1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
|
# Copyright 2016, 2017, 2018, 2019, 2020, 2021 Kevin Ryde
#
# This file is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# This file is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with this file. See the file COPYING. If not, see
# <http://www.gnu.org/licenses/>.
# Some miscellaneous functions related FLAT.pm automatons.
package MyFLAT;
use 5.010;
use strict;
use warnings;
use Carp 'croak';
use List::Util 'max','sum';
use Scalar::Util 'looks_like_number';
use Regexp::Common 'balanced';
# uncomment this to run the ### lines
# use Smart::Comments;
use base 'Exporter';
our @EXPORT_OK
= (
# generic, methods
# 'get_non_accepting','num_accepting','num_non_accepting',
# 'eventually_accepting', 'get_eventually_accepting',
# 'get_eventually_accepting_info',
# 'prefix',
# 'prefix_accepting','get_prefix_accepting','get_prefix_accepting_info',
# 'separate_sinks','add_sink',
# 'rename_accepting_last',
# 'is_accepting_sink',
# 'blocks','binary_to_base4',
# 'transmute',
# generic functions
'fraction_digits',
# fairly specific
'zero_digits_flat','one_bits_flat',
'bits_N_even_flat','bits_N_odd_flat','bits_of_length_flat',
'aref_to_FLAT_DFA',
# temporary
# 'as_nfa','concat','minimize','reverse, # methods
# misc
'FLAT_count_contains',
'FLAT_rename',
'FLAT_to_perl_re',
# personal preferences
'view',
'FLAT_check_is_equal','FLAT_check_is_subset',
'FLAT_show_breadth',
'FLAT_print_perl_table',
'FLAT_print_perl_accepting',
'FLAT_print_gp_inline_table',
'FLAT_print_gp_inline_accepting',
'FLAT_print_tikz',
);
our %EXPORT_TAGS = (all => \@EXPORT_OK);
#------------------------------------------------------------------------------
=pod
=over
=item C<@states = $fa-E<gt>MyFLAT::get_non_accepting>
Return a list of all the non-accepting states in C<$fa>.
=back
=cut
sub get_non_accepting {
my ($fa) = @_;
return grep {! $fa->is_accepting($_)} $fa->get_states;
}
#------------------------------------------------------------------------------
=pod
=over
=item C<$count = num_accepting($fa)>
=item C<$count = num_non_accepting($fa)>
Return the number of accepting or non-accepting states in C<$fa>.
=back
=cut
sub num_accepting {
my ($fa) = @_;
my @states = $fa->get_accepting;
return scalar(@states);
}
sub num_non_accepting {
my ($fa) = @_;
my @states = $fa->MyFLAT::get_non_accepting;
return scalar(@states);
}
sub num_symbols {
my ($fa) = @_;
my @alphabet = $fa->alphabet;
return scalar(@alphabet);
}
#------------------------------------------------------------------------------
sub descendants {
my ($self, $state, $symb) = @_;
my %try;
@try{ref $state eq 'ARRAY' ? @$state : $state} = (); # hash slice
my %seen;
my %ret;
while (%try) {
foreach my $from (keys %try) {
delete $try{$from};
$seen{$from} = 1;
foreach my $to ($self->successors($from,$symb)) {
$ret{$to} = 1;
unless ($seen{$to}++) {
$try{$to} = undef;
}
}
}
}
return keys %ret;
}
#------------------------------------------------------------------------------
# Prefixes
=pod
=over
=item C<$new_lang = $lang-E<gt>prefix>
=item C<$new_lang = $lang-E<gt>prefix ($proper)>
Return a new regular language object for prefixes of C<$lang>. This means
all strings S for which there exists some T where S.T is in C<$lang>. For
example if "abc" is in C<$lang> then C<$new_lang> has all prefixes "", "a",
"ab", "abc".
The default is to allow T empty, so all strings of C<$lang> are included in
C<$new_lang>. Optional parameter C<$proper> true means T must be non-empty
so only proper prefixes S are accepted.
In both cases prefix S can be the empty string, if suitable T exists. For
C<$proper> false this means if C<$lang> accepts anything at all (C<!
$lang-E<gt>is_empty>). For C<$proper> true it means if C<$lang> accepts
some non-empty string.
=back
=cut
sub prefix {
my ($self, $proper) = @_;
$self = $self->clone;
my @ancestors = $self->MyFLAT::ancestors([$self->get_accepting]);
if ($proper) {
$self->unset_accepting($self->get_accepting);
}
$self->set_accepting(@ancestors);
return $self;
}
sub ancestors {
my ($self, $state, $symb) = @_;
# "targets" are the states sought as successors. Initially given $state,
# then the immediate successors of those, successors of successors,
# etc.
# "ret" is those successors. It does not include the initial $state,
# unless a cycle comes back around to some of $state.
# "try" are states to look at for a successor target. Initially
# everything, then when a state is put in "ret" don't try it again.
my %targets;
@targets{ref $state eq 'ARRAY' ? @$state : $state} = (); # hash slice
my %try;
@try{$self->get_states} = (); # hash slice
my %ret;
my $more;
do {
$more = 0;
foreach my $from (keys %try) {
foreach my $to ($self->successors($from,$symb)) {
if (exists $targets{$to}) {
delete $try{$from};
$ret{$from} = 1;
$targets{$from} = 1;
$more = 1;
}
}
}
} while ($more);
return keys %ret;
}
# UNTESTED
# like successors, but the one-step preceding
sub predecessors {
my ($self, $state, $symb) = @_;
my %targets;
@targets{ref $state eq 'ARRAY' ? @$state : $state} = (); # hash slice
### %targets
my @ret;
foreach my $from ($self->get_states) {
foreach my $to ($self->successors($from,$symb)) {
if (exists $targets{$to}) {
push @ret, $from;
}
}
}
return @ret;
}
=pod
=over
=item C<@states = $fa-E<gt>get_prefix_states ()>
=item C<@states = $fa-E<gt>get_prefix_states ($proper)>
Return a list of those states which C<prefix()> would make accepting (and
all other states non-accepting).
This is all ancestor states of the accepting states in C<$fa>, so the
predecessors of accepting, the predecessors of them, etc. The default
C<$proper> false includes the original accepting states (so all original
strings of C<$fa>). For C<$proper> the original accepting states are not
included, unless they occur as ancestors. (If they do, and are reachable
from starting states, then it means there are already some prefixes accepted
by C<$fa>.)
No attention is paid to start states and what might be reached from them.
This allows prefixing to be found or manipulated before setting starts.
C<$fa> can be modified to accept also its prefixes like a non-copying form
of C<$fa-E<gt>prefix()> by
$fa->set_accepting($fa->get_prefix_states);
=item C<@states = get_prefix_accepting($fa)>
=item C<$fa = prefix_accepting($fa)>
C<get_prefix_accepting> returns states which are not accepting but which by
some sequence of symbols are able to reach accepting.
Some states of C<$fa> may be non-accepting, but able to reach an accepting
state by some sequence of symbols. C<get_prefix_accepting()> returns a list
of those states.
C<prefix_accepting()> returns a new FLAT which has these "prefix accepting"
states set as accepting. The effect is to accept all strings C<$fa> does,
and in addition accept all prefixes of strings accepted by C<$fa>, including
the empty string.
Prefix accepting states are the predecessors of accepting states, and
predecessors of those prefix states, etc. This usually extends back to
starting states, and includes those states. But no attention is paid to
starting-ness, the process just continues back by predecessors, irrespective
of what might be actually reachable from a starting state.
=back
=cut
# Return depth=>$depth,states=>$aref.
sub get_prefix_accepting_info {
my ($fa) = @_;
my $alphabet_aref = [ $fa->alphabet ];
my %non_accepting;
@non_accepting{$fa->MyFLAT::get_non_accepting} = (); # hash slice
my $depth = -1;
my %prefixes;
my $more;
do {
$depth++;
STATE: while (my ($state) = each %non_accepting) {
# if any successor is an accepting or accepting prefix then this state
# is an accepting prefix too
if (grep
{$prefixes{$_} || $fa->is_accepting($_)}
$fa->successors([$fa->epsilon_closure($state)], $alphabet_aref)) {
$prefixes{$state} = 1;
delete $non_accepting{$state};
$more = 1;
}
}
} while ($more--);
return (depth => $depth, states => [ keys %prefixes ]);
}
sub get_prefix_accepting {
my ($fa) = @_;
my %info = get_prefix_accepting_info($fa);
return @{$info{'states'}};
}
# Return a new FLAT (a clone) which accepts any initial prefix of the
# strings accepted by $fa.
# Each state is set to accepting if it has any accepting successor (some
# symbol leads to accepting), and repeating until no more such can be found.
#
sub prefix_accepting {
my ($fa, %options) = @_;
my %info = get_prefix_accepting_info($fa);
my $states = $info{'states'};
my $depth = $info{'depth'};
if ($options{'verbose'}) {
print $fa->{name}//'',
" accepting prefixes, count ",scalar(@$states)," more, depth=$depth\n";
}
$fa = $fa->clone;
$fa->set_accepting(@$states);
if (defined (my $name = $fa->{'name'})) {
if ($depth) { $name .= ' prefixes'; }
$fa->{'name'} = $name;
}
return $fa;
}
{
package FLAT::Regex;
sub MyFLAT_prefix {
my $self = shift;
$self->_from_op($self->op->MyFLAT_prefix(@_));
}
sub MyFLAT_suffix {
my $self = shift;
$self->_from_op($self->op->MyFLAT_suffix(@_));
}
}
{
package FLAT::Regex::Op::atomic;
sub MyFLAT_prefix {
my ($self, $proper) = @_;
my $member = $self->members;
return (! defined $member
? $self # null regex, unchanged
: $proper
# symbol becomes empty string, # empty string becomes null regexp
? (ref $self)->new(length($member) ? '' : undef)
: length($member)
# symbol, accept it and also empty string
? FLAT::Regex::Op::alt->new((ref $self)->new(''), $self)
# empty string, unchanged
: $self);
}
*MyFLAT_suffix = \&MyFLAT_prefix;
}
{
package FLAT::Regex::Op::star;
sub MyFLAT_prefix {
my ($self, $proper) = @_;
my $member = $self->members;
# M* -> M* properprefix(M)
# Can be proper prefix always since a itself covered by M*.
# But must check M has a non-empty string before doing that.
# Otherwise get (M* #) which doesn't match anything at all, but for
# $proper==0 want to match the empty string (unless M is_empty).
return ($member->has_nonempty_string
? FLAT::Regex::Op::concat->new($self, $member->MyFLAT_prefix(1))
: $proper ? FLAT::Regex::Op::atomic->new(undef)
: $member); # empty string or null regex remains so
}
sub MyFLAT_suffix {
my ($self, $proper) = @_;
my $member = $self->members;
# like prefix but reverse
return ($member->has_nonempty_string
? FLAT::Regex::Op::concat->new($member->MyFLAT_suffix(1), $self)
: $proper ? FLAT::Regex::Op::atomic->new(undef)
: $member); # empty string or null regex remains so
}
}
{
package FLAT::Regex::Op::concat;
sub MyFLAT_prefix {
my ($self,$proper) = @_;
# B C -> properprefix(B) | B prefix(C)
#
# If prefix(C) is not null then it includes the empty string and can go
# to properprefix(B) since whole B is covered by (B []).
#
# If C is the empty string and $proper==1 then prefix(C) is null so get
# (B #) which matches nothing and thus doesn't give whole C. This is as
# desired, since it is not a proper prefix in that case.
#
# For 3 or more concat members, nest like
# A B C -> properprefix(A) | A ( properprefix(B) | B prefix(C) )
#
# properprefix() is allowed for the earlier parts once a non-null prefix
# is seen.
#
# An empty $member means the whole concat matches nothing. Watch for
# that explicitly since B=# would give prefix(A) | (A #) which would
# wrongly accept prefix(A).
my $ret;
foreach my $member (CORE::reverse $self->members) {
if ($member->is_empty) { return $member; }
my $prefix = $member->MyFLAT_prefix($proper);
$ret = (defined $ret
? FLAT::Regex::Op::alt->new ($prefix,
__PACKAGE__->new($member, $ret))
: $prefix);
$proper ||= ! $prefix->is_empty;
}
return $ret;
}
sub MyFLAT_suffix {
my ($self,$proper) = @_;
# similar to prefix, working forwards through members for the nesting
# A B -> suffix(A) B | propersuffix(B)
# A B C -> ( suffix(A) B | propersuffix(B)) C ) | propersuffix(C)
my $ret;
foreach my $member ($self->members) {
if ($member->is_empty) { return $member; }
my $suffix = $member->MyFLAT_suffix($proper);
$ret = (defined $ret
? FLAT::Regex::Op::alt->new (__PACKAGE__->new($ret, $member),
$suffix)
: $suffix);
$proper ||= ! $suffix->is_empty;
}
return $ret;
}
}
{
package FLAT::Regex::Op;
# return new op of $self members transformed by $member->$method on each
sub MyFLAT__map_method {
my $self = shift;
my $method = shift;
return (ref $self)->new(map {$_->$method(@_)} $self->members);
}
}
{
package FLAT::Regex::Op::alt;
# prefix(X|Y) = prefix(X) | prefix(Y)
# suffix(X|Y) = suffix(X) | suffix(Y)
sub MyFLAT_prefix {
my $self = shift;
return $self->MyFLAT__map_method('MyFLAT_prefix',@_);
}
sub MyFLAT_suffix {
my $self = shift;
return $self->MyFLAT__map_method('MyFLAT_suffix',@_);
}
}
{
package FLAT::Regex::Op::shuffle;
*MyFLAT_prefix = \&FLAT::Regex::Op::alt::MyFLAT_prefix;
*MyFLAT_suffix = \&FLAT::Regex::Op::alt::MyFLAT_suffix;
}
#------------------------------------------------------------------------------
# Eventually Accepting
=pod
=over
=item C<@states = get_eventually_accepting($fa)>
=item C<$fa = eventually_accepting($fa)>
Some states of C<$fa> may be "eventually accepting" in the sense that after
more symbols they are certain to reach accepting, for all possible further
symbol values.
For example suppose alphabet a,b,c. If bba, bbb and bbc are all accepted by
C<$fa> then string "bb" is reckoned as eventually accepted since one further
symbol, any of a,b,c, goes to accepting.
C<get_eventually_accepting()> returns a list of states which are eventually
accepting. C<eventually_accepting()> returns a clone of C<$fa> which has
those states set as accepting.
Eventually accepting states are found first as any state with all symbols
going to accepting, then any state with all symbols going to either
accepting or eventually accepting, and so on until no more such further
states.
In an NFA, any epsilon transitions are crossed in the usual way, but there
should be just one starting state (or just one which ever leads to
accepting). If multiple starting states then the simple rule used will
sometimes fail to find all eventually accepting states and hence strings.
C<as_dfa> will collapse multiple starts.
=back
=cut
# Return depth=>$depth,states=>$aref.
sub get_eventually_accepting_info {
my ($fa) = @_;
my $alphabet_aref = [ $fa->alphabet ];
my %non_accepting;
@non_accepting{$fa->MyFLAT::get_non_accepting} = (); # hash slice
my %eventually;
my $depth = -1;
my $more;
do {
$depth++;
my @new_eventually;
STATE: while (my ($state) = each %non_accepting) {
### $state
foreach my $to_state ($fa->successors([$fa->epsilon_closure($state)],
$alphabet_aref)) {
### $to_state
unless ($eventually{$to_state} || $fa->is_accepting($to_state)) {
next STATE;
}
}
push @new_eventually, $state;
}
foreach my $state (@new_eventually) {
$eventually{$state} = 1;
delete $non_accepting{$state};
$more = 1;
}
} while ($more--);
return (depth => $depth, states => [ keys %eventually ]);
}
sub get_eventually_accepting {
my ($fa) = @_;
my %info = get_eventually_accepting_info($fa);
return @{$info{'states'}};
}
# Return a new FLAT (a clone) which accepts strings eventually accepted by $fa.
sub eventually_accepting {
my ($fa, %options) = @_;
my %info = get_eventually_accepting_info($fa);
my $states = $info{'states'};
my $depth = $info{'depth'};
if ($options{'verbose'}) {
print $fa->{name}//'',
" eventually accepting, count ",scalar(@$states)," more, depth=$depth\n";
}
$fa = $fa->clone;
$fa->set_accepting(@$states);
if (defined (my $name = $fa->{'name'})) {
if ($depth) { $name .= ' eventually'; }
$fa->{'name'} = $name;
}
return $fa;
}
#------------------------------------------------------------------------------
=pod
=over
=item C<$fa = fraction_digits($num,$den, %options)>
Return a C<FLAT::DFA> which matches digits of fraction C<$num/$den>.
The DFA remains accepting as long as it is given successive digits of the
fraction, and goes non-accepting (and remains so) on a wrong digit.
The default is decimal digits, or optional key/value
radix => integer>=2
If C<$num/$den> is an exact fraction in C<$radix>, meaning C<$num/$den ==
n/$radix**k> for some integer n,k, then it has two different
representations. Firstly terminating digits followed by trailing 0s,
secondly C<$n-1> followed by trailing C<$radix-1> digits.
For example 42/100 is 420000... and 419999... Both digit sequences converge
to 42/100. For fractions not an exact power of C<$radix> there is just one
digit sequence which converges to C<$num/$den>.
C<$num == 0> gives a DFA matching 000..., or C<$num==$den> for fraction
C<$num/$den == 1> gives a DFA matching 9999... (or whatever C<$radix-1>).
In all cases the C<$fa-E<gt>alphabet> is all the digits 0 to C<$radix-1>.
Those which are "wrong" digits at a given point go to a non-accepting sink
state. This is designed so that C<$fa-E<gt>complement> gives all digit
strings except fraction C<$num/$den>.
MAYBE: Option to omit wrong digits in an NFA, so transitions only for the
accepted digits.
MAYBE: Currently the symbols for digits in a radix 11 or higher are decimal
strings, but that might change. Could have an option for hex or a table or
func. Decimal strings are easy to work with their values in Perl if a
further func might act on the resulting FLAT. C<FLAT_rename> can always
change for final result if desired.
=back
=cut
sub fraction_digits {
my ($num, $den, %options) = @_;
### fraction_digits(): "$num / $den"
require FLAT::DFA;
my $f = FLAT::DFA->new;
my $radix = $options{'radix'} || 10;
### $radix
my $not_accept = $f->add_states(1);
$f->add_transition ($not_accept,$not_accept, 0..$radix-1);
unless ($num >=0 && $num <= $den) {
croak "fraction_digits() must have 0<=num<=den";
}
unless ($radix >= 2) {
croak "fraction_digits() must have radix>=2";
}
my %num_to_state;
my $prev_state = $f->add_states(1);
$f->set_starting ($prev_state);
$f->set_accepting ($prev_state);
$num_to_state{$num} = $prev_state;
my $prev_digit;
my $prev_prev_state;
if ($num == $den) {
# 1/1 match .9999...
$f->add_transition ($prev_state,$prev_state, $radix-1);
$f->add_transition ($prev_state,$not_accept, 0..$radix-2);
return $f;
}
for (;;) {
### $num
$num *= $radix;
my $digit = int($num / $den);
$num %= $den;
if ($digit >= 10) { $digit = chr(ord('A')+$digit-10); }
### $digit
my $cycle_state = $num_to_state{$num};
my $state = $cycle_state // $f->add_states(1);
$f->set_accepting ($state);
$f->add_transition ($prev_state,$state, $digit);
$f->add_transition ($prev_state,$not_accept,
grep {$_!=$digit} 0..$radix-1);
if (defined $cycle_state) {
if ($num == 0 && $prev_digit) {
$state = $f->add_states(1);
$f->set_accepting ($state);
$f->set_transition ($prev_prev_state, $not_accept,
grep {$_!=$prev_digit-1 && $_!=$prev_digit}
0..$radix-1);
$f->add_transition ($prev_prev_state,$state, $prev_digit-1);
$f->add_transition ($state,$state, $radix-1);
$f->add_transition ($state,$not_accept, 0..$radix-2);
}
return $f;
}
$num_to_state{$num} = $state;
$prev_digit = $digit;
$prev_prev_state = $prev_state;
$prev_state = $state;
}
}
# $radix ||= 10;
# unless ($num >=0 && $num < $den) {
# croak "fraction_digits() must have 0<=num<den";
# }
# my @digits; # the successive digits of $num/$den
# my %seen; # $digit=>$index of digits in @digits
# my $pos = 0;
# for (;;) {
# if (defined(my $rpos = $seen{$num})) {
# # this numerator is a repeat of what was at $rpos, so cycle back to there
# require FLAT::DFA;
# my $f = FLAT::DFA->new;
# my @states = $f->add_states($pos+1);
# $f->set_starting($states[0]);
# $f->set_accepting(@states[0..$pos-1]);
# foreach my $i (0 .. $pos) {
# foreach my $d (0 .. $radix-1) {
# my $to = ($i==$pos || $d != $digits[$i] ? $pos # not accept
# : $i == $pos-1 ? $rpos # cycle back
# : $i+1); # next
# $f->add_transition ($states[$i],$states[$to]);
# }
# }
# $f->{'name'} = "$num/$den radix $radix";
# return $f;
# }
#
# ### $num
# ### assert: $num >= 0
# ### assert: $num < $den
# $seen{$num} = $pos++;
# $num *= $radix;
# my $digit = int($num / $den);
# $num %= $den;
# if ($digit >= 10) { $digit = chr(ord('A')+$digit-10); }
# push @digits, $digit;
# }
#
# my $str;
# $str .= $digit;
# my $re = substr($str,0,$rpos) . "(".substr($str,$rpos) . ")*";
# ### $str
# ### $rpos
# ### $re
# my $f = FLAT::Regex->new($re)->as_dfa;
# $f->{'name'} = "$num/$den radix $radix";
# $f = prefix($f);
# return $f;
# $fa is a FLAT::DFA which matches fractions represented as strings of digits.
# Return a new FLAT::DFA which matches any terminating fraction like 10111
# also as its non-terminating equivalent 101101111...
# FIXME: currently only works for binary, and only when terminating
# fractions end with a 1, not with low 0s.
sub fraction_also_nines {
my ($fa, %options) = @_;
# FLAT::Regex->new ('(0|1)* 1 0*')->as_nfa;
my $binary_odd_flat = FLAT::Regex->new ('(0|1)* 1')->as_dfa;
return $fa->as_dfa
->intersect($binary_odd_flat)
->MyFLAT::skip_final
->MyFLAT::concat(FLAT::Regex->new ('01*')->as_dfa)
->union($fa)
->MyFLAT::set_name($fa->{'name'});
}
# $fa is a FLAT::NFA or FLAT::DFA accepting strings of digits.
# Those strings are interpreted as fractional numbers .ddddd...
# Return a new FLAT (same DFA or NFA) which accepts these same strings and
# also representations ending 999...
# For example if 321 is accepted then 3209999... is also accepted.
#
# The radix is taken from $fa->alphabet, or option radix=>$r can be given if
# $fa might not have all digits appearing.
#
# The digit strings read high to low by default. Option
# direction=>"lowtohigh" can interpret them low to high instead. Low to
# high will be more efficient since manipulations are at the low end
# (propagate a carry up through low "9"s), but both work.
#
# sub fraction_nines {
# my ($fa, %options) = @_;
# ### digits_increment() ...
#
# # starting state is flip
# # in flip 0-bit successor as a 1-bit, and thereafter unchanged
# # 1-bit successor as a 0-bit, continue flip
#
# my $direction = $options{'direction'} || 'hightolow';
# my $radix = $options{'radix'} || max($fa->alphabet)+1;
# my $nine = $radix-1;
#
# my $is_dfa = $fa->isa('FLAT::DFA');
# $fa = $fa->clone->MyFLAT::as_nfa;
# if ($direction eq 'hightolow') { $fa = $fa->reverse; }
#
# my %flipped_states;
# {
# # states reachable by runs of 9s from starting states
# my @pending = $fa->get_starting;
# while (defined (my $state = shift @pending)) {
# unless (exists $flipped_states{$state}) {
# my ($new_state) = $fa->add_states(1);
# ### add: "state=$state new=$new_state"
# $flipped_states{$state} = $new_state;
#
# if ($fa->is_starting($state)) {
# $fa->set_starting($new_state);
# $fa->unset_starting($state);
# }
# push @pending, $fa->successors($state, $nine);
# }
# }
# }
#
# while (my ($state, $flipped_state) = each %flipped_states) {
# ### setup: "$state nines becomes $flipped_state"
#
# foreach my $digit (0 .. $nine-1) {
# foreach my $successor ($fa->successors($state, $digit)) {
# ### digit: "digit=$digit $flipped_state -> $successor on 1"
# $fa->add_transition($flipped_state, $successor, $digit+1);
# }
# }
# if ($fa->is_accepting($state)) {
# # 99...99 accepting becomes 00..00 1 accepting, with a new state for
# # the additional 1-bit to go to
# my ($new_state) = $fa->add_states(1);
# $fa->set_accepting($new_state);
# $fa->add_transition($flipped_state, $new_state, 1);
# ### carry above accepting: $new_state
# }
#
# foreach my $successor ($fa->successors($state, $nine)) {
# ### nine: "$flipped_state -> $flipped_states{$successor} on 0"
# $fa->add_transition($flipped_state, $flipped_states{$successor}, 0);
# }
# }
#
# if (defined $fa->{'name'}) {
# $fa->{'name'} =~ s{\+(\d+)$}{'+'.($1+1)}e
# or $fa->{'name'} .= '+1';
# }
#
# if ($direction eq 'hightolow') { $fa = $fa->reverse; }
# if ($is_dfa) { $fa = $fa->as_dfa; }
# return $fa;
# }
#------------------------------------------------------------------------------
=pod
=over
=item C<$new_fa = $fa-E<gt>MyFLAT::separate_sinks>
Return a copy of C<$fa> which has separate sink states.
A sink state is where all out transitions loop back to itself. If two or
more states go to the same sink then the return has new states so that each
goes to its own such sink. The new sinks are the same accepting or not as
each original sink.
This does not change the strings accepted, but can help viewing a big
diagram where many long range transitions go to a single accepting and/or
non-accepting sink.
Only single sink states are sought. Multiple states cycling among
themselves all the same accepting or non-accepting are sinks, but they can
be merged by an C<as_min_dfa>.
=item C<$bool = $fa-E<gt>MyFLAT::is_sink($state)>
Return true if C<$state> has all transitions go to itself.
=back
=cut
sub separate_sinks {
my ($fa) = @_;
$fa = $fa->clone;
my %sink_used;
my @alphabet = $fa->alphabet;
foreach my $from_state ($fa->get_states) {
foreach my $to_state ($fa->successors($from_state)) {
next unless $fa->MyFLAT::is_sink($to_state);
next if $from_state==$to_state;
next unless $sink_used{$to_state}++;
my $new_state = $fa->MyFLAT::copy_state($to_state);
my @labels = FLAT_get_transition_labels($fa,$from_state,$to_state);
### common sink: "$from_state to $to_state, new $new_state, labels ".join(' ',@labels)
# when $fa is an NFA add_transition() accumulates, so for it must
# remove old transitions
$fa->remove_transition($from_state,$to_state);
$fa->add_transition($from_state,$new_state,@labels);
}
}
return $fa;
}
# $fa is a FLAT::FA.
# FIXME: what about cycles of mutual transitions among accepting states?
sub is_sink {
my ($fa, $state) = @_;
my @next = $fa->successors($state);
return @next==1 && $next[0]==$state;
}
sub get_sink_states {
my ($fa) = @_;
return grep {$fa->MyFLAT::is_sink($_)} $fa->get_states;
}
sub is_accepting_sink {
my ($fa, $state) = @_;
$fa->MyFLAT::is_sink($state) && $fa->is_accepting($state);
}
sub get_accepting_sinks {
my ($fa) = @_;
return grep {$fa->MyFLAT::is_accepting_sink($_)} $fa->get_states;
}
sub num_accepting_sinks {
my ($fa) = @_;
# this depends on use of grep in get_accepting_sinks()
return scalar($fa->MyFLAT::get_accepting_sinks);
}
=pod
=over
=item C<$new_state = $fa-E<gt>MyFLAT::copy_state ($state)>
Add a state to C<$fa> which is a copy of C<$state>. Transitions out and
accepting-ness of C<$new_state> and the same as C<$state>. Return the new
state number.
=back
=cut
sub copy_state {
my ($fa, $state) = @_;
### copy_state(): $state
my ($new_state) = $fa->add_states(1);
if ($fa->is_accepting ($state)) {
$fa->set_accepting($new_state);
}
# ENHANCE-ME: transition can be copied more efficiently?
foreach my $symbol ($fa->alphabet) {
foreach my $next ($fa->successors($state, $symbol)) {
my $new_next = ($next == $state ? $new_state : $next);
$fa->add_transition($new_state,$new_next, $symbol);
}
}
return $new_state;
}
#------------------------------------------------------------------------------
# $fa is a FLAT::FA.
# Return a new FLAT with some of its states or symbols renamed.
#
# symbols_func => $coderef called $new_symbol = $coderef->($old_symbol)
# symbols_map => $hashref of $old_symbol => $new_symbol
# states_map => $hashref of $old_state => $new_state
# states_list => arrayref of existing states in order for the new
#
# Any states or symbols in $fa unmentioned in these mappings are unchanged,
# so some can be changed and the rest left alone.
#
# Symbols can be swapped or cycled by for example {'A'=>'B', 'B'=>'A'}.
# States similarly.
#
sub FLAT_rename {
my ($fa, %options) = @_;
my @alphabet = $fa->alphabet;
my $symbols_func = $options{'symbols_func'}
// do {
my $symbols_map = $options{'symbols_map'} // {};
sub {
my ($symbol) = @_;
return $symbols_map->{$symbol};
}
};
my $states_map = $options{'states_map'} // {};
if (defined(my $states_list = $options{'states_list'})) {
$states_map = { map {$_ => $states_list->[$_]} 0 .. $#$states_list };
}
my $new = (ref $fa)->new;
$new->add_states($fa->num_states);
foreach my $old_state ($fa->get_states) {
my $new_state = $states_map->{$old_state} // $old_state;
if ($fa->is_accepting($old_state)) { $new->set_accepting($new_state); }
if ($fa->is_starting ($old_state)) { $new->set_starting ($new_state); }
foreach my $symbol (@alphabet) {
my $new_symbol = $symbols_func->($symbol) // $symbol;
foreach my $old_next ($fa->successors($old_state, $symbol)) {
my $new_next = $states_map->{$old_next} // $old_next;
$new->add_transition($new_state, $new_next, $new_symbol);
}
}
}
$new->{'name'} = $fa->{'name'};
return $new;
}
# Return a new FLAT::FA of the same type as $fa but where any accepting
# states are numbered last.
sub rename_accepting_last {
my ($fa, %options) = @_;
return FLAT_rename($fa, states_list =>
[ $fa->MyFLAT::get_non_accepting, $fa->get_accepting ]);
}
sub _sort_sensibly {
if (grep {!looks_like_number($_)} @_) {
return sort @_;
} else {
return sort {$a<=>$b} @_;
}
}
sub alphabet_sorted {
my ($fa) = @_;
return _sort_sensibly($fa->alphabet);
}
sub states_breadth_first {
my ($fa) = @_;
my @ret;
my $upto = 0;
my @alphabet = $fa->MyFLAT::alphabet_sorted;
my @pending = sort {$a<=>$b} $fa->get_starting;
while (@pending) {
my $state = shift @pending;
next if defined $ret[$state];
$ret[$state] = $upto++;
foreach my $symbol (@alphabet) {
push @pending, sort {$a<=>$b} $fa->successors($state, $symbol);
}
}
return @ret;
}
sub rename_breadth_first {
my ($fa) = @_;
return FLAT_rename($fa, states_list => [$fa->MyFLAT::states_breadth_first]);
}
#------------------------------------------------------------------------------
# zero_digits_flat() returns a FLAT::DFA matching a run of 0 digits,
# possibly an empty run. This is regex "0*", but with alphabet 0 .. $radix-1.
sub zero_digits_flat {
my ($radix) = @_;
my $f = FLAT::DFA->new;
$f->add_states(2);
$f->set_starting(0);
$f->set_accepting(0);
$f->add_transition(0,0, 0); # state 0 accept 0s
$f->add_transition(0,1, 1 .. $radix-1);
$f->add_transition(1,1, 0 .. $radix-1); # state 1 non-accepting sink
return $f;
}
# one_bits_flat() returns a FLAT::DFA matching a run of 1 bits, possibly an
# empty run. This is regex "1*", but with alphabet 0,1.
use constant::defer one_bits_flat => sub {
require FLAT::DFA;
my $f = FLAT::DFA->new;
$f->add_states(2);
$f->set_starting(0);
$f->set_accepting(0);
$f->add_transition(0,0, 1);
$f->add_transition(0,1, 0);
$f->add_transition(1,1, 1);
$f->add_transition(1,1, 0);
return $f;
};
# Return a FLAT::DFA which matches bit strings which are an even number N.
# An empty string "" is reckoned as 0 and so is matched.
use constant::defer bits_N_even_flat => sub {
require FLAT::Regex;
my $f = FLAT::Regex->new('(0|1)* 0 | []')->as_dfa;
$f->{'name'} = 'even N';
return $f;
};
# Return a FLAT::DFA which matches bit strings which are an odd number N.
use constant::defer bits_N_odd_flat => sub {
require FLAT::Regex;
my $f = FLAT::Regex->new('(0|1)* 1')->as_dfa;
$f->{'name'} = 'odd N';
return $f;
};
# Return a FLAT::DFA which matches exactly $len many bits 0,1.
sub bits_of_length_flat {
my ($len) = @_;
my $f = FLAT::DFA->new;
if ($len < 0) { $len = -1; }
$f->add_states($len+2);
$f->set_starting(0);
if ($len >= 0) {
$f->set_accepting($len);
}
foreach my $state (0 .. $len) {
$f->add_transition($state,$state+1, 0);
$f->add_transition($state,$state+1, 1);
}
my $non = $len+1;
$f->add_transition($non,$non, 0);
$f->add_transition($non,$non, 1);
return $f->MyFLAT::set_name("$len bits");
# return FLAT::Regex->new('(0|1)' x $len)
# ->as_dfa
# ->MyFLAT::minimize
# ->MyFLAT::set_name("$len bits");
}
sub bits_of_length_or_more_flat {
my ($len) = @_;
require FLAT::Regex;
return FLAT::Regex->new(('(0|1)' x $len) . '(0|1)*')
->as_dfa
->MyFLAT::minimize
->MyFLAT::set_name(">=$len bits");
}
#------------------------------------------------------------------------------
# Return all the labels which transition $from_state to $to_state.
sub FLAT_get_transition_labels {
my ($fa, $from_state, $to_state) = @_;
### FLAT_get_transition_labels(): "$from_state to $to_state"
my @ret;
foreach my $symbol ($fa->alphabet) {
### $symbol
my $next;
if ((($next) = $fa->successors($from_state, $symbol))
&& $next==$to_state) {
push @ret, $symbol;
}
### $next
}
### @ret
return @ret;
}
#------------------------------------------------------------------------------
# printouts
sub FLAT_varname {
my ($fa) = @_;
my $name = $fa->{'name'};
if (defined $name) {
$name =~ tr/a-zA-Z0-9_/_/c;
}
return $name;
}
sub FLAT_print_perl_table {
my ($fa, $name) = @_;
$name //= FLAT_varname($fa);
my @alphabet = sort {$a<=>$b} $fa->alphabet;
print "# alphabet ",join(',',@alphabet),"\n";
require MyPrintwrap;
print "\@$name = (\n";
MyPrintwrap::printwrap_indent(" ");
my @states = $fa->get_states;
foreach my $state (@states) {
my @row = map { my $symbol = $_;
my @next = $fa->successors($state,$symbol);
if (@next != 1) {
croak "Not single next for $state symbol $symbol";
}
$next[0]
} @alphabet;
MyPrintwrap::printwrap(" [".join(',',@row)."]"
. ($state == $#states ? "" : ','));
}
print ");\n";
}
sub FLAT_print_perl_accepting {
my ($fa, $name) = @_;
$name //= FLAT_varname($fa);
my @accepting = $fa->get_accepting;
my $start = "\@$name = (";
my $end = ");\n";
my $line = $start . join(',',@accepting) . $end;
if (length $line < 79) {
print "$line\n";
return;
}
require MyPrintwrap;
MyPrintwrap::printwrap_indent(" ");
print $start,"\n";
foreach my $i (0 .. $#accepting) {
MyPrintwrap::printwrap("$accepting[$i]"
. ($i == $#accepting ? "" : ','));
}
MyPrintwrap::printwrap($end);
}
sub FLAT_print_gp_inline_table {
my ($fa, $name) = @_;
require MyPrintwrap;
MyPrintwrap::printwrap_indent("% GP-DEFINE ");
$MyPrintwrap::Printwrap = 0;
MyPrintwrap::printwrap("$name = {[");
$MyPrintwrap::Printwrap += 2;
my @alphabet = sort {$a<=>$b} $fa->alphabet;
my @states = $fa->get_states;
foreach my $state (@states) {
my @row = map { my @to = $fa->successors($state,$_);
@to<=1 or die "oops, not a DFA";
@to ? $to[0]+1 : "'none" } @alphabet;
MyPrintwrap::printwrap(join(',',@row)
. ($state == $#states ? '' : ';'));
}
MyPrintwrap::printwrap("]};\n");
}
sub FLAT_print_gp_inline_accepting {
my ($fa, $name) = @_;
require MyPrintwrap;
MyPrintwrap::printwrap_indent("% GP-DEFINE ");
$MyPrintwrap::Printwrap = 0;
MyPrintwrap::printwrap("$name = {[");
$MyPrintwrap::Printwrap += 2;
my $join = '';
my @accepting = $fa->get_accepting;
foreach my $i (0 .. $#accepting) {
MyPrintwrap::printwrap(($accepting[$i]+1) . ($i == $#accepting ? '' : ','));
}
MyPrintwrap::printwrap("]};\n");
}
sub FLAT_print_tikz {
my ($fa, %options) = @_;
my $node_prefix = $options{'node_prefix'} // 's';
my $flow = $options{'flow'} // $fa->{'flow'} // 'east';
my $state_labels = $options{'state_labels'};
print "% accepting ", join(',',$fa->get_accepting), "\n";
my @column_to_states;
my @state_to_column;
my $put_state = sub {
my ($state, $column) = @_;
$state_to_column[$state] = $column;
push @{$column_to_states[$column]}, $state;
};
foreach my $state ($fa->get_starting) {
$put_state->($state, 0);
}
for (my $c = 0; $c <= $#column_to_states; $c++) {
foreach my $from_state (@{$column_to_states[$c]}) {
next unless defined $state_to_column[$from_state];
my $to_column = $state_to_column[$from_state] + 1;
foreach my $to_state (sort $fa->successors($from_state)) {
next if defined $state_to_column[$to_state];
$put_state->($to_state, $to_column);
}
}
}
# unreached states at end
foreach my $state ($fa->get_states) {
next if defined $state_to_column[$state];
$put_state->($state, scalar(@column_to_states));
}
foreach my $column (0 .. $#column_to_states) {
my $states = $column_to_states[$column];
foreach my $i (0 .. $#$states) {
my $state = $states->[$i];
my $x = $column;
my $y = $i - int(scalar(@$states)/2);
if ($flow eq 'west') { $x = -$x; }
if ($flow eq 'north') { ($x,$y) = ($y,$x); }
if ($flow eq 'south') { ($x,$y) = ($y,-$x); }
my $state_name = "$node_prefix$state";
my $state_str = ($state_labels ? $state_labels->[$state] : $state);
print " \\node ($state_name) at ($x,$y) [my box] {$state_str};\n";
}
}
print "\n";
my @alphabet = sort {$a<=>$b} $fa->alphabet;
foreach my $from_state ($fa->get_states) {
my $from_state_name = "$node_prefix$from_state";
print " % $from_state_name\n";
require Tie::IxHash;
my %to_lists;
tie %to_lists, 'Tie::IxHash';
foreach my $symbol (@alphabet) {
if (my ($to_state) = $fa->successors($from_state, $symbol)) {
push @{$to_lists{$to_state}}, $symbol;
}
}
while (my ($to_state, $labels) = each %to_lists) {
my $to_state_name = "$node_prefix$to_state";
$labels = join(',', @$labels);
if ($from_state eq $to_state) {
print " \\draw [->,loop below] ($from_state_name) to node[pos=.12,auto=left] {$labels} ();\n";
} else {
my $bend = '';
my $pos = '.45';
if ($fa->get_transition($to_state,$from_state)) {
$bend = ',bend left=10';
$pos = '.5';
}
print " \\draw [->$bend] ($from_state_name) to node[pos=$pos,auto=left] {$labels} ($to_state_name);\n";
}
}
print "\n";
}
}
#------------------------------------------------------------------------------
# $aref is an arrayref of arrayrefs which is a state table.
# [ [1,2],
# [2,0],
# [0,1] ]
# States are numbered C<0> to C<$#$aref> inclusive.
# The table has C<$new_state = $aref-E<gt>[$state]-E<gt>[$digit]>.
# Return a FLAT::DFA of this state table.
#
# Optional further key/value arguments are
# starting => $state
# accepting => $state
# accepting_list => arrayref [ $state, $state, ... ]
# name => $string
#
# C<starting> is the starting state, or default 0.
#
# C<accepting> or C<accepting_list> are the state or states which are accepting.
# If both C<accepting> and C<accepting_list> are given then both their states
# specified are made accepting.
#
sub aref_to_FLAT_DFA {
my ($aref, %options) = @_;
require FLAT::DFA;
my $f = FLAT::DFA->new;
my @fstates = $f->add_states(scalar(@$aref));
my $starting = $options{'starting'} // 0;
$f->set_starting($fstates[$starting]);
### starting: "$starting (= $fstates[$starting])"
my @accepting = (@{$options{'accepting_list'} // []},
$options{'accepting'} // ());
if (! @accepting) { @accepting = $#$aref; }
$f->set_accepting(map {$fstates[$_]} @accepting);
my $width = @{$aref->[0]};
foreach my $state (0 .. $#$aref) {
my $row = $aref->[$state];
if (@$row != $width) {
croak "state row $state doesn't have $width entries";
}
foreach my $digit (0 .. $#$row) {
my $to_state = $row->[$digit]
// next; # croak "state $state digit $digit destination undef";
($to_state >= 0 && $to_state <= $#$aref)
or croak "state $state digit $digit destination $to_state out of range";
### transition: "$state(=$fstates[$state]) digit=$digit -> $to_state($fstates[$to_state])"
$f->add_transition($fstates[$state], $fstates[$to_state], $digit);
}
}
$f->{'name'} = $options{'name'};
return $f;
}
#------------------------------------------------------------------------------
# $fa is a FLAT::NFA or FLAT::DFA.
# Return a list of how many strings of length $len are accepted, for $len
# running 0 to $max_len inclusive.
# The counts can become large, especially when $fa has a lot of symbols.
# The numeric type of the return is inherited from $max_len, so for example
# if it is a Math::BigInt then that is used for the returns.
# In general, the counts are a linear recurrences with order at most the number
# of states in $fa. Such recurrences include constants (like one string of
# each length), and polynomials.
#
# MAYBE: length => $len count strings = $len accepted
# MAYBE: max_length => $len count strings <= $len accepted
# MAYBE: by_length_upto => $len counts of strings each length <= $len
#
# count_matrix($fa) = [],[] $array[$row]->[$col] with M*initcol = counts
# count_recurrence($fa)
#
sub FLAT_count_contains {
my ($fa, $max_len, %options) = @_;
my @states = $fa->get_states;
my @accepting = $fa->get_accepting;
my @alphabet = $fa->alphabet;
my $zero = $max_len*0; # inherit bignum from $max_len
my $ret_type = $options{'ret_type'} || 'accepting';
my @counts = map {$zero} 0 .. $#states;
### starting: $fa->get_starting
### @accepting
### @counts
foreach my $state ($fa->get_starting) {
$counts[$state]++;
}
my @ret;
if ($ret_type eq 'rows') {
@ret = map {[]} 0 .. $#counts;
}
foreach my $k (0 .. $max_len) {
### at: "k=$k ".join(',',map{$_//'_'}@counts)." total ".sum(0,map{$_//0}@counts)." accepting ".sum(0,map{$counts[$_]//0}@accepting)
{
my $accepting_count = $zero;
foreach my $state (@accepting) {
if ($counts[$state]) {
$accepting_count += $counts[$state];
}
}
if ($ret_type eq 'accepting') {
push @ret, $accepting_count;
} elsif ($ret_type eq 'columns') {
push @ret, \@counts;
} elsif ($ret_type eq 'rows') {
foreach my $i (0 .. $#counts) {
push @{$ret[$i]}, $counts[$i];
}
}
}
last if $k == $max_len;
my @new_counts = map {$zero} 0 .. $#states;
foreach my $from_state (@states) {
my $from_count = $counts[$from_state] || next;
foreach my $symbol (@alphabet) {
foreach my $to_state ($fa->successors($from_state, $symbol)) {
### add: "$from_count $from_state -> $to_state"
$new_counts[$to_state] += $from_count;
}
}
}
@counts = @new_counts;
}
return @ret;
}
sub counts_starting {
my ($fa, $zero) = @_;
if (! defined $zero) { $zero = 0; }
return [ map { $zero + ($fa->is_starting($_) ? 1 : 0) }
0 .. $fa->num_states-1 ];
}
sub counts_next {
my ($fa, $aref) = @_;
# ENHANCE-ME: This is a bit slow. What's the right way to iterate all
# transitions?
my $zero = $aref->[0] * 0;
my @new_counts = ($zero) x scalar(@$aref);
my @alphabet = $fa->alphabet;
foreach my $from_state ($fa->get_states) {
my $from_count = $aref->[$from_state] || next;
foreach my $symbol (@alphabet) {
foreach my $to_state ($fa->epsilon_closure
($fa->successors($from_state, $symbol))) {
$new_counts[$to_state] += $from_count;
}
}
}
return \@new_counts;
}
sub counts_accepting {
my ($fa, $aref) = @_;
my $ret = $aref->[0] * 0;
foreach my $state ($fa->get_accepting) {
$ret += $aref->[$state];
}
return $ret;
}
# FIXME: Not right for non-accepting cycles.
sub finite_max_length {
my ($fa) = @_;
### finite_max_length() ...
my @pending = $fa->get_starting;
my %seen = map {$_=>1} @pending;
my $ret = -1;
my $len = 0;
while (@pending) {
if (grep {$fa->is_accepting($_)} @pending) {
### accepting ...
$ret = $len;
}
$len++;
@pending = $fa->epsilon_closure($fa->successors(\@pending));
### to: @pending
@pending = grep {! $seen{$_}++} @pending;
}
### $ret
return $ret;
}
#------------------------------------------------------------------------------
# FLAT temporary
sub minimize {
my ($flat, %options) = @_;
my $name = eval { $flat->{'name'} };
if ($options{'verbose'}) {
print "minimize ",$flat->{'name'}//''," ",$flat->num_states," states ...";
}
$flat = $flat->as_dfa;
$flat = $flat->as_min_dfa;
if ($options{'verbose'}) {
print "done, num states ",$flat->num_states,"\n";
}
$flat->{'name'} = $name;
return $flat;
}
# workaround for FLAT::DFA ->as_nfa() leaving itself blessed down in FLAT::DFA
sub as_nfa {
my ($fa) = @_;
$fa = $fa->as_nfa;
if ($fa->isa('FLAT::DFA')) { bless $fa, 'FLAT::NFA'; }
return $fa;
}
# workaround for FLAT::DFA ->reverse() infinite recursion, can reverse in NFA
sub reverse {
my ($fa) = @_;
if ($fa->isa('FLAT::DFA')) {
$fa->MyFLAT::as_nfa($fa)->reverse->as_dfa;
} else {
$fa->reverse;
}
}
# workaround for FLAT::DFA ->concat() infinite recursion, can reverse in NFA
sub concat {
my $fa = shift @_;
my $want_dfa = $fa->isa('FLAT::DFA');
foreach my $f2 (@_) {
$fa = $fa->MyFLAT::as_nfa->concat($f2->MyFLAT::as_nfa);
}
if ($want_dfa) {
$fa = $fa->as_dfa;
}
return $fa;
}
# workaround for FLAT::DFA ->star() infinite recursion, can star in NFA
sub star {
my ($fa) = @_;
if ($fa->isa('FLAT::DFA')) {
$fa->MyFLAT::as_nfa($fa)->star->as_dfa;
} else {
$fa->star;
}
}
#------------------------------------------------------------------------------
sub view {
my ($fa) = @_;
require MyGraphs;
if ($fa->can('as_graphviz')) { # in FLAT::FA, not in FLAT::Regex
MyGraphs::graphviz_view($fa->as_graphviz);
} else {
print $fa->as_string;
}
}
sub FLAT_to_perl_re {
my ($fa) = @_;
my $str = $fa->as_perl_regex;
$str =~ s/\Q?://g;
return $str;
}
sub FLAT_check_is_equal {
my ($f1, $f2, %options) = @_;
my @names = ($f1->{'name'} // 'first',
$f2->{'name'} // 'second');
if ($f1->equals($f2)) {
print "$names[0] = $names[1], ok\n";
return;
}
{
my $a1 = join(',',sort $f1->alphabet);
my $a2 = join(',',sort $f2->alphabet);
unless ($a1 eq $a2) {
print "different alphabet: $a1\n";
print " alphabet: $a2\n";
}
}
my $radix = $options{'radix'}
// do { my @labels = $f1->alphabet; scalar(@labels) };
print "$names[0] not equal $names[1]\n";
foreach my $which (1, 2) {
my $extra = $f1->as_dfa->difference($f2->as_dfa);
print "extra in $names[0] over $names[1]\n";
if ($extra->is_empty) {
print " is_empty()\n";
} else {
if ($extra->is_finite) {
print " is_finite()\n";
}
require Math::BaseCnv;
if ($extra->contains('')) {
print " [] zero length string\n";
}
my $it = $extra->new_acyclic_string_generator;
# my $it = $extra->new_deepdft_string_generator(20);
my $count = 0;
while (my $str = $it->()) {
if (++$count > 20) {
print " ... and more\n";
last;
}
my $n = Math::BaseCnv::cnv($str,$radix,10);
print " $str N=$n\n";
}
}
@names = CORE::reverse @names;
($f1,$f2) = ($f2,$f1);
}
exit 1;
}
sub FLAT_check_is_subset {
my ($fsub, $fsuper) = @_;
if (! $fsub->as_dfa->is_subset_of($fsuper->as_dfa)) {
my $f = $fsub->as_dfa->difference($fsuper->as_dfa);
my $it = $f->new_acyclic_string_generator;
if (defined(my $sub_name = $fsub->{'name'})
&& defined(my $super_name = $fsuper->{'name'})) {
print "$sub_name not subset of $super_name, ";
}
print "extras in supposed subset\n";
my $count = 0;
while (my $str = $it->()) {
if (++$count > 20) {
print " ... and more\n";
last;
}
print " $str\n";
}
exit 1;
}
my $fsub_name = $fsub->{'name'} // 'subset';
my $fsuper_name = $fsuper->{'name'} // 'superset';
print "$fsub_name subset of $fsuper_name, ok\n";
}
sub FLAT_show_breadth {
my ($flat, $width, $direction) = @_;
$direction //= 'hightolow';
if (defined (my $name = $flat->{'name'})) {
print "$name ";
}
print "contains ($direction, by breadth)\n";
if ($flat->is_empty) {
print " is_empty()\n";
} elsif ($flat->is_finite) {
print " is_finite()\n";
}
my $count = 0;
my $total = 0;
my @alphabet = sort $flat->alphabet;
my $radix = @alphabet;
$total++;
if ($flat->contains('')) {
print " [empty string]\n";
$count++;
}
require Math::BaseCnv;
foreach my $k (1 .. $width) {
foreach my $n (0 .. $radix**$k-1) {
my $str = Math::BaseCnv::cnv($n,10,$radix);
$str = sprintf '%0*s', $k, $str;
if ($direction eq 'lowtohigh') { $str = CORE::reverse $str; }
$total++;
if ($flat->contains($str)) {
print " $str N=$n\n";
$count++;
}
}
}
print " count $count / $total\n";
}
sub FLAT_show_transitions {
my ($flat,$str) = @_;
my @str = split //, $str;
my $print_states = sub {
if (@_ == 0) {
print "(none)";
return;
}
my $join = '';
foreach my $state (@_) {
print $join, $state, $flat->is_accepting($state) ? "*" : '';
$join = ',';
}
};
foreach my $initial ($flat->get_starting) {
my $state = $initial;
$print_states->($state);
foreach my $char (@str) {
print " ($char)";
my @next = $flat->successors($state,$char);
if (! @next) {
last;
}
$state = $next[0];
print "-> ";
$print_states->(@next);
}
print "\n";
}
}
sub FLAT_check_accepting_remain_so {
my ($flat) = @_;
my @accepting = $flat->get_accepting;
my @alphabet = $flat->alphabet;
my $bad = 0;
my $name = $flat->{'name'} // '';
foreach my $state (@accepting) {
foreach my $char (@alphabet) {
my @next = $flat->successors($state,$char);
foreach my $to (@next) {
if (! $flat->is_accepting($to)) {
print "$name $state ($char) -> $to is no longer accepting\n";
$bad++;
}
}
}
}
if ($bad) { exit 1; }
print "$name accepting remain so, ok\n";
}
sub FLAT_show_acyclics {
my ($flat) = @_;
my $it = $flat->new_acyclic_string_generator;
if (defined (my $name = $flat->{'name'})) {
print "$name ";
}
print "acyclics\n";
if ($flat->is_empty) {
print " empty\n";
}
my $count = 0;
while (my $str = $it->()) {
if (++$count > 8) {
print " ... and more\n";
last;
}
print " $str\n";
}
}
sub FLAT_show_deep {
my ($flat, $depth) = @_;
my $it = $flat->new_deepdft_string_generator($depth // 5);
print "depth $depth\n";
my $count = 0;
while (my $str = $it->()) {
if (++$count > 8) {
print " ... and more\n";
last;
}
print " $str\n";
}
}
#------------------------------------------------------------------------------
sub set_name {
my ($flat, $name) = @_;
$flat->{'name'} = $name;
return $flat;
}
#------------------------------------------------------------------------------
=pod
=over
=item C<$new_fa = $fa-E<gt>digits_increment (key =E<gt> value, ...)>
C<$fa> is a C<FLAT::NFA> or C<FLAT::DFA> accepting digit strings. Return a
new FLAT (same DFA or NFA) which accepts numbers +1, or +/- a given
increment. Key/value options are
add => integer, default 1
radix => integer>=2, default from alphabet
direction => "hightolow" (default) or "lowtohigh"
Option C<add =E<gt> $add> is the increment to apply (default 1). This can
be negative too.
Option C<radix =E<gt> $radix> is the digit radix. The default is taken from
the digits appearing in C<$fa-E<gt>alphabet> which is usually enough. The
option can be used if C<$fa> might not have all digits appearing in its
alphabet.
Digit strings are taken as high to low. Option C<direction =E<gt>
"lowtohigh"> takes them low to high instead. Low to high is more efficient
here since manipulations are at the low end (add the increment and carry up
through low digits), but both work.
An increment can increase string length, for example 999 -E<gt> 1000. If
there are high 0s on a string then the carry propagates into them and does
not change the length, so 00999 -E<gt> 01000.
Negative increments do not decrease string length, so 1000 -> 0999. If
C<$add> reduces a number below 0 then that string is quietly dropped.
If the strings matched by C<$fa> represent a predicate, numbers with some
property, then the returned C<$new_fa> is those N for which N-add has the
property. This is since C<$new_fa> is +add from the originals. So to get a
predicate testing whether N+1 has the property, apply an C<add =E<gt> -1>.
An C<intersect()> of that and the original becomes a predicate for a pair N
and N+1 both with the property and longer runs can be made by further
intersects.
ENHANCE-ME: Maybe a width option to stay in given number of digits, discard
anything which would increment to bigger. Or a wraparound option to ignore
carry above width for modulo radix^width.
ENHANCE-ME: Maybe decrement should trim a high 0 digit. That would mean a
set of strings without high 0s remains so on decrement. But if say infinite
high 0s are present then wouldn't want to remove them. Perhaps when a
decrement goes to 0 it could be checked for an all-0s accepting state above,
and merge with it.
This function works by modifying the digits matched in C<$fa>, low to high.
For example if the starting state has a transition for low digit 4 then the
C<$new_fa> has starting state with transition for digit 5 instead. At a
given state there is a certain carry to propagate. At the starting states
this is C<$add>, and later it will be smaller. Existing states are reckoned
as carry 0. A new state is introduced for combinations of state and
non-zero carry reached. Transitions in those new states are based on the
originals. Where the original state has digit d the new state has (d+carry)
mod 10 and goes to the original successor and new_carry =
floor((4+carry)/10). If that new_carry is zero then this is the original
successor state since the increment is now fully applied. If new_carry is
non-zero then it's another new state for combination of state and carry. In
a C<FLAT::NFA> any epsilon transitions are stepped across to find what
digits in fact occur at the given state. In general an increment +1
propagates only up through digit 9s so that say 991 -> 002 (low to high).
Often C<$fa> might match only a few initial 9s and so only a few new states
introduced.
ENHANCE-ME: Could have some generality by reckoning the carry as an
arbitrary key or transform state, and go through $fa by a composition. Any
such transformation can be made with a finite set of possible keys.
=back
=cut
sub digits_increment {
my ($fa, %options) = @_;
### digits_increment() ...
# starting state is flip
# in flip 0-bit successor as a 1-bit, and thereafter unchanged
# 1-bit successor as a 0-bit, continue flip
my $direction = $options{'direction'} || 'hightolow';
my $radix = $options{'radix'} || max($fa->alphabet)+1;
my $nine = $radix-1;
my $add = $options{'add'} // 1;
### $radix
### $nine
my $is_dfa = $fa->isa('FLAT::DFA');
$fa = $fa->MyFLAT::as_nfa->clone;
if ($direction eq 'hightolow') { $fa = $fa->reverse; }
my %state_and_carry_to_new_state;
require Tie::IxHash;
tie %state_and_carry_to_new_state, 'Tie::IxHash';
{
# states reachable by runs of 9s from starting states
my @pending = map {[$_,$add]} $fa->get_starting;
while (my $elem = shift @pending) {
my ($state, $carry) = @$elem;
unless (exists $state_and_carry_to_new_state{"$state,$carry"}) {
my ($new_state) = $fa->add_states(1);
### reach: "state=$state new_state=$new_state carry=$carry"
$state_and_carry_to_new_state{"$state,$carry"} = $new_state;
if ($fa->is_starting($state) && $carry==$add) {
$fa->set_starting($new_state);
$fa->unset_starting($state);
}
foreach my $digit (0 .. $nine) {
my ($new_carry,$new_digit) = _divrem($digit+$carry, $radix);
if ($new_carry) {
push @pending, map {[$_,$new_carry]}
$fa->successors([$fa->epsilon_closure($state)],$digit);
}
}
}
}
}
### %state_and_carry_to_new_state
while (my ($state_and_carry, $new_state)
= each %state_and_carry_to_new_state) {
my ($state,$carry) = split /,/, $state_and_carry;
### setup: "state=$state carry=$carry new_state=$new_state"
foreach my $digit (0 .. $nine) {
my ($new_carry,$new_digit) = _divrem($digit+$carry, $radix);
foreach my $successor ($fa->successors([$fa->epsilon_closure($state)],
$digit)) {
my $new_successor
= ($new_carry
? $state_and_carry_to_new_state{"$successor,$new_carry"}
: $successor);
### digit: "state=$state carry=$carry digit=$digit successor $successor"
### new : " new state $new_state new_digit=$new_digit with new_carry=$new_carry new_successor=$new_successor"
$fa->add_transition ($new_state, $new_successor, $new_digit);
}
}
if ($carry > 0 && $fa->is_accepting($state)) {
# 99...99 accepting becomes 00..00 1 accepting, with a new state for
# the additional carry
### carry above accepting: "carry=$carry"
my $from_state;
while ($carry) {
$from_state = $new_state;
($new_state) = $fa->add_states(1);
($carry, my $digit) = _divrem($carry, $radix);
$fa->add_transition($from_state, $new_state, $digit);
### transition: "$from_state -> $new_state"
}
$fa->set_accepting($new_state);
### accepting: $new_state
}
}
if (defined $fa->{'name'}) {
$fa->{'name'} =~ s{\+(\d+)$}{'+'.($1+1)}e
or $fa->{'name'} .= '+1';
}
if ($direction eq 'hightolow') { $fa = $fa->reverse; }
if ($is_dfa) { $fa = $fa->as_dfa; }
return $fa;
}
# sub successors_through_epsilon {
# my ($fa, $state, $symbol) = @_;
# return $fa->epsilon_closure($fa->successors($state,$symbol));
# }
sub _divrem {
my ($n,$d) = @_;
my $r = $n % $d;
return (($n-$r)/$d, $r);
}
#------------------------------------------------------------------------------
=item C<$new_lang = $lang-E<gt>skip_initial ()>
=item C<$new_lang = $lang-E<gt>skip_final ()>
Return a new regular language object, of the same type as C<$lang>, which
matches the strings of C<$lang> with 1 initial or final symbol skipped.
A string of 1 symbol in C<$lang> becomes the empty string in C<$new_lang>.
The empty string in C<$lang> cannot have 1 symbol skipped so is ignored when
forming C<$new_lang>.
In a C<FLAT::FA>, C<skip_initial()> works by changing the starting states to
the immediate successors of the current starting states. For a
C<FLAT::DFA>, if this results in multiple starts then they are converted to
a single start by the usual C<as_dfa()>. C<skip_final()> works by changing
the accepting states to their immediate predecessors.
No minimization is performed. It's possible changed starts might leave some
states unreachable. It's possible changed accepting could leave various
states never reaching an accept.
ENHANCE-ME: maybe parameter $n to skip how many.
=back
=cut
sub skip_initial {
my ($fa) = @_;
### skip_initial(): $fa
my $name = $fa->{'name'};
my $is_dfa = $fa->isa('FLAT::DFA');
$fa = $fa->MyFLAT::as_nfa->clone; # need NFA for new multiple starts
my @states = $fa->get_starting;
$fa->unset_starting(@states);
### starting: @states
$fa->set_starting($fa->successors([$fa->epsilon_closure(@states)]));
### new starting: [ $fa->get_starting ]
if ($is_dfa) { $fa = $fa->as_dfa; }
if (defined $name) {
$name =~ s{ skip initial( (\d+))?$}{' skip initial '.(($2||0)+1)}e
or $name .= ' skip initial';
$fa->{'name'} = $name;
}
return $fa;
}
{
package FLAT::Regex;
sub MyFLAT_skip_initial {
my $self = shift;
$self->_from_op($self->op->MyFLAT_skip_initial(@_));
}
sub MyFLAT_skip_final {
my $self = shift;
$self->_from_op($self->op->MyFLAT_skip_final(@_));
}
}
{
package FLAT::Regex::Op::atomic;
sub MyFLAT_skip_initial {
my ($self) = @_;
### atomic MyFLAT_skip_initial: $self
my $member = $self->members;
return __PACKAGE__->new(defined $member && length($member)
? '' # symbol, becomes empty string
: undef); # empty str or null regex, becomes null
}
*MyFLAT_skip_final = \&MyFLAT_skip_initial;
# return a list of the initial symbols accepted
sub MyFLAT_initial_symbols {
my ($self) = @_;
my $member = $self->members;
return (defined $member && length($member) ? $member : ());
}
}
{
package FLAT::Regex::Op::star;
# skip_initial(X*) = skip_initial(X) X*
# skip_final(X*) = X* skip_final(X)
# or if X has no non-empty strings then return has no non-empty
sub MyFLAT_skip_initial {
my ($self) = @_;
my $member = $self->members;
return ($member->has_nonempty_string
? FLAT::Regex::Op::concat->new($member->MyFLAT_skip_initial, $self)
: $member);
}
sub MyFLAT_skip_final {
my ($self) = @_;
my $member = $self->members;
return ($member->has_nonempty_string
? FLAT::Regex::Op::concat->new($self, $member->MyFLAT_skip_final)
: $member);
}
# initial_symbols(X*) = initial_symbols(X)
sub MyFLAT_initial_symbols {
my ($self) = @_;
return $self->members->MyFLAT_initial_symbols;
}
}
{
package FLAT::Regex::Op::concat;
# skip_initial(X Y Z) = skip_initial(X) Y Z
# skip_final(X Y Z) = X Y skip_initial(Z)
# any X, or Z, without a non-empty string is skipped
sub MyFLAT_skip_initial {
my ($self) = @_;
my @members = $self->members;
# skip initial members which are the empty string and nothing else
while (@members >= 2
&& ! $members[0]->is_empty
&& ! $members[0]->has_nonempty_string) {
shift @members;
}
$members[0] = $members[0]->MyFLAT_skip_initial;
return (ref $self)->new(@members);
}
sub MyFLAT_skip_final {
my ($self) = @_;
my @members = $self->members;
# skip trailing members which are the empty string and nothing else
while (@members >= 2
&& ! $members[-1]->is_empty
&& ! $members[-1]->has_nonempty_string) {
pop @members;
}
$members[-1] = $members[-1]->MyFLAT_skip_final;
return (ref $self)->new(@members);
}
# initial_symbols(X Y Z) = initial_symbols(X)
# or whichever of X,Y,Z first has a non-empty string
sub MyFLAT_initial_symbols {
my $self = shift;
my @ret;
foreach my $member ($self->members) {
@ret = $member->MyFLAT_initial_symbols and last;
}
return @ret;
}
}
{
package FLAT::Regex::Op::alt;
# skip_initial(X | Y) = skip_initial(X) | skip_initial(Y)
# skip_final(X | Y) = skip_final(X) | skip_final(Y)
sub MyFLAT_skip_initial {
my $self = shift;
return $self->MyFLAT__map_method('MyFLAT_skip_initial',@_);
}
sub MyFLAT_skip_final {
my $self = shift;
return $self->MyFLAT__map_method('MyFLAT_skip_final',@_);
}
# initial_symbols(X|Y) = union(initial_symbols(X), initial_symbols(Y))
sub MyFLAT_initial_symbols {
my $self = shift;
my %ret;
foreach my $member ($self->members) {
foreach my $symbol ($member->MyFLAT_initial_symbols) {
$ret{$symbol} = 1;
}
}
return keys %ret;
}
}
{
package FLAT::Regex::Op::shuffle;
# can this be done better?
sub MyFLAT__map_skip {
my $self = shift;
my $method = shift;
my @members = $self->members;
my @alts;
foreach my $i (0 .. $#members) {
if ($members[$i]->has_nonempty_string) {
my @skip = @members;
$skip[$i] = $skip[$i]->MyFLAT_skip_initial(@_);
push @alts, __PACKAGE__->new(@skip);
}
}
return (@alts
? FLAT::Regex::Op::alt->new (@alts)
: FLAT::Regex::Op::atomic->new(undef));
}
sub MyFLAT_skip_initial {
my $self = shift;
return $self->MyFLAT__map_skip('MyFLAT_skip_final',@_);
}
sub MyFLAT_skip_final {
my $self = shift;
return $self->MyFLAT__map_skip('MyFLAT_skip_final',@_);
}
# wrong
# sub MyFLAT_skip_initial {
# my $self = shift;
# my %initial;
# my @members = $self->members;
# foreach $member (@members) {
# my @symbols = $members[$i]->MyFLAT_initial_symbols or next;
# @initial{@symbols} = (); # hash slice
# $member = $member->MyFLAT_skip_initial(@_); # mutate array
# }
# if (%initial) {
#
# return (%initial
# ? FLAT::Regex::Op::concat->new
# (FLAT::Regex::Op::alt->new
# (map {FLAT::Regex::Op::atomic->new($_)} keys %initial),
# __PACKAGE__->new(@members))
#
# : FLAT::Regex::Op::atomic->new(undef))
#
# return $self->MyFLAT__map_skip('MyFLAT_skip_final',@_);
# }
}
sub skip_final {
my ($fa, %options) = @_;
my $name = $fa->{'name'};
my $is_dfa = $fa->isa('FLAT::DFA');
$fa = $fa->MyFLAT::as_nfa
->MyFLAT::reverse
->MyFLAT::skip_initial(%options)
->MyFLAT::reverse;
if ($is_dfa) { $fa = $fa->as_dfa; }
if (defined $name) {
$name =~ s{ skip final( (\d+))?$}{' skip final '.(($1||0)+1)}e
or $name .= ' skip final';
$fa->{'name'} = $name;
}
return $fa;
}
# sub skip_initial_0s {
# my ($fa) = @_;
# my $s = $fa->MyFLAT::skip_initial;
# }
#------------------------------------------------------------------------------
# $fa is a FLAT::NFA or FLAT::DFA which matches strings of bits.
# Return a new FLAT (same DFA or NFA) which accepts the same in base-4.
#
# MAYBE: a general transform of list of symbols -> single symbol
#
# lowtohigh or hightolow only affects how a high 0-bit
#
sub binary_to_base4 {
my ($fa, %options) = @_;
my $direction = $options{'direction'} || 'hightolow';
### binary_to_base4(): $direction
my $name = $fa->{'name'};
my $is_dfa = $fa->isa('FLAT::DFA');
if ($direction eq 'hightolow') { $fa = $fa->reverse; }
my $new_fa = FLAT::DFA->new;
my @state_to_new_state;
my $state_to_new_state = sub {
my ($state) = @_;
my $new_state = $state_to_new_state[$state];
if (! defined $new_state) {
($new_state) = $new_fa->add_states(1);
### $new_state
$state_to_new_state[$state] = $new_state;
if ($fa->is_accepting($state)) {
$new_fa->set_accepting($new_state);
}
}
return $new_state;
};
my @pending = $fa->get_starting;
$new_fa->set_starting(map {$state_to_new_state->($_)}
$fa->epsilon_closure(@pending));
my @state_done;
while (@pending) {
my $state = pop @pending;
next if $state_done[$state]++;
my $new_state = $state_to_new_state->($state);
foreach my $bit0 (0,1) {
my @successors = $fa->successors([$fa->epsilon_closure($state)],
$bit0);
foreach my $bit1 (0,1) {
my @successors = $fa->successors([$fa->epsilon_closure(@successors)],
$bit1);
my $digit = $bit0 + 2*$bit1;
foreach my $successor (@successors) {
my $new_successor = $state_to_new_state->($successor);
### old: "bit0=$bit0 bit1=$bit1 $state to $successor"
### new: "digit=$digit $new_state to $new_successor"
$new_fa->add_transition($new_state, $new_successor, $digit);
push @pending, $successor;
}
}
}
}
if ($direction eq 'hightolow') { $new_fa = $new_fa->reverse; }
if ($is_dfa) { $new_fa = $new_fa->as_dfa; }
if (defined $name) {
$name =~ s{ skip final( (\d+))?$}{' skip final '.(($2||0)+1)}e
or $name .= ' base-4';
$new_fa->{'name'} = $name;
}
return $new_fa;
}
# $fa is a FLAT::NFA or FLAT::DFA.
# Return a new FLAT (same DFA or NFA) which accepts blocks of $n many symbols.
#
# New symbols are string concatenation of the existing, so for example
# symbols a,b,c in blocks of 2 would have symbols aa,ab,ba,bb,etc.
#
# ENHANCE-ME: A separator string, or mapper func for blocks to new symbol.
#
sub blocks {
my ($fa, $n, %options) = @_;
my @alphabet = $fa->alphabet;
my $num_symbols = scalar(@alphabet);
my $num_blocks = $num_symbols ** $n;
my @states = $fa->get_states;
# clone with no transitions
my $new_fa = (ref $fa)->new;
$new_fa->add_states($fa->num_states);
$new_fa->set_starting($fa->get_starting);
$new_fa->set_accepting($fa->get_accepting);
foreach my $state (@states) {
### $state
foreach my $i (0 .. $num_blocks-1) {
### $i
my $q = $i;
my $block_symbol = '';
my @successors = ($state);
foreach (1 .. $n) {
my $r = $q % $num_symbols;
$q = ($q-$r) / $num_symbols;
my $symbol = $alphabet[$r];
$block_symbol .= $symbol;
@successors = $fa->successors([$fa->epsilon_closure(@successors)],
$symbol);
}
foreach my $successor (@successors) {
### new transition: "$state -> $successor label $block_symbol"
$new_fa->add_transition($state, $successor, $block_symbol);
}
}
}
if (defined(my $name = $fa->{'name'})) {
$name .= " blocks $n";
$new_fa->{'name'} = $name;
}
return $new_fa;
}
#------------------------------------------------------------------------------
sub as_perl {
my ($fa, %options) = @_;
my $str = '';
my $varname = $options{'varname'} // 'fa';
$str .= "my \$$varname = " . ref($fa) . "->new;\n";
my @states = sort {$a<=>$b} $fa->get_states;
$str .= "\$$varname->add_states(" . scalar(@states) . ");\n";
$str .= "\$$varname->set_starting(" . join(',',$fa->get_starting) . ");\n";
$str .= "\$$varname->set_accepting(" . join(',',$fa->get_accepting) . ");\n";
foreach my $from (@states) {
foreach my $to (@states) {
my $t = $fa->get_transition($from,$to) // next;
my @symbols = map {"'$_'"} $t->alphabet;
$str .= "\$$varname->add_transition($from,$to,".join(',',@symbols).");\n";
}
}
}
sub print_perl {
my $fa = shift;
print $fa->MyFLAT::as_perl(@_);
}
# $re is a Perl regexp, usually a qr/.../ form.
# Return a string which is a FLAT style regexp.
# Each char matched by $re is matched by the flat.
# There's no scope for multi-char symbols in the flat.
# Whitespace chars should not be matched by $re.
# Regexp::Common::balanced used here probably needs new enough Perl.
#
sub perl_regexp_to_flat_regex {
my ($re) = @_;
my $str = "$re";
# (?opts:...)
# x = ignore whitespace and comments
# Assume for now that if present then it's whitespace everywhere,
# which is not quite right.
if ($str =~ s/\(\?\^([a-z]*):/(/) {
my $opts = $1;
if ($opts =~ /x/) {
$str =~ tr/ \t\r\n//d;
}
}
# ^ $ assumed always for now
# would need a good idea of the alphabet
$str =~ s/[\^\$]//g;
# [123] char classes
$str =~ s{\[([^\]]*)\]}{ '(' . join('|',split //, $1) . ')' }eg;
# (| or |) empty alternative
$str =~ s/\(\|/([]|/g;
$str =~ s/\|\)/|[])/g;
# X+ repeats, possibly nested
while ($str =~ s{($RE{'balanced'}{-parens=>'()'}|[^)])\+}{$1$1*}o) {}
# X? optional, possibly nested
while ($str =~ s{($RE{'balanced'}{-parens=>'()'}|[^)])\?}{($1|[])}o) {}
### $str
return $str;
}
sub flat_regex_to_perl_regexp {
my ($str) = @_;
$str =~ s/\[\]//g;
return qr/^$str$/x;
}
#------------------------------------------------------------------------------
# Read and Write AT&T FSM Format
#
# AT&T format is transitions in lines like (and in no particular order)
#
# FromState ToState InputSymbol OutputSymbol
#
# States are numbered 0 upwards. 0 is the starting state. The accepting
# states are one per line after the transition lines.
#
# The symbols are non-whitespace, and normally 0 means the "epsilon"
# transition of an NFA.
#
sub ensure_states {
my $fa = shift;
foreach my $state (@_) {
if ((my $more = ($state+1 - $fa->num_states)) > 0) {
$fa->add_states($more);
}
}
}
# $filename contains an "AT&T" format finite state machine or finite state
# transducer. Return a FLAT::NFA of it. Key/value options are
#
# epsilon_symbol => string, default 0
# no_epsilon_symbol => boolean, default false
#
# Symbol 0 in the file means an epsilon transition for the NFA and becomes
# the FLAT style empty symbol ''. Another symbol can be given with
# "epsilon_symbol", or no_epsilon_symbol => 1 for no epsilon.
#
sub read_att_file {
my ($class, $filename, %options) = @_;
open my $fh, '<', $filename
or croak "Cannot read $filename: $!";
my $fa = $class->MyFLAT::read_att_fh($fh, %options);
close $fh
or croak "Error reading $filename: $!";
return $fa;
}
sub read_att_fh {
my ($class, $fh, %options) = @_;
### $fh
my $fa = $class->new;
$fa->add_states(1);
$fa->set_starting(0);
my $epsilon_symbol = '0';
if (defined $options{'epsilon_symbol'}) {
$epsilon_symbol = $options{'epsilon_symbol'};
}
if ($options{'no_epsilon_symbol'}) {
$epsilon_symbol = undef;
}
while (defined(my $line = readline $fh)) {
chomp $line;
if (my ($from,$to,$symbol) = $line =~ /^(\d+)\s+(\d+)\s+(\S+)/) {
# next if $symbol eq '@_IDENTITY_SYMBOL_@';
$fa->MyFLAT::ensure_states($from, $to);
if (defined $epsilon_symbol && $symbol eq $epsilon_symbol) {
$symbol = ''; # FLAT epsilon transition
}
$symbol =~ s/\./_/g;
$symbol =~ s/@/flag/g;
### transition: "$from $to $symbol"
$fa->add_transition($from,$to,$symbol);
} elsif (my ($state) = $line =~ /^(\d+)$/) {
$fa->set_accepting($state);
} else {
croak "Unrecognised AT&T line: ",$line;
}
}
return $fa;
}
# $fa is a FLAT::NFA or FLAT::DFA.
# Write it in "AT&T" format finite state machine format to $filename.
#
# $fa must have a single starting state 0, since that is all the file format
# allows. Apply some renumbering if necessary before calling here. For an
# NFA, there's no need to convert entirely to a DFA, just renumber and make
# state 0 have epsilon transitions to the actual desired start states.
#
# The key/value options are
#
# epsilon_symbol => string, default 0
#
# Epsilon transitions are written to the file as symbol 0 in the usual way
# for the file format, by default. The epsilon_symbol option can write
# something else. If $fa is a DFA, or if it's an NFA without epsilons, then
# this has no effect.
#
sub write_att_file {
my ($fa, $filename, %options) = @_;
open my $fh, '>', $filename
or croak "Cannot write $filename: $!";
$fa->MyFLAT::write_att_fh ($fh, %options);
close $fh
or croak "Error writing $filename: $!";
return $fa;
}
sub write_att_fh {
my ($fa, $fh, %options) = @_;
my $epsilon_symbol = '0';
if (defined $options{'epsilon_symbol'}) {
$epsilon_symbol = $options{'epsilon_symbol'};
}
my @states = sort {$a<=>$b} $fa->get_states;
my @starting = $fa->get_starting;
unless (@starting==1 && $starting[0]==0) {
croak "AT&T format must be single starting state 0";
}
foreach my $from (@states) {
foreach my $symbol (sort $fa->alphabet, '') {
my $att_symbol = ($symbol eq '' ? $epsilon_symbol : $symbol);
foreach my $to (sort {$a<=>$b} $fa->successors($from,$symbol)) {
print $fh "$from\t$to\t$att_symbol\t$att_symbol\n";
}
}
}
foreach my $state (sort {$a<=>$b} $fa->get_accepting) {
print $fh $state,"\n";
}
}
#------------------------------------------------------------------------------
sub _DFA_to_Regex_union {
return join('|', grep {defined} @_);
}
sub _DFA_to_Regex_parens {
my ($re) = @_;
return ($re eq '' ? '' : "($re)");
}
sub _DFA_to_Regex_star {
my ($re) = @_;
return (defined $re && $re ne '' ? "($re)*" : '');
}
# FLAT::DFA
sub DFA_to_Regex {
my ($fa) = @_;
my @edges;
my @states = $fa->get_states;
my $starting = $states[-1]+1;
my $accepting = $states[-1]+2;
### $starting
### $accepting
foreach my $to ($fa->get_starting) {
$edges[$starting]->[$to] = '';
}
foreach my $from ($fa->get_accepting) {
$edges[$from]->[$accepting] = '';
}
foreach my $symbol ($fa->alphabet) {
foreach my $from (@states) {
foreach my $to ($fa->successors([$fa->epsilon_closure($from)],
$symbol)) {
$edges[$from]->[$to] = _DFA_to_Regex_union($edges[$from]->[$to],
$symbol);
}
}
}
unshift @states, $starting, $accepting;
### @states
### @edges
while (@states > 2) {
my $s = pop @states;
my $star = _DFA_to_Regex_star($edges[$s]->[$s]);
### $s
### $star
foreach my $pre_state (@states) {
my $pre_re = $edges[$pre_state]->[$s];
### $pre_state
### $pre_re
next unless defined $pre_re;
$pre_re = _DFA_to_Regex_parens($pre_re);
foreach my $post_state (@states) {
my $post_re = $edges[$s]->[$post_state];
### $post_state
### $post_re
next unless defined $post_re;
$post_re = _DFA_to_Regex_parens($post_re);
$edges[$pre_state]->[$post_state]
= _DFA_to_Regex_union($edges[$pre_state]->[$post_state],
"$pre_re $star $post_re");
### now: "$pre_state to $post_state is ".$edges[$pre_state]->[$post_state]
}
}
undef $edges[$s];
}
### stop ...
### @states
### return: $edges[$starting]->[$accepting]
my $ret = $edges[$starting]->[$accepting];
return (! defined $ret ? '#' : $ret);
}
sub FLAT_re_to_xfsm_re {
my ($str) = @_;
$str =~ tr/()0/[]z/;
return $str;
}
#------------------------------------------------------------------------------
sub FLAT_transition_split {
my ($fa, %options) = @_;
my @alphabet = $fa->alphabet;
my $symbols_func = $options{'symbols_func'}
// do {
my $symbols_map = $options{'symbols_map'} // {};
sub {
my ($symbol) = @_;
my $aref = $symbols_map->{$symbol};
return ($aref ? @$aref : ());
}
};
my $new = (ref $fa)->new;
$new->add_states($fa->num_states);
$new->{'name'} = $fa->{'name'};
$new->set_accepting($fa->get_accepting);
$new->set_starting($fa->get_starting);
foreach my $symbol (@alphabet) {
my @new_symbols = $symbols_func->($symbol);
if (! @new_symbols) {
@new_symbols = ($symbol); # unchanged
}
foreach my $state ($fa->get_states) {
foreach my $old_to ($fa->successors($state, $symbol)) {
### split: "$state to $old_to symbol $symbol becomes ".join(' ',@new_symbols)
my $from = $state;
foreach my $i (0 .. $#new_symbols - 1) {
my ($to) = $new->add_states(1);
if ($options{'new_accepting_to'} && $fa->is_accepting($old_to)) {
### new accepting: $to
$new->set_accepting($to);
}
$new->add_transition($from, $to, $new_symbols[$i]);
$from = $to;
}
$new->add_transition($from, $old_to, $new_symbols[-1]);
}
}
}
return $new;
}
#------------------------------------------------------------------------------
sub optional_leading_0s {
my ($f) = @_;
$f = $f->MyFLAT::as_nfa;
my $count = 0;
for (;;) {
my @starting = $f->get_starting;
### $count
### @starting
last if $count == scalar(@starting);
$count = scalar(@starting);
my @new_starting = $f->successors([$f->epsilon_closure(@starting)],'0');
### @new_starting
$f->set_starting(@new_starting);
}
return $f->as_dfa;
}
# func => $func called
# ($new_transmute,$new_symbol) = $func->($transmute,$symbol)
#
# $transmute is a string representing the current transmutation conditions.
#
sub transmute {
my ($fa, %options) = @_;
### transmute() ...
my $direction = $options{'direction'} || 'forward';
my $func = $options{'func'};
my $initial = $options{'initial'};
if (! defined $initial) { $initial = ''; }
my $is_dfa = $fa->isa('FLAT::DFA');
$fa = $fa->MyFLAT::as_nfa->clone;
if ($direction eq 'reverse') { $fa = $fa->reverse; }
my @alphabet = $fa->alphabet;
my $new_fa = (ref $fa)->new;
my @state_and_transmute_to_new_state;
my $find_new_state = sub {
my ($state, $transmute) = @_;
return ($state_and_transmute_to_new_state[$state]->{$transmute} //= do {
my ($new_state) = $new_fa->add_states(1);
if ($fa->is_starting($state) && $transmute eq $initial) {
$new_fa->set_starting($new_state);
}
if ($fa->is_accepting($state)) {
$new_fa->set_accepting($new_state);
}
$new_state;
});
};
my @state_and_transmute_done;
my @pending = map {[$_,$initial]} $fa->get_starting;
while (my $elem = shift @pending) {
my ($state,$transmute) = @$elem;
### elem: "state=$state transmute=$transmute"
if ($state_and_transmute_done[$state]->{$transmute}++) {
### already seen ...
next;
}
my $new_from = $find_new_state->($state,$transmute);
foreach my $symbol (@alphabet) {
my @to = $fa->successors([$fa->epsilon_closure($state)],$symbol) or next;
my ($new_transmute,$new_symbol) = $func->($transmute,$symbol) or next;
### for transition: "symbol=$symbol new_symbol=$new_symbol new_transmute=$new_transmute"
foreach my $to (@to) {
my $new_to = $find_new_state->($to,$new_transmute);
$new_fa->add_transition($new_from, $new_to, $new_symbol);
push @pending, [$to, $new_transmute];
### add new: "new_symbol=$new_symbol $new_from -> $new_to"
}
}
}
if ($direction eq 'reverse') { $new_fa = $new_fa->reverse; }
if ($is_dfa) { $new_fa = $new_fa->as_dfa; }
if (defined(my $name = $options{'name'})) {
$new_fa->MyFLAT::set_name($name);
}
return $new_fa;
}
# add => integer, default 1
# radix => integer>=2, default from alphabet
# direction => "hightolow" (default) or "lowtohigh"
sub digits_multiply {
my ($fa, %options) = @_;
my $direction = $options{'direction'} || 'hightolow';
my $radix = $options{'radix'} || max($fa->alphabet)+1;
my $mul = $options{'mul'} // 1;
my $carry = $options{'add'} // 0;
### $radix
### $mul
### $carry
return $fa->MyFLAT::transmute(initial => 0,
direction => ($direction eq 'lowtohigh'
? 'forward'
: 'reverse'),
func => sub {
my ($carry,$symbol) = @_;
### func: "carry=$carry symbol $symbol"
return _divrem ($symbol*$mul+$carry, $radix);
});
}
#------------------------------------------------------------------------------
1;
__END__
|