File: AlternateTerdragon.pm

package info (click to toggle)
libmath-planepath-perl 129-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 8,100 kB
  • sloc: perl: 115,748; ansic: 299; sh: 272; lisp: 73; makefile: 13
file content (829 lines) | stat: -rw-r--r-- 23,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
# Copyright 2018, 2019, 2020 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::AlternateTerdragon;
use 5.004;
use strict;
use List::Util 'first';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest',
  'xy_is_even';
use Math::PlanePath::Base::Digits
  'digit_split_lowtohigh',
  'digit_join_lowtohigh',
  'round_up_pow';

use vars '$VERSION', '@ISA';
$VERSION = 129;
@ISA = ('Math::PlanePath');

use Math::PlanePath::TerdragonMidpoint;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant parameter_info_array =>
  [ { name      => 'arms',
      share_key => 'arms_6',
      display   => 'Arms',
      type      => 'integer',
      minimum   => 1,
      maximum   => 6,
      default   => 1,
      width     => 1,
      description => 'Arms',
    } ];

sub x_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 2);
}
{
  my @x_negative_at_n = (undef,  undef, 5, 5, 6, 7, 8);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef,  6, 12, 18, 11, 9, 10);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}
sub dx_minimum {
  my ($self) = @_;
  return ($self->{'arms'} == 1 ? -1 : -2);
}
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;

sub sumxy_minimum {
  my ($self) = @_;
  # arm 0 and arm 1 are always above X+Y=0 opposite diagonal, which is +120 deg
  return ($self->{'arms'} <= 2 ? 0 : undef);
}
sub diffxy_minimum {
  my ($self) = @_;
  # arm 0 remains below the X-Y leading diagonal, being +60 deg
  return ($self->{'arms'} <= 1 ? 0 : undef);
}

sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  return ($self->{'arms'} == 1
          ? Math::PlanePath::_UNDOCUMENTED__dxdy_list_three()
          : Math::PlanePath::_UNDOCUMENTED__dxdy_list_six());
}
{
  my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 3, 7, 10, 7, 8, 5);
  sub _UNDOCUMENTED__dxdy_list_at_n {
    my ($self) = @_;
    return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
  }
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;

# arms=1 curve goes at 0,120,240 degrees
# arms=2 second +60 to 60,180,300 degrees
# so when arms==1 dir maximum is 240 degrees
sub dir_maximum_dxdy {
  my ($self) = @_;
  return ($self->{'arms'} == 1
          ? (-1,-1)    # 0,2,4 only           South-West
          : ( 1,-1));  # rotated to 1,3,5 too South-East
}

use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
  return $self;
}

my @dir6_to_dx = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy = (0, 1, 1, 0, -1,-1);

sub n_to_xy {
  my ($self, $n) = @_;
  ### AlternateTerdragon n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $zero = ($n * 0);  # inherit bignum 0
  my $i;             # X
  my $j = $zero;             # +60
  my $k = $zero;             # +120
  my $pow = $zero + 1;  # inherit bignum 1

  # initial rotation from arm number
  my $rot;
  {
    my $int = int($n);
    $i = $n - $int;   # frac, inherit possible BigFloat
    $n = $int;        # BigFloat int() gives BigInt, use that
    $rot = _divrem_mutate ($n, $self->{'arms'});
  }

  # even si = pow, sj = 0, sk = 0
  # odd  si = pow, sj = 0, sk = -pow

  my $even = 1;
  my @n = digit_split_lowtohigh($n,3);
  while (@n) {
    my $digit = shift @n;
    ### at: "$i, $j, $k  even digit $digit"
    if ($digit == 1) {
      ($i,$j,$k) = ($pow-$j, -$k, $i);  # rotate +120 and add
    } elsif ($digit == 2) {
      $j += $pow;  # add rotated +60
    }

    last unless @n;
    $digit = shift @n;
    if ($digit == 1) {
      ($i,$j,$k) = ($pow+$k, $pow-$i, -$j);  # rotate -120 and add
    } elsif ($digit == 2) {
      $i += $pow;   # add * b
      $k -= $pow;
    }
    $pow *= 3;
  }

  ### final: "$i, $j, $k"
  ### is: (2*$i + $j - $k).", ".($j+$k)

  ### $rot
  if ($rot >= 3) {
    ($i,$j,$k) = (-$i,-$j,-$k);
    $rot -= 3;
  }
  if ($rot == 1)    { ($i,$j,$k) = (-$k,$i,$j); } # rotate +60
  elsif ($rot == 2) { ($i,$j,$k) = (-$j,-$k, $i); } # rotate +128

  return (2*$i + $j - $k, $j+$k);
}

# all even points when arms==6
sub xy_is_visited {
  my ($self, $x, $y) = @_;
  if ($self->{'arms'} == 6) {
    return xy_is_even($self,$x,$y);
  } else {
    return defined($self->xy_to_n($x,$y));
  }
}

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x,$y) = @_;
  ### AlternateTerdragon xy_to_n_list(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);
  {
    # nothing at an odd point, and trap overflows in $x+$y dividing out b
    my $sum = abs($x) + abs($y);
    if (is_infinite($sum)) { return $sum; }  # infinity
    if ($sum % 2) { return; }
  }

  if ($x==0 && $y==0) {
    return 0 .. $self->{'arms'}-1;
  }

  my $arms_count = $self->arms_count;
  my $zero = ($x * 0 * $y); # inherit bignum 0

  my @n_list;
  foreach my $d (0,1,2) {
    my ($ndigits,$arm) = _xy_d_to_ndigits_and_arm($x,$y,$d);
    next if $arm >= $arms_count;
    if ($arm & 1) {
      ### flip ...
      @$ndigits = map {2-$_} @$ndigits;
    }
    push @n_list,
      digit_join_lowtohigh($ndigits, 3, $zero) * $arms_count + $arm;
  }

  ### unsorted n_list: @n_list
  return sort {$a<=>$b} @n_list;
}

my @digit_to_x = ([0,2,1],  [0,-1,-2],  [0,-1, 1]);
my @digit_to_y = ([0,0,1],  [0, 1, 0],  [0,-1,-1]);

# $d = 0,1,2 for segment leaving $x,$y at direction $d*120 degrees.
# For odd arms the digits are 0<->2 reversals.
sub _xy_d_to_ndigits_and_arm {
  my ($x,$y, $d) = @_;
  ### _xy_d_to_ndigits_and_arm(): "$x,$y d=$d"
  my @ndigits;
  my $arm;
  for (;;) {
    ### at: "$x,$y d=$d"
    if ($x==0 && $y==0) { $arm = 2*$d; last; }
    if ($d==2 && $x==1  && $y==1) { $arm = 1; last; }
    if ($d==0 && $x==-2 && $y==0) { $arm = 3; last; }
    if ($d==1 && $x==1  && $y==-1) { $arm = 5; last; }
    my $a = $x % 3;          # z mod b = -x mod 3
    if ($a) { $a = 3-$a; }
    push @ndigits, $a;

    if ($a==1) { $d = ($d-1) % 3; }
    ### a: $a
    ### new d: $d

    $x -= $digit_to_x[$d]->[$a];
    $y -= $digit_to_y[$d]->[$a];
    ### subtract: "$digit_to_x[$d]->[$a],$digit_to_y[$d]->[$a] to $x,$y"

    ### assert: ($x+$y) % 2 == 0
    ### assert: $x % 3 == 0
    ### assert: ($y-$x/3) % 2 == 0
    ### assert: (3*$y-$x) % 6 == 0

    ($x,$y) = (($x+$y)/2,    # divide b = w6+1
               ($y-$x/3)/2);

    $y = -$y;
    $d = (-$d) % 3;
  }
  if (scalar(@ndigits) & 1) { $arm = (6-$arm) % 6; }
  ### $arm
  ### @ndigits
  return (\@ndigits, $arm);
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AlternateTerdragon rect_to_n_range(): "$x1,$y1  $x2,$y2"
  my $xmax = int(max(abs($x1),abs($x2)));
  my $ymax = int(max(abs($y1),abs($y2)));
  return (0,
          ($xmax*$xmax + 3*$ymax*$ymax + 1)
          * 2
          * $self->{'arms'});
}

my @digit_to_nextturn = (2,-2);
sub n_to_dxdy {
  my ($self, $n) = @_;
  ### AlternateTerdragon n_to_dxdy(): $n

  if ($n < 0) {
    return;  # first direction at N=0
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $int = int($n);  # integer part
  $n -= $int;         # fraction part

  # initial direction from arm
  my $dir6 = _divrem_mutate ($int, $self->{'arms'});

  my @ndigits = digit_split_lowtohigh($int,3);
  foreach my $i (0 .. $#ndigits) {
    if ($ndigits[$i] == 1) {
      $dir6 += 2*($i&1 ? -1 : 1);   # count 1s for total turn
    }
  }
  $dir6 %= 6;
  my $dx = $dir6_to_dx[$dir6];
  my $dy = $dir6_to_dy[$dir6];

  if ($n) {
    ### fraction part: $n

    # find lowest non-2 digit, or zero if all 2s or no digits at all
    my $above = scalar(@ndigits);
    foreach my $i (0 .. $#ndigits) {
      if ($ndigits[$i] != 2) {
        ### lowest non-2: "at i=$i digit=$ndigits[$i]"
        $above = $ndigits[$i] ^ $i;
        last;
      }
    }

    $dir6 = ($dir6 + $digit_to_nextturn[$above & 1]) % 6;
    ### $above
    ### $dir6

    $dx += $n*($dir6_to_dx[$dir6] - $dx);
    $dy += $n*($dir6_to_dy[$dir6] - $dy);
  }
  return ($dx, $dy);
}


#-----------------------------------------------------------------------------
# eg. arms=5 0 .. 5*3^k    step by 5s
#            1 .. 5*3^k+1  step by 5s
#            4 .. 5*3^k+4  step by 5s
#
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,  (3**$level + 1) * $self->{'arms'} - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  _divrem_mutate ($n, $self->{'arms'});
  my ($pow, $exp) = round_up_pow ($n, 3);
  return $exp;
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath terdragon Ns dX ie OEIS

=head1 NAME

Math::PlanePath::AlternateTerdragon -- alternate terdragon curve

=head1 SYNOPSIS

 use Math::PlanePath::AlternateTerdragon;
 my $path = Math::PlanePath::AlternateTerdragon->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Davis>X<Knuth, Donald>This is the alternate terdragon curve by Davis and
Knuth,

=over

Chandler Davis and Donald Knuth, "Number Representations and Dragon Curves
-- I", Journal Recreational Mathematics, volume 3, number 2 (April 1970),
pages 66-81 and "Number Representations and Dragon Curves -- II", volume 3,
number 3 (July 1970), pages 133-149.

Reprinted with addendum in Knuth "Selected Papers on Fun and Games", 2010,
pages 571--614.  L<http://www-cs-faculty.stanford.edu/~uno/fg.html>

=back

Points are a triangular grid using every second integer X,Y as per
L<Math::PlanePath/Triangular Lattice>, beginning

=cut

# generated by code in devel/alternate-terdragon.pl

=pod

                                 \   /       \   /
    Y=2                          14,17 --- 15,24,33 --
                                     \       /   \
                                       \   /       \   /
    Y=1          2 ------- 3,12 ---- 10,13,34 -- 32,35,38
                   \       /   \       /   \       /   \
                     \   /       \   /       \   /
    Y=0    0 -------- 1,4 ----- 5,8,11 ----- 9,36 ----
                                 /   \
                               /       \
    Y=-1                     6 --------- 7

           ^     ^     ^     ^     ^     ^     ^     ^
          X=0    1     2     3     4     5     6     7

A segment 0 to 1 is unfolded to

       2-----3
        \
         \
    0-----1

Then 0 to 3 is unfolded likewise, but the folds are the opposite way.  Where
1-2 went on the left, for 3-6 goes to the right.

       2-----3                   2-----3
        \   /                     \   /
         \ /                       \ /
    0----1,4----5             0----1,4---5,8----9
               /                         / \
              /                         /   \
             6                         6-----7

Successive unfolds go alternate ways.  Taking two unfold at a time is
segment replacement by the 0 to 9 figure (rotated as necessary).  The curve
never crosses itself.  Vertices touch at triangular corners.  Points can be
visited 1, 2 or 3 times.

The two triangles have segment 4-5 between.  In general points to a level
N=3^k have a single segment between two blobs, for example N=0 to N=3^6=729
below.  But as the curve continues it comes back to put further segments
there (and a single segment between bigger blobs).

=cut

# the following generated by
#   math-image --path=AlternateTerdragon --expression='i<=729?i:0' --text --size=132x40

=pod

                 * *
                * * * *
                 * * * *
              * * * * *   * *
             * * * * * * * * * *
              * * * * * * * * * *
             * * * * * * * * * *
              * * * * * * * * * * *
                 * * * * * * * * * *
        * *   * * * * * * * * * * *         * *
       * * * * * * * * * * * * *           * * * *
        * * * * * * * * * * * * *           * * * *
     * * * * * * * * * * * * * *   * *   * * * * *   * *
    O * * * * * * * * * * * * * * * * * * * * * * * * * * E
       * *   * * * * *   * *   * * * * * * * * * * * * * *
            * * * *           * * * * * * * * * * * * *
             * * * *           * * * * * * * * * * * * *
                * *         * * * * * * * * * * *   * *
                           * * * * * * * * * *
                            * * * * * * * * * * *
                               * * * * * * * * * *
                              * * * * * * * * * *
                               * * * * * * * * * *
                                  * *   * * * * *
                                       * * * *
                                        * * * *
                                           * *

The top boundary extent is at an angle +60 degrees and the bottom at -30
degrees,

       / 60 deg
      /
     /
    O-------------------
     --__
         --__ 30 deg

An even expansion level is within a rectangle with endpoint at
X=2*3^(k/2),Y=0.

=head2 Arms

The curve fills a sixth of the plane and six copies rotated by 60, 120, 180,
240 and 300 degrees mesh together perfectly.  The C<arms> parameter can
choose 1 to 6 such curve arms successively advancing.

For example C<arms =E<gt> 6> begins as follows.  N=0,6,12,18,etc is the
first arm (the same shape as the plain curve above), then N=1,7,13,19 the
second, N=2,8,14,20 the third, etc.

=cut

# generated by code in devel/alternate-terdragon.pl

=pod

                  \         /             \           /
                   \       /               \         /
                --- 7,8,26 ----------------- 1,12,19 ---
                  /        \               /         \
     \           /          \             /           \          /
      \         /            \           /             \        /
    --- 3,14,21 ------------- 0,1,2,3,4,5 -------------- 6,11,24 ---
      /         \            /           \             /        \
     /           \          /             \           /          \
                  \        /               \         /
               ---- 9,10,28 ---------------- 5,16,23 ---
                  /        \               /         \
                 /          \             /           \

With six arms every X,Y point is visited three times, except the origin 0,0
where all six begin.  Every edge between points is traversed once.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AlternateTerdragon-E<gt>new ()>

=item C<$path = Math::PlanePath::AlternateTerdragon-E<gt>new (arms =E<gt> 6)>

Create and return a new path object.

The optional C<arms> parameter can make 1 to 6 copies of the curve, each arm
successively advancing.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer positions.

=item C<$n = $path-E<gt>xy_to_n ($x,$y)>

Return the point number for coordinates C<$x,$y>.  If there's nothing at
C<$x,$y> then return C<undef>.

The curve can visit an C<$x,$y> up to three times.  C<xy_to_n()> returns the
smallest of the these N values.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.

The origin 0,0 has C<arms_count()> many N since it's the starting point for
each arm.  Other points have up to 3 Ns for a given C<$x,$y>.  If arms=6
then every even C<$x,$y> except the origin has exactly 3 Ns.

=back

=head2 Descriptive Methods

=over

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=item C<$dx = $path-E<gt>dx_minimum()>

=item C<$dx = $path-E<gt>dx_maximum()>

=item C<$dy = $path-E<gt>dy_minimum()>

=item C<$dy = $path-E<gt>dy_maximum()>

The dX,dY values on the first arm take three possible combinations, being
120 degree angles.

    dX,dY   for arms=1
    -----
     2, 0        dX minimum = -1, maximum = +2
    -1, 1        dY minimum = -1, maximum = +1
     1,-1

For 2 or more arms the second arm is rotated by 60 degrees so giving the
following additional combinations, for a total six.  This changes the dX
minimum.

    dX,dY   for arms=2 or more
    -----
    -2, 0        dX minimum = -2, maximum = +2
     1, 1        dY minimum = -1, maximum = +1
    -1,-1

=item C<$sum = $path-E<gt>sumxy_minimum()>

=item C<$sum = $path-E<gt>sumxy_maximum()>

Return the minimum or maximum values taken by coordinate sum X+Y reached by
integer N values in the path.  If there's no minimum or maximum then return
C<undef>.

S=X+Y is an anti-diagonal.  The first arm is entirely above a line 135deg --
-45deg, per the +60deg to -30deg extents shown above.  Likewise the second
arm which is to 60+60=120deg.  They have C<sumxy_minimum = 0>.  More arms
and all C<sumxy_maximum> are unbounded so C<undef>.

=item C<$diffxy = $path-E<gt>diffxy_minimum()>

=item C<$diffxy = $path-E<gt>diffxy_maximum()>

Return the minimum or maximum values taken by coordinate difference X-Y
reached by integer N values in the path.  If there's no minimum or maximum
then return C<undef>.

D=X-Y is a leading diagonal.  The first arm is entirely right of a line
45deg -- -135deg, per the +60deg to -30deg extents shown above, so it has
C<diffxy_minimum = 0>.  More arms and all C<diffxy_maximum> are unbounded so
C<undef>.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 3**$level)>, or for multiple arms return C<(0, $arms *
3**$level + ($arms-1))>.

There are 3^level segments in a curve level, so 3^level+1 points numbered
from 0.  For multiple arms there are arms*(3^level+1) points, numbered from
0 so n_hi = arms*(3^level+1)-1.

=back

=head1 FORMULAS

=cut

# Various formulas for coordinates, boundary, area and more can be found in
# the author's mathematical write-up
#
# =over
#
# L<http://user42.tuxfamily.org/terdragon/index.html>
#
# =back
#
# =head2 N to X,Y
#
# There's no reversals or reflections in the curve so C<n_to_xy()> can take
# the digits of N either low to high or high to low and apply what is
# effectively powers of the N=3 position.  The current code goes low to high
# using i,j,k coordinates as described in L<Math::PlanePath/Triangular
# Calculations>.
#
#     si = 1    # position of endpoint N=3^level
#     sj = 0    #    where level=number of digits processed
#     sk = 0
#
#     i = 0     # position of N for digits so far processed
#     j = 0
#     k = 0
#
#     loop base 3 digits of N low to high
#        if digit == 0
#           i,j,k no change
#        if digit == 1
#           (i,j,k) = (si-j, sj-k, sk+i)  # rotate +120, add si,sj,sk
#        if digit == 2
#           i -= sk      # add (si,sj,sk) rotated +60
#           j += si
#           k += sj
#
#        (si,sj,sk) = (si - sk,      # add rotated +60
#                      sj + si,
#                      sk + sj)
#
# The digit handling is a combination of rotate and offset,
#
#     digit==1                   digit 2
#     rotate and offset          offset at si,sj,sk rotated
#
#          ^                          2------>
#           \
#            \                          \
#     *---  --1                  *--   --*
#
# The calculation can also be thought of in term of w=1/2+I*sqrt(3)/2, a
# complex number sixth root of unity.  i is the real part, j in the w
# direction (60 degrees), and k in the w^2 direction (120 degrees).  si,sj,sk
# increase as if multiplied by w+1.

=pod

=head2 Turn

At each point N the curve always turns 120 degrees either to the left or
right, it never goes straight ahead.  If N is written in ternary then the
lowest non-zero digit at its position gives the turn.  Positions are counted
from 0 for the least significant digit and up from there.

   turn          ternary lowest non-zero digit
   -----     ---------------------------------------
   left      1 at even position or 2 at odd position
   right     2 at even position or 1 at odd position

The flip of turn at odd positions is the "alternating" in the curve.

   next turn         ternary lowest non-2 digit
   ---------    ---------------------------------------
     left       0 at even position or 1 at odd position
     right      1 at even position or 0 at odd position

=head2 Total Turn

The direction at N, ie. the total cumulative turn, is given by the 1 digits
of N written in ternary.

    direction = 120deg * sum / +1  if digit=1 at even position
                             \ -1  if digit=1 at odd position

This is used mod 3 for C<n_to_dxdy()>.

=head2 X,Y to N

The current code is roughly the same as C<TerdragonCurve> C<xy_to_n()>, but
with a conjugate (negate Y, reverse direction d) after each digit low to
high.

=head2 X,Y Visited

When arms=6 all "even" points of the plane are visited.  As per the
triangular representation of X,Y this means

    X+Y mod 2 == 0        "even" points

=head1 OEIS

Sequences in Sloane's Online Encyclopedia of Integer Sequences related to
the alternate terdragon include,

=over

L<http://oeis.org/A156595> (etc)

=back

    A156595   next turn 0=left, 1=right (morphism)
    A189715   N positions of left turns
    A189716   N positions of right turns
    A189717   count right turns so far

=head1 HOUSE OF GRAPHS

House of Graphs entries for the alternate terdragon curve as a graph include

=over

L<https://hog.grinvin.org/ViewGraphInfo.action?id=19655> etc

=back

    19655     level=0 (1-segment path)
    594       level=1 (3-segment path)
    30397     level=2
    30399     level=3
    33575     level=4
    33577     level=5

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::TerdragonCurve>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::AlternatePaper>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2018, 2019, 2020 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut