File: quintet-replicate.pl

package info (click to toggle)
libmath-planepath-perl 129-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 8,100 kB
  • sloc: perl: 115,748; ansic: 299; sh: 272; lisp: 73; makefile: 13
file content (234 lines) | stat: -rw-r--r-- 6,503 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
#!/usr/bin/perl -w

# Copyright 2011, 2012, 2016 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

use 5.006;
use strict;
use warnings;
use Math::BaseCnv 'cnv';
use Math::Libm 'M_PI', 'hypot';
use Math::PlanePath::QuintetReplicate;
$|=1;

{
  # X+Y maximum NE in level

  # k=0  0 0   0 0
  # k=1  1,2 1,2   1 1
  # k=2  6,7 11,12   4 4
  # k=3  31,32 111,112   11 21
  # k=4  156,157 1111,1112   24 44
  # k=5  2656,2657 41111,41112   55 210
  # k=6  15156,15157 441111,441112   134 1014
  # k=7  77656,77657 4441111,4441112   295 2140
  # k=8  312031,312032 34441111,34441112   602 4402
  # k=9   1483906,1483907 334441111,334441112   1465 21330
  # k=10  7343281,7343282 3334441111,3334441112   3382 102012

  my $path = Math::PlanePath::QuintetReplicate->new;
  foreach my $k (0 .. 10) {
    my ($n_lo,$n_hi) = $path->level_to_n_range($k);
    my $sum_max = 0;
    my @n_max;
    foreach my $n ($n_lo .. $n_hi) {
      my ($x,$y) = $path->n_to_xy($n);
      my $sum = $x+$y;
      if ($sum == $sum_max) {
        push @n_max, $n;
      } elsif ($sum > $sum_max) {
        $sum_max = $sum;
        @n_max = ($n);
      }
    }
    my @n5 = map {cnv($_,10,5)} @n_max;
    my $sum5 = cnv($sum_max,10,5);
    print "k=$k  ",join(',',@n_max)," ",join(',',@n5),"   $sum_max $sum5\n";
  }
  exit 0;
}
{
  require Math::BigInt; Math::BigInt->import(try => 'GMP');
  my $path = Math::PlanePath::QuintetReplicate->new;
  my $n_max = Math::BigInt->new(0);
  my $pow = Math::BigInt->new(1);
  foreach my $k (0 .. 50) {
    my $x_max = 0;
    my $new_n_max = 0;
    foreach my $d (1 .. 4) {
      my $try_n = $n_max + $pow*$d;
      my ($x,$y) = $path->n_to_xy($try_n);
      if ($x > $x_max) {
        $x_max = $x;
        $new_n_max = $try_n;
      }
    }
    $n_max = $new_n_max;
    my $n5 = cnv($n_max,10,5);
    my $x5 = cnv($x_max,10,5);
    print "k=$k  $n_max\n   $n5\n   X=$x_max $x5\n";
    $pow *= 5;
  }
  exit 0;
}
{
  # X maximum in level
  # k=0  0 0   0 0
  # k=1  1 1   1 1
  # k=2  6 11   3 3
  # k=3  106 411   7 12
  # k=4  606 4411   18 33
  # k=5  3106 44411   42 132
  # k=6  15606 444411   83 313
  # k=7  62481 3444411   200 1300
  # k=8  296856 33444411   478 3403
  # k=9  1468731 333444411   1005 13010
  # k=10  5374981 2333444411   2204 32304

  # high digit 1 at b^k, so I^(d-1)*b^k
  # when angle atan(1/2) steps past 90 deg
  # atan(1/2)*180/Pi   \\ 26.565 deg
  # frac(x) = x-floor(x);
  # a=(Pi/2)/atan(1/2)
  # a=atan(1/2)/(Pi/2)
  # a=2*atan(1/2)/Pi
  # 1/h+1/a
  # h = Pi/(2*atan(2))
  # vector(20,n,n--; (floor((a+0)*n+1/2)))
  # vector(20,n,n--; frac(n/a))
  # vector(20,n, (-sum(n=0,n-1,frac((n+1+1/2)/a)<frac((n+1/2)/a)))%4+1)
  # vector(20,n,n--; (-floor(a*n+1/2))%4+1)
  # vector(20,n,n--; (ceil(-a*n-1/2))%4+1)

  my $path = Math::PlanePath::QuintetReplicate->new;
  foreach my $k (0 .. 10) {
    my ($n_lo,$n_hi) = $path->level_to_n_range($k);
    my $x_max = 0;
    my $n_max = 0;
    foreach my $n ($n_lo .. $n_hi) {
      my ($x,$y) = $path->n_to_xy($n);
      if ($x > $x_max) {
        $x_max = $x;
        $n_max = $n;
      }
    }
    my $n5 = cnv($n_max,10,5);
    my $x5 = cnv($x_max,10,5);
    print "k=$k  $n_max $n5   $x_max $x5\n";
  }
  exit 0;
}
{
  my $level = 6;
  my $path = Math::PlanePath::QuintetReplicate->new;
  my ($n_lo, $n_hi) = $path->level_to_n_range($level);

  print "\\fill foreach \\p in {";
  foreach my $n ($n_lo .. $n_hi) {
    my ($x,$y) = $path->n_to_xy($n);
    print "($x,$y),";
  }
  print "} ";
  print "{ \\p rectangle +(1,1) };\n";

  exit 0;
}
{
  # min/max for level
  require Math::BaseCnv;
  require Math::PlanePath::QuintetReplicate;
  my $path = Math::PlanePath::QuintetReplicate->new;
  my $prev_min = 1;
  my $prev_max = 1;
  my @mins;
  for (my $level = 0; $level < 20; $level++) {
    my $n_start = 5**$level;
    my $n_end = 5**($level+1) - 1;

    my $min_hypot = 128*$n_end*$n_end;
    my $min_x = 0;
    my $min_y = 0;
    my $min_pos = '';

    my $max_hypot = 0;
    my $max_x = 0;
    my $max_y = 0;
    my $max_pos = '';

    print "level $level  n=$n_start .. $n_end\n";

    foreach my $n ($n_start .. $n_end) {
      my ($x,$y) = $path->n_to_xy($n);
      my $h = $x*$x + $y*$y;
      # my $h = abs($x) + abs($y);

      if ($h < $min_hypot) {
        my $n5 = Math::BaseCnv::cnv($n,10,5) . '[5]';
        $min_hypot = $h;
        $min_pos = "$x,$y  $n $n5";
      }
      if ($h > $max_hypot) {
        my $n5 = Math::BaseCnv::cnv($n,10,5) . '[5]';
        $max_hypot = $h;
        $max_pos = "$x,$y  $n $n5";
      }
    }
    # print "  min $min_hypot   at $min_x,$min_y\n";
    # print "  max $max_hypot   at $max_x,$max_y\n";
    # {
    #   my $factor = $min_hypot / $prev_min;
    #   my $base5 = Math::BaseCnv::cnv($min_hypot,10,5) . '[5]';
    #   print "  min $min_hypot $base5   at $min_pos  factor $factor\n";
    # }
    {
      my $factor = $max_hypot / $prev_max;
      my $base5 = Math::BaseCnv::cnv($max_hypot,10,5) . '[5]';
      print "  max $max_hypot $base5   at $max_pos  factor $factor\n";
    }
    $prev_min = $min_hypot;
    $prev_max = $max_hypot;

    push @mins, $min_hypot;
  }

  print join(',',@mins),"\n";
  exit 0;
}


{
  # Dir4 maximum
  require Math::PlanePath::QuintetReplicate;
  require Math::NumSeq::PlanePathDelta;
  require Math::BigInt;
  require Math::BaseCnv;
  my $path = Math::PlanePath::QuintetReplicate->new;
  my $seq = Math::NumSeq::PlanePathDelta->new (planepath_object => $path,
                                               delta_type => 'Dir4');
  my $dir4_max = 0;
  foreach my $n (0 .. 600000) {
    # my $n = Math::BigInt->new(2)**$level - 1;
    my $dir4 = $seq->ith($n);
    if ($dir4 > $dir4_max) {
      $dir4_max = $dir4;
      my ($dx,$dy) = $path->n_to_dxdy($n);
      my $n5 = Math::BaseCnv::cnv($n,10,5);
      printf "%7s  %2b,\n    %2b %8.6f\n", $n5, abs($dx),abs($dy), $dir4;
    }
  }
  exit 0;
}