
pattern.

=head2 Half Plane

Option C<parts =E<gt> '2'> confines the pattern to the upper half plane
C<YE<gt>=0>,

=cut

# math-image --path=UlamWarburton,parts=2 --expression='i<32?i:0' --output=numbers --size=99x16

=pod

    parts => "2"

                      28                           6
                      21                           5
                29 22 16 20 27                     4
                      11                           3
          30       12  6 10       26               2
          23    13     3     9    19               1
    31 24 17 14  7  4  1  2  5  8 15 18 25     <- Y=0
    --------------------------------------
    -6 -5 -4 -3 -2 -1 X=0 1  2  3  4  5  6

Points are still numbered anti-clockwise around so X axis N=1,2,5,8,15,etc
is the first of row depth=X.  X negative axis N=1,4,7,14,etc is the last of
row depth=-X.  For depth=0 point N=1 is both the first and last of that row.

Within a row a line from point N to N+1 is always a 45-degree angle.  This
is true of each 3 direct children, but also across groups of children by
symmetry.  For this parts=2 the lines from the last of one row to the first
of the next are horizontal, making an attractive pattern of diagonals and
then across to the next row horizontally.  For parts=4 or parts=1 the last
to first lines are at various different slopes and so upsets the pattern.

=head2 One Quadrant

Option C<parts =E<gt> '1'> confines the pattern to the first quadrant,

=cut

# math-image --path=UlamWarburton,parts=1 --expression='i<=73?i:0' --output=numbers --size=99x16

=pod

    parts => "1"  to depth=14

    14  |  73
    13  |  63
    12  |  53 62 72
    11  |  49
    10  |  39 48       71
     9  |  35    47    61
     8  |  31 34 38 46 52 60 70
     7  |  29    45    59
     6  |  19 28       69          67
     5  |  15    27                57
     4  |  11 14 18 26       68 58 51 56 66
     3  |   9    25    23          43
     2  |   5  8    24 17 22    44 37 42       65
     1  |   3     7    13    21    33    41    55
    Y=0 |   1  2  4  6 10 12 16 20 30 32 36 40 50 54 64
        +-----------------------------------------------
          X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

X axis N=1,2,4,6,10,etc is the first of each row X=depth.  Y axis
N=1,3,5,9,11,etc is the last similarly Y=depth.

In this arrangement horizontal arms have even N and vertical arms have
odd N.  For example the vertical at X=8 N=30,33,37,etc has N odd from N=33
up and when it turns to horizontal at N=42 or N=56 it switches to N even.
The children of N=66 are not shown but the verticals from there are N=79
below and N=81 above and so switch to odd again.

This odd/even pattern is true of N=2 horizontal and N=3 vertical and
thereafter is true due to each row having an even number of points and the
self-similar replications in the pattern,

    |\          replication
    | \            block 0 to 1 and 3
    |3 \           and block 0 block 2 less sides
    |----
    |\ 2|\
    | \ | \
    |0 \|1 \
    ---------

Block 0 is the base and is replicated as block 1 and in reverse as block 3.
Block 2 is a further copy of block 0, but the two halves of block 0 rotated
inward 90 degrees, so the X axis of block 0 becomes the vertical of block 2,
and the Y axis of block 0 the horizontal of block 2.  Those axis parts are
dropped since they're already covered by block 1 and 3 and dropping them
flips the odd/even parity to match the vertical/horizontal flip due to the
90-degree rotation.

=head2 Octant

Option C<parts =E<gt> 'octant'> confines the pattern to the first eighth of
the plane 0E<lt>=YE<lt>=X.

=cut

# math-image --path=UlamWarburton,parts=octant  --expression='i<=51?i:0' --output=numbers --size=75x15

=pod

    parts => "octant"

      7 |                         47     ...
      6 |                      48 36 46
      5 |                   49    31    45
      4 |                50 37 32 27 30 35 44
      3 |             14    51    24    43    41
      2 |          15 10 13    25 20 23    42 34 40
      1 |        5     8    12    18    22    29    39
    Y=0 |  1  2  3  4  6  7  9 11 16 17 19 21 26 28 33 38
        +-------------------------------------------------
         X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

In this arrangement N=1,2,3,4,6,7,etc on the X axis is the first N of each
row (C<tree_depth_to_n()>).

=head2 Upper Octant

Option C<parts =E<gt> 'octant_up'> confines the pattern to the upper octant
0E<lt>=XE<lt>=Y of the first quadrant.

=cut

# math-image --path=UlamWarburton,parts=octant_up  --expression='i<=51?i:0' --output=numbers --size=75x15

=pod

    parts => "octant_up"

      8 | 16 17 19 22 26 29 34 42
      7 | 15    21    28    41
      6 | 10 14    38 33 40
      5 |  8    13    39
      4 |  6  7  9 12
      3 |  5    11
      2 |  3  4
      1 |  2
    Y=0 |  1
        +--------------------------
          X=0 1  2  3  4  5  6  7

In this arrangement N=1,2,3,5,6,8,etc on the Y axis the last N of each row
(C<tree_depth_to_n_end()>).

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=UlamWarburton,n_start=0 --expression='i<38?i:0' --output=numbers

=pod

    n_start => 0

                   29                       5
                30 22 28                    4
                   13                       3
                14  6 12                    2
       31    15     2    11    27           1
    32 23 16  7  3  0  1  5 10 21 26    <- Y=0
       33    17     4     9    25          -1
                18  8 20       37          -2
                   19                      -3
                34 24 36                   -4
                   35                      -5

                    ^
    -5 -4 -3 -2 -1 X=0 1  2  3  4  5

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new ()>

=item C<$path = Math::PlanePath::UlamWarburton-E<gt>new (parts =E<gt> $str, n_start =E<gt> $n)>

Create and return a new path object.  The C<parts> option (a string) can be

    "4"     the default
    "2"
    "1"

=back

=head2 Tree Methods

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the children of C<$n>, or an empty list if C<$n> has no children
(including when C<$n E<lt> 1>, ie. before the start of the path).

The children are the cells turned on adjacent to C<$n> at the next row.  The
way points are numbered means that when there's multiple children they're
consecutive N values, for example at N=6 the children are 10,11,12.

=back

=head2 Tree Descriptive Methods

=over

=item C<@nums = $path-E<gt>tree_num_children_list()>

Return a list of the possible number of children in C<$path>.  This is the
set of possible return values from C<tree_n_num_children()>.  The possible
children varies with the C<parts>,

    parts     tree_num_children_list()
    -----     ------------------------
      4             0, 1,    3, 4        (the default)
      2             0, 1, 2, 3
      1             0, 1, 2, 3

parts=4 has 4 children at the origin N=0 and thereafter either 0, 1 or 3.

parts=2 and parts=1 can have 2 children on the boundaries where the 3rd
child is chopped off, otherwise 0, 1 or 3.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the start of
the path).

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<$n_lo = $n_start> and

    parts    $n_hi
    -----    -----
      4      $n_start + (16*4**$level - 4) / 3
      2      $n_start + ( 8*4**$level - 5) / 3  +  2*2**$level
      1      $n_start + ( 4*4**$level - 4) / 3  +  2*2**$level

C<$n_hi> is C<tree_depth_to_n_end(2**($level+1) - 1>.

=back

=head1 OEIS

This cellular automaton is in Sloane's Online Encyclopedia of Integer
Sequences as

=over

L<http://oeis.org/A147582> (etc)

=back

    parts=4
      A147562   total cells to depth, being tree_depth_to_n() n_start=0
      A147582   added cells at depth

    parts=2
      A183060   total cells to depth=n in half plane
      A183061   added cells at depth=n

    parts=1
      A151922   total cells to depth=n in quadrant
      A079314   added cells at depth=n

The A147582 new cells sequence starts from n=1, so takes the innermost N=1
single cell as row n=1, then N=2,3,4,5 as row n=2 with 5 cells, etc.  This
makes the formula a binary 1-bits count on n-1 rather than on N the way
rowwidth() above is expressed.

The 1-bits-count power 3^(count_1_bits(depth)) part of the rowwidth() is
also separately in A048883, and as n-1 in A147610.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::UlamWarburtonQuarter>,
L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::CellularRule>

L<Math::PlanePath::SierpinskiTriangle> (a similar binary 1s-count related
calculation)

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut