1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
|
# Copyright 2018, 2019, 2020 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::AlternateTerdragon;
use 5.004;
use strict;
use List::Util 'first';
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use Math::PlanePath;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest',
'xy_is_even';
use Math::PlanePath::Base::Digits
'digit_split_lowtohigh',
'digit_join_lowtohigh',
'round_up_pow';
use vars '$VERSION', '@ISA';
$VERSION = 129;
@ISA = ('Math::PlanePath');
use Math::PlanePath::TerdragonMidpoint;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array =>
[ { name => 'arms',
share_key => 'arms_6',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 6,
default => 1,
width => 1,
description => 'Arms',
} ];
sub x_negative {
my ($self) = @_;
return ($self->{'arms'} >= 2);
}
{
my @x_negative_at_n = (undef, undef, 5, 5, 6, 7, 8);
sub x_negative_at_n {
my ($self) = @_;
return $x_negative_at_n[$self->{'arms'}];
}
}
{
my @y_negative_at_n = (undef, 6, 12, 18, 11, 9, 10);
sub y_negative_at_n {
my ($self) = @_;
return $y_negative_at_n[$self->{'arms'}];
}
}
sub dx_minimum {
my ($self) = @_;
return ($self->{'arms'} == 1 ? -1 : -2);
}
use constant dx_maximum => 2;
use constant dy_minimum => -1;
use constant dy_maximum => 1;
sub sumxy_minimum {
my ($self) = @_;
# arm 0 and arm 1 are always above X+Y=0 opposite diagonal, which is +120 deg
return ($self->{'arms'} <= 2 ? 0 : undef);
}
sub diffxy_minimum {
my ($self) = @_;
# arm 0 remains below the X-Y leading diagonal, being +60 deg
return ($self->{'arms'} <= 1 ? 0 : undef);
}
sub _UNDOCUMENTED__dxdy_list {
my ($self) = @_;
return ($self->{'arms'} == 1
? Math::PlanePath::_UNDOCUMENTED__dxdy_list_three()
: Math::PlanePath::_UNDOCUMENTED__dxdy_list_six());
}
{
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 3, 7, 10, 7, 8, 5);
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}];
}
}
use constant absdx_minimum => 1;
use constant dsumxy_minimum => -2; # diagonals
use constant dsumxy_maximum => 2;
use constant ddiffxy_minimum => -2;
use constant ddiffxy_maximum => 2;
# arms=1 curve goes at 0,120,240 degrees
# arms=2 second +60 to 60,180,300 degrees
# so when arms==1 dir maximum is 240 degrees
sub dir_maximum_dxdy {
my ($self) = @_;
return ($self->{'arms'} == 1
? (-1,-1) # 0,2,4 only South-West
: ( 1,-1)); # rotated to 1,3,5 too South-East
}
use constant turn_any_straight => 0; # never straight
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(6, $self->{'arms'} || 1));
return $self;
}
my @dir6_to_dx = (2, 1,-1,-2, -1, 1);
my @dir6_to_dy = (0, 1, 1, 0, -1,-1);
sub n_to_xy {
my ($self, $n) = @_;
### AlternateTerdragon n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n, $n); }
my $zero = ($n * 0); # inherit bignum 0
my $i; # X
my $j = $zero; # +60
my $k = $zero; # +120
my $pow = $zero + 1; # inherit bignum 1
# initial rotation from arm number
my $rot;
{
my $int = int($n);
$i = $n - $int; # frac, inherit possible BigFloat
$n = $int; # BigFloat int() gives BigInt, use that
$rot = _divrem_mutate ($n, $self->{'arms'});
}
# even si = pow, sj = 0, sk = 0
# odd si = pow, sj = 0, sk = -pow
my $even = 1;
my @n = digit_split_lowtohigh($n,3);
while (@n) {
my $digit = shift @n;
### at: "$i, $j, $k even digit $digit"
if ($digit == 1) {
($i,$j,$k) = ($pow-$j, -$k, $i); # rotate +120 and add
} elsif ($digit == 2) {
$j += $pow; # add rotated +60
}
last unless @n;
$digit = shift @n;
if ($digit == 1) {
($i,$j,$k) = ($pow+$k, $pow-$i, -$j); # rotate -120 and add
} elsif ($digit == 2) {
$i += $pow; # add * b
$k -= $pow;
}
$pow *= 3;
}
### final: "$i, $j, $k"
### is: (2*$i + $j - $k).", ".($j+$k)
### $rot
if ($rot >= 3) {
($i,$j,$k) = (-$i,-$j,-$k);
$rot -= 3;
}
if ($rot == 1) { ($i,$j,$k) = (-$k,$i,$j); } # rotate +60
elsif ($rot == 2) { ($i,$j,$k) = (-$j,-$k, $i); } # rotate +128
return (2*$i + $j - $k, $j+$k);
}
# all even points when arms==6
sub xy_is_visited {
my ($self, $x, $y) = @_;
if ($self->{'arms'} == 6) {
return xy_is_even($self,$x,$y);
} else {
return defined($self->xy_to_n($x,$y));
}
}
sub xy_to_n {
return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
my ($self, $x,$y) = @_;
### AlternateTerdragon xy_to_n_list(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
{
# nothing at an odd point, and trap overflows in $x+$y dividing out b
my $sum = abs($x) + abs($y);
if (is_infinite($sum)) { return $sum; } # infinity
if ($sum % 2) { return; }
}
if ($x==0 && $y==0) {
return 0 .. $self->{'arms'}-1;
}
my $arms_count = $self->arms_count;
my $zero = ($x * 0 * $y); # inherit bignum 0
my @n_list;
foreach my $d (0,1,2) {
my ($ndigits,$arm) = _xy_d_to_ndigits_and_arm($x,$y,$d);
next if $arm >= $arms_count;
if ($arm & 1) {
### flip ...
@$ndigits = map {2-$_} @$ndigits;
}
push @n_list,
digit_join_lowtohigh($ndigits, 3, $zero) * $arms_count + $arm;
}
### unsorted n_list: @n_list
return sort {$a<=>$b} @n_list;
}
my @digit_to_x = ([0,2,1], [0,-1,-2], [0,-1, 1]);
my @digit_to_y = ([0,0,1], [0, 1, 0], [0,-1,-1]);
# $d = 0,1,2 for segment leaving $x,$y at direction $d*120 degrees.
# For odd arms the digits are 0<->2 reversals.
sub _xy_d_to_ndigits_and_arm {
my ($x,$y, $d) = @_;
### _xy_d_to_ndigits_and_arm(): "$x,$y d=$d"
my @ndigits;
my $arm;
for (;;) {
### at: "$x,$y d=$d"
if ($x==0 && $y==0) { $arm = 2*$d; last; }
if ($d==2 && $x==1 && $y==1) { $arm = 1; last; }
if ($d==0 && $x==-2 && $y==0) { $arm = 3; last; }
if ($d==1 && $x==1 && $y==-1) { $arm = 5; last; }
my $a = $x % 3; # z mod b = -x mod 3
if ($a) { $a = 3-$a; }
push @ndigits, $a;
if ($a==1) { $d = ($d-1) % 3; }
### a: $a
### new d: $d
$x -= $digit_to_x[$d]->[$a];
$y -= $digit_to_y[$d]->[$a];
### subtract: "$digit_to_x[$d]->[$a],$digit_to_y[$d]->[$a] to $x,$y"
### assert: ($x+$y) % 2 == 0
### assert: $x % 3 == 0
### assert: ($y-$x/3) % 2 == 0
### assert: (3*$y-$x) % 6 == 0
($x,$y) = (($x+$y)/2, # divide b = w6+1
($y-$x/3)/2);
$y = -$y;
$d = (-$d) % 3;
}
if (scalar(@ndigits) & 1) { $arm = (6-$arm) % 6; }
### $arm
### @ndigits
return (\@ndigits, $arm);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### AlternateTerdragon rect_to_n_range(): "$x1,$y1 $x2,$y2"
my $xmax = int(max(abs($x1),abs($x2)));
my $ymax = int(max(abs($y1),abs($y2)));
return (0,
($xmax*$xmax + 3*$ymax*$ymax + 1)
* 2
* $self->{'arms'});
}
my @digit_to_nextturn = (2,-2);
sub n_to_dxdy {
my ($self, $n) = @_;
### AlternateTerdragon n_to_dxdy(): $n
if ($n < 0) {
return; # first direction at N=0
}
if (is_infinite($n)) {
return ($n,$n);
}
my $int = int($n); # integer part
$n -= $int; # fraction part
# initial direction from arm
my $dir6 = _divrem_mutate ($int, $self->{'arms'});
my @ndigits = digit_split_lowtohigh($int,3);
foreach my $i (0 .. $#ndigits) {
if ($ndigits[$i] == 1) {
$dir6 += 2*($i&1 ? -1 : 1); # count 1s for total turn
}
}
$dir6 %= 6;
my $dx = $dir6_to_dx[$dir6];
my $dy = $dir6_to_dy[$dir6];
if ($n) {
### fraction part: $n
# find lowest non-2 digit, or zero if all 2s or no digits at all
my $above = scalar(@ndigits);
foreach my $i (0 .. $#ndigits) {
if ($ndigits[$i] != 2) {
### lowest non-2: "at i=$i digit=$ndigits[$i]"
$above = $ndigits[$i] ^ $i;
last;
}
}
$dir6 = ($dir6 + $digit_to_nextturn[$above & 1]) % 6;
### $above
### $dir6
$dx += $n*($dir6_to_dx[$dir6] - $dx);
$dy += $n*($dir6_to_dy[$dir6] - $dy);
}
return ($dx, $dy);
}
#-----------------------------------------------------------------------------
# eg. arms=5 0 .. 5*3^k step by 5s
# 1 .. 5*3^k+1 step by 5s
# 4 .. 5*3^k+4 step by 5s
#
sub level_to_n_range {
my ($self, $level) = @_;
return (0, (3**$level + 1) * $self->{'arms'} - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
_divrem_mutate ($n, $self->{'arms'});
my ($pow, $exp) = round_up_pow ($n, 3);
return $exp;
}
1;
__END__
=for stopwords eg Ryde Math-PlanePath terdragon Ns dX ie OEIS
=head1 NAME
Math::PlanePath::AlternateTerdragon -- alternate terdragon curve
=head1 SYNOPSIS
use Math::PlanePath::AlternateTerdragon;
my $path = Math::PlanePath::AlternateTerdragon->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
X<Davis>X<Knuth, Donald>This is the alternate terdragon curve by Davis and
Knuth,
=over
Chandler Davis and Donald Knuth, "Number Representations and Dragon Curves
-- I", Journal Recreational Mathematics, volume 3, number 2 (April 1970),
pages 66-81 and "Number Representations and Dragon Curves -- II", volume 3,
number 3 (July 1970), pages 133-149.
Reprinted with addendum in Knuth "Selected Papers on Fun and Games", 2010,
pages 571--614. L<http://www-cs-faculty.stanford.edu/~uno/fg.html>
=back
Points are a triangular grid using every second integer X,Y as per
L<Math::PlanePath/Triangular Lattice>, beginning
=cut
# generated by code in devel/alternate-terdragon.pl
=pod
\ / \ /
Y=2 14,17 --- 15,24,33 --
\ / \
\ / \ /
Y=1 2 ------- 3,12 ---- 10,13,34 -- 32,35,38
\ / \ / \ / \
\ / \ / \ /
Y=0 0 -------- 1,4 ----- 5,8,11 ----- 9,36 ----
/ \
/ \
Y=-1 6 --------- 7
^ ^ ^ ^ ^ ^ ^ ^
X=0 1 2 3 4 5 6 7
A segment 0 to 1 is unfolded to
2-----3
\
\
0-----1
Then 0 to 3 is unfolded likewise, but the folds are the opposite way. Where
1-2 went on the left, for 3-6 goes to the right.
2-----3 2-----3
\ / \ /
\ / \ /
0----1,4----5 0----1,4---5,8----9
/ / \
/ / \
6 6-----7
Successive unfolds go alternate ways. Taking two unfold at a time is
segment replacement by the 0 to 9 figure (rotated as necessary). The curve
never crosses itself. Vertices touch at triangular corners. Points can be
visited 1, 2 or 3 times.
The two triangles have segment 4-5 between. In general points to a level
N=3^k have a single segment between two blobs, for example N=0 to N=3^6=729
below. But as the curve continues it comes back to put further segments
there (and a single segment between bigger blobs).
=cut
# the following generated by
# math-image --path=AlternateTerdragon --expression='i<=729?i:0' --text --size=132x40
=pod
* *
* * * *
* * * *
* * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * * * * *
O * * * * * * * * * * * * * * * * * * * * * * * * * * E
* * * * * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * * * * *
* * * * * * *
* * * *
* * * *
* *
The top boundary extent is at an angle +60 degrees and the bottom at -30
degrees,
/ 60 deg
/
/
O-------------------
--__
--__ 30 deg
An even expansion level is within a rectangle with endpoint at
X=2*3^(k/2),Y=0.
=head2 Arms
The curve fills a sixth of the plane and six copies rotated by 60, 120, 180,
240 and 300 degrees mesh together perfectly. The C<arms> parameter can
choose 1 to 6 such curve arms successively advancing.
For example C<arms =E<gt> 6> begins as follows. N=0,6,12,18,etc is the
first arm (the same shape as the plain curve above), then N=1,7,13,19 the
second, N=2,8,14,20 the third, etc.
=cut
# generated by code in devel/alternate-terdragon.pl
=pod
\ / \ /
\ / \ /
--- 7,8,26 ----------------- 1,12,19 ---
/ \ / \
\ / \ / \ /
\ / \ / \ /
--- 3,14,21 ------------- 0,1,2,3,4,5 -------------- 6,11,24 ---
/ \ / \ / \
/ \ / \ / \
\ / \ /
---- 9,10,28 ---------------- 5,16,23 ---
/ \ / \
/ \ / \
With six arms every X,Y point is visited three times, except the origin 0,0
where all six begin. Every edge between points is traversed once.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::AlternateTerdragon-E<gt>new ()>
=item C<$path = Math::PlanePath::AlternateTerdragon-E<gt>new (arms =E<gt> 6)>
Create and return a new path object.
The optional C<arms> parameter can make 1 to 6 copies of the curve, each arm
successively advancing.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
Fractional positions give an X,Y position along a straight line between the
integer positions.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>. If there's nothing at
C<$x,$y> then return C<undef>.
The curve can visit an C<$x,$y> up to three times. C<xy_to_n()> returns the
smallest of the these N values.
=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>
Return a list of N point numbers for coordinates C<$x,$y>.
The origin 0,0 has C<arms_count()> many N since it's the starting point for
each arm. Other points have up to 3 Ns for a given C<$x,$y>. If arms=6
then every even C<$x,$y> except the origin has exactly 3 Ns.
=back
=head2 Descriptive Methods
=over
=item C<$n = $path-E<gt>n_start()>
Return 0, the first N in the path.
=item C<$dx = $path-E<gt>dx_minimum()>
=item C<$dx = $path-E<gt>dx_maximum()>
=item C<$dy = $path-E<gt>dy_minimum()>
=item C<$dy = $path-E<gt>dy_maximum()>
The dX,dY values on the first arm take three possible combinations, being
120 degree angles.
dX,dY for arms=1
-----
2, 0 dX minimum = -1, maximum = +2
-1, 1 dY minimum = -1, maximum = +1
1,-1
For 2 or more arms the second arm is rotated by 60 degrees so giving the
following additional combinations, for a total six. This changes the dX
minimum.
dX,dY for arms=2 or more
-----
-2, 0 dX minimum = -2, maximum = +2
1, 1 dY minimum = -1, maximum = +1
-1,-1
=item C<$sum = $path-E<gt>sumxy_minimum()>
=item C<$sum = $path-E<gt>sumxy_maximum()>
Return the minimum or maximum values taken by coordinate sum X+Y reached by
integer N values in the path. If there's no minimum or maximum then return
C<undef>.
S=X+Y is an anti-diagonal. The first arm is entirely above a line 135deg --
-45deg, per the +60deg to -30deg extents shown above. Likewise the second
arm which is to 60+60=120deg. They have C<sumxy_minimum = 0>. More arms
and all C<sumxy_maximum> are unbounded so C<undef>.
=item C<$diffxy = $path-E<gt>diffxy_minimum()>
=item C<$diffxy = $path-E<gt>diffxy_maximum()>
Return the minimum or maximum values taken by coordinate difference X-Y
reached by integer N values in the path. If there's no minimum or maximum
then return C<undef>.
D=X-Y is a leading diagonal. The first arm is entirely right of a line
45deg -- -135deg, per the +60deg to -30deg extents shown above, so it has
C<diffxy_minimum = 0>. More arms and all C<diffxy_maximum> are unbounded so
C<undef>.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 3**$level)>, or for multiple arms return C<(0, $arms *
3**$level + ($arms-1))>.
There are 3^level segments in a curve level, so 3^level+1 points numbered
from 0. For multiple arms there are arms*(3^level+1) points, numbered from
0 so n_hi = arms*(3^level+1)-1.
=back
=head1 FORMULAS
=cut
# Various formulas for coordinates, boundary, area and more can be found in
# the author's mathematical write-up
#
# =over
#
# L<http://user42.tuxfamily.org/terdragon/index.html>
#
# =back
#
# =head2 N to X,Y
#
# There's no reversals or reflections in the curve so C<n_to_xy()> can take
# the digits of N either low to high or high to low and apply what is
# effectively powers of the N=3 position. The current code goes low to high
# using i,j,k coordinates as described in L<Math::PlanePath/Triangular
# Calculations>.
#
# si = 1 # position of endpoint N=3^level
# sj = 0 # where level=number of digits processed
# sk = 0
#
# i = 0 # position of N for digits so far processed
# j = 0
# k = 0
#
# loop base 3 digits of N low to high
# if digit == 0
# i,j,k no change
# if digit == 1
# (i,j,k) = (si-j, sj-k, sk+i) # rotate +120, add si,sj,sk
# if digit == 2
# i -= sk # add (si,sj,sk) rotated +60
# j += si
# k += sj
#
# (si,sj,sk) = (si - sk, # add rotated +60
# sj + si,
# sk + sj)
#
# The digit handling is a combination of rotate and offset,
#
# digit==1 digit 2
# rotate and offset offset at si,sj,sk rotated
#
# ^ 2------>
# \
# \ \
# *--- --1 *-- --*
#
# The calculation can also be thought of in term of w=1/2+I*sqrt(3)/2, a
# complex number sixth root of unity. i is the real part, j in the w
# direction (60 degrees), and k in the w^2 direction (120 degrees). si,sj,sk
# increase as if multiplied by w+1.
=pod
=head2 Turn
At each point N the curve always turns 120 degrees either to the left or
right, it never goes straight ahead. If N is written in ternary then the
lowest non-zero digit at its position gives the turn. Positions are counted
from 0 for the least significant digit and up from there.
turn ternary lowest non-zero digit
----- ---------------------------------------
left 1 at even position or 2 at odd position
right 2 at even position or 1 at odd position
The flip of turn at odd positions is the "alternating" in the curve.
next turn ternary lowest non-2 digit
--------- ---------------------------------------
left 0 at even position or 1 at odd position
right 1 at even position or 0 at odd position
=head2 Total Turn
The direction at N, ie. the total cumulative turn, is given by the 1 digits
of N written in ternary.
direction = 120deg * sum / +1 if digit=1 at even position
\ -1 if digit=1 at odd position
This is used mod 3 for C<n_to_dxdy()>.
=head2 X,Y to N
The current code is roughly the same as C<TerdragonCurve> C<xy_to_n()>, but
with a conjugate (negate Y, reverse direction d) after each digit low to
high.
=head2 X,Y Visited
When arms=6 all "even" points of the plane are visited. As per the
triangular representation of X,Y this means
X+Y mod 2 == 0 "even" points
=head1 OEIS
Sequences in Sloane's Online Encyclopedia of Integer Sequences related to
the alternate terdragon include,
=over
L<http://oeis.org/A156595> (etc)
=back
A156595 next turn 0=left, 1=right (morphism)
A189715 N positions of left turns
A189716 N positions of right turns
A189717 count right turns so far
=head1 HOUSE OF GRAPHS
House of Graphs entries for the alternate terdragon curve as a graph include
=over
L<https://hog.grinvin.org/ViewGraphInfo.action?id=19655> etc
=back
19655 level=0 (1-segment path)
594 level=1 (3-segment path)
30397 level=2
30399 level=3
33575 level=4
33577 level=5
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::TerdragonCurve>
L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::AlternatePaper>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2018, 2019, 2020 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|