1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
# Copyright 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# Edwin L. Godfrey, "Enumeration of the Rational Points Between 0 and 1",
# National Mathematics Magazine, volume 12, number 4, January 1938, pages
# 163-166. http://www.jstor.org/stable/3028080
# cf
# A126572 Array read by antidiagonals: a(n,m) = the m-th integer from among those positive integers coprime to n.
# 1/1 1/2 1/3 1/4 1/5 1/6 1/7 ...
# 2/1 2/3 2/5 2/7 2/9 2/11 2/13 ...
# 3/1 3/2 3/4 3/5 3/7 3/8 3/10 ...
# 4/1 4/3 4/5 4/7 4/9 4/11 4/13 ...
# 5/1 5/2 5/3 5/4 5/6 5/7 5/8 ...
# 6/1 6/5 6/7 6/11 6/13 6/17 6/19 ...
# 7/1 7/2 7/3 7/4 7/5 7/6 7/8 ...
# 1/2 1/3 1/4 1/5 1/6 1/7
# 2/3 2/5 2/7 2/9 2/11 2/13
# 3/4 3/5 3/7 3/8 3/10 3/11
# 4/5 4/7 4/9 4/11 4/13 4/15
package Math::PlanePath::Godfrey;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 129;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem = \&Math::PlanePath::_divrem;
*_sqrtint = \&Math::PlanePath::_sqrtint;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::CoprimeColumns;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant x_minimum => 1;
use constant y_minimum => 2;
use constant diffxy_maximum => -1; # upper octant X<=Y-1 so X-Y<=-1
use constant gcdxy_maximum => 1; # no common factor
#------------------------------------------------------------------------------
sub n_to_xy {
my ($self, $n) = @_;
### Godfrey n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $d = int((_sqrtint(8*$n-7) + 1) / 2);
### $d
### base: ($d-1)*$d/2
$n -= ($d-1)*$d/2;
my $y = $n;
my $q = $d - $y;
# ### assert: $n >= 0
# ### assert: $y >= 1
my $tot = Math::PlanePath::CoprimeColumns::_totient($y);
my ($f, $count) = _divrem ($q, $tot);
### $y
### $q
### $tot
my $x = 1;
if ($count) {
for (;;) {
$x++;
if (Math::PlanePath::CoprimeColumns::_coprime($x,$y)) {
--$count or last;
}
}
}
# final den: $x + ($f+1)*$y)
return ($y, $x + ($f+1)*$y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### Godfrey xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 1 || $y < 1) {
return undef;
}
if (is_infinite($x)) {
return $x;
}
my ($f, $r) = _divrem ($y, $x);
### $f
### $r
my $w = ($f-1) * Math::PlanePath::CoprimeColumns::_totient($x);
### w from totient: $w
foreach my $i (1 .. $r) {
if (Math::PlanePath::CoprimeColumns::_coprime($i,$x)) {
### coprime: "$i, x=$x, increment"
$w++;
}
}
my $d = $x + $w - 1;
### $x
### $w
### $d
### return: $d*($d-1)/2 + $x
return $d*($d-1)/2 + $x;
}
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### Godfrey rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 1 || $y2 < 1) { return (1,0); }
return (1, $self->xy_to_n($x2,$y2));
}
1;
__END__
=cut
# math-image --path=Godfrey --output=numbers --all --size=60x14
=pod
|