1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
# Copyright 2021 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::CornerAlternating;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 129;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
*_sqrtint = \&Math::PlanePath::_sqrtint;
@ISA = ('Math::PlanePath::Base::NSEW',
'Math::PlanePath');
use Math::PlanePath::Base::Generic
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1;
use Math::PlanePath::SquareSpiral;
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
# | 4---5---6 first South at 6 completing all NSEW
# | | |
# 1 | 3---2 first right turn at 3
# | |
# Y=0 | 0---1 first left turn at 1
# +-----------
sub _UNDOCUMENTED__turn_any_left_at_n {
my ($self) = @_;
return $self->{'n_start'} + $self->{'wider'} + 1;
}
sub _UNDOCUMENTED__turn_any_right_at_n {
my ($self) = @_;
return $self->{'n_start'} + 2*$self->{'wider'} + 3;
}
sub _UNDOCUMENTED__dxdy_list_at_n {
my ($self) = @_;
return $self->{'n_start'} + 3*$self->{'wider'} + 6;
}
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
if (! defined $self->{'n_start'}) {
$self->{'n_start'} = $self->default_n_start;
}
$self->{'wider'} ||= 0; # default
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### Corner n_to_xy: $n
# adjust to N=0 at origin X=0,Y=0
$n = $n - $self->{'n_start'};
if ($n < 0) { return; }
my $wider = $self->{'wider'};
my $int = int($n);
$n -= $int; # frac part
# wider==0 n_start=0
# row start N=0, 1, 4, 9, 16, 25
# N = Y^2
# Y = floor sqrt(N)
#
# wider==2 n_start=0
# N=0, 3, 8, 15, 24
# N = Y^2 + 2*Y
# Y = floor (-w + sqrt(w^2 + 4*N))/2
# gnomon number d,
# starting d=0 for point N=0 at the origin (and more when wider),
# with point immediately before each gnomon included in the following one
#
my $d = int ((_sqrtint(4*($int+1) + $wider*$wider) - $wider) / 2);
### d frac: (sqrt(int(4*($int+1)) + $wider*$wider) - $wider) / 2
### $d
# $r ranges -1 upwards, with -1 being the point immediately before gnomon $d
my $r = $int - $d*($d+$wider);
### subtract start: $d*($d+$wider)
### $r
if ($d % 2) {
if ($r < 0) {
### X axis rightward ...
return ($d+$wider+$n-1, 0);
} elsif ($r < $d) {
### right upward ...
return ($d+$wider, $r+$n);
} else {
### top leftward ...
return ($d+$wider-($r-$d)-$n, $d);
}
} else {
if ($r < 0) {
### Y axis upward ...
return (0, $d-1+$n);
} elsif ($r < $d + $wider) {
### top rightward ...
return ($r+$n, $d);
} else {
### right downward ...
return ($d+$wider, $d-($r-$d-$wider) - $n);
}
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### Corner xy_to_n(): "$x,$y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
my $wider = $self->{'wider'};
my $xw = $x - $wider;
if ($y >= $xw) {
### top edge ...
return ($y*($y+$wider) + ($y % 2 ? 2*$y+$wider - $x : $x)
+ $self->{'n_start'});
} else {
### right vertical ...
return ($x*$xw + ($xw % 2 ? $y : $x+$xw - $y)
+ $self->{'n_start'});
}
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### Corner rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }
if ($y2 < 0 || $x2 < 0) {
return (1, 0); # rect all negative, no N
}
if ($x1 < 0) { $x1 *= 0; } # "*=" to preserve bigint x1 or y1
if ($y1 < 0) { $y1 *= 0; }
my $wider = $self->{'wider'};
my $xmin = $x1;
my $ymin = $y1;
my $t = $wider + $y1; # x where diagonal goes through row y1
if ($x1 <= $t) {
### for min, x1,y1 at or before diagonal ...
# | +-------+ / y2
# | | |/ |
# | | / | /
# | | /| | +------+ / y2
# | | / | | | | /
# | @----@--+ y1 | @------@ / y1
# | x1 / x2 | x1 x2 /
# +------------------ +--------------------
# ..wider
if ($y1 % 2) {
### leftward row y1, min at smaller of x2 or diagonal ...
$xmin = ($x2 < $t ? $x2 : $t);
}
} else {
### for min, x1,y1 after diagonal ...
# /
# | +------+ y2 |
# | | / | | /
# | |/ | | /
# | @ | | / @------+ y2
# | /| | | / | |
# | / @------+ y1 | / @------+ y1
# | / x1 x2 | / x1 x2
# +------------------ +------------------
# ^...^xw
# wider
$t = $x1 - $wider;
unless ($t % 2) {
### column x1 even, downward ...
$ymin = ($y2 < $t ? $y2 : $t);
}
}
#-----
my $xmax = $x2;
my $ymax = $y2;
# | /
# | @------/ y2 x2,y2 on the diagonal
# | | /| executes both "on or before"
# | | / | and "on or after"
# | | / | selecting one or other of
# | | / | the opposite points
# | +-/----@ y1 according as direction of
# | x1/ x2 the gnomon
# +---------------
$t = $x2 - $wider; # y where diagonal passes column x2
if ($y2 >= $t) {
### for max, x2,y2 on or before diagonal ...
# max is x1 in an odd row (leftward)
#
# | /
# | @------@ /y2
# | | |/
# | | /
# | | /|
# | | / |
# | +---/--+ y1
# | x1 / x2
# +----------------
if ($y2 % 2) {
### top row odd, max at leftward x1 ...
$xmax = $x1;
}
}
if ($y2 <= $t) {
### for max, x2,y2 on or after of diagonal ...
# max is y1 in a downward column ...
#
# | /
# | +--/---@ y2
# | | / |
# | |/ |
# | / |
# | /| |
# | / +------@ y1
# | / x2
# +-----------------
# ^
# wider
#
unless ($t % 2) {
### x2 column even, downward ...
$ymax = $y1;
}
}
### min xy: "$xmin,$ymin"
### max xy: "$xmax,$ymax"
return ($self->xy_to_n ($xmin,$ymin),
$self->xy_to_n ($xmax,$ymax));
}
#------------------------------------------------------------------------------
sub _NOTDOCUMENTED_n_to_figure_boundary {
my ($self, $n) = @_;
### _NOTDOCUMENTED_n_to_figure_boundary(): $n
# adjust to N=1 at origin X=0,Y=0
$n = $n - $self->{'n_start'} + 1;
if ($n < 1) {
return undef;
}
my $wider = $self->{'wider'};
if ($n <= $wider) {
# single block row, nothing special at diagonal
# +---+-----+----+
# | 1 | ... | $n | boundary = 2*N + 2
# +---+-----+----+
return 2*$n + 2;
}
my $d = int((_sqrtint(4*$n + $wider*$wider - 2) - $wider) / 2);
### $d
### $wider
if ($n > $d*($d+1+$wider) + ($d%2 ? 0 : $wider)) {
$wider++;
### increment for +2 after turn on diagonal ...
}
return 4*$d + 2*$wider + 2;
}
#------------------------------------------------------------------------------
1;
__END__
# cf A219159 going alternating two rows, the flip
# A213928 going alternating three rows, the flip
# corners alternating "shell"
#
# A319514 interleaved x,y
# x=OEIS_bfile_func("A319289");
# y=OEIS_bfile_func("A319290");
# plothraw(vector(3^3,n,n--; x(n)), \
# vector(3^3,n,n--; y(n)), 1+8+16+32)
=for stopwords pronic PlanePath Ryde Math-PlanePath ie OEIS gnomon Nstart
=head1 NAME
Math::PlanePath::CornerAlternating -- points shaped around a corner alternately
=head1 SYNOPSIS
use Math::PlanePath::CornerAlternating;
my $path = Math::PlanePath::CornerAlternating->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This path is points in layers around a square outwards from a corner in the
first quadrant, alternately upward or downward. X<Gnomon>Each row/column
"gnomon" added to a square makes a one-bigger square.
=cut
# math-image --path=CornerAlternating --output=numbers_dash --all --size=30x14
=pod
4 | 17--18--19--20--21 ...
| | | |
3 | 16--15--14--13 22 29
| | | |
2 | 5---6---7 12 23 28
| | | | | |
1 | 4---3 8 11 24 27
| | | | | |
Y=0 | 1---2 9--10 25--26
+-------------------------
X=0 1 2 3 4 5
This is like the Corner path, but here gnomons go back and forward and in
particular so points are always a unit step apart.
=head2 Wider
An optional C<wider =E<gt> $integer> makes the path wider horizontally,
becoming a rectangle. For example
=cut
# math-image --path=CornerAlternating,wider=3 --all --output=numbers_dash --size=38x12
=pod
4 | 29--30--31--32--33--34--35--36 ...
| | | |
3 | 28--27--26--25--24--23--22 37 44 wider => 3
| | | |
2 | 11--12--13--14--15--16 21 38 43
| | | | | |
1 | 10---9---8---7---6 17 20 39 42
| | | | | |
Y=0 | 1---2---3---4---5 18--19 40--41
+--------------------------------------
X=0 1 2 3 4 5 6 7 8
Each gnomon has the horizontal part C<wider> many steps longer. For wider=3
shown, the additional points are 2,3,4 in the first row, then 5..10 are the
next gnomon. Each gnomon is still 2 longer than the previous since this
widening is a constant amount in each.
=head2 N Start
The default is to number points starting N=1 as shown above. An optional
C<n_start> can give a different start with the same shape etc. For example
to start at 0,
=cut
# math-image --path=CornerAlternating,n_start=0 --all --output=numbers --size=50x11
=pod
4 | 16 17 18 19 20
3 | 15 14 13 12 21 n_start => 0
2 | 4 5 6 11 22
1 | 3 2 7 10 23
Y=0 | 0 1 8 9 24
---------------------
X=0 1 2 3 4
With Nstart=0, the pronic numbers are on the X=Y leading diagonal.
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::CornerAlternating-E<gt>new ()>
=item C<$path = Math::PlanePath::CornerAlternating-E<gt>new (wider =E<gt> $w, n_start =E<gt> $n)>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path.
For C<$n < n_start()> the return is an empty list. Fractional C<$n> gives
an X,Y position along a straight line between the integer positions.
=item C<$n = $path-E<gt>xy_to_n ($x,$y)>
Return the point number for coordinates C<$x,$y>.
C<$x> and C<$y> are each rounded to the nearest integer, which has the
effect of treating each point as a square of side 1, so the quadrant x>=-0.5
and y>=-0.5 is entirely covered.
=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>
The returned range is exact, meaning C<$n_lo> and C<$n_hi> are the smallest
and biggest in the rectangle.
=back
=head1 FORMULAS
Most calculations are similar to the Corner path (without the 0.5 fractional
part), and a reversal applied when the d gnomon number is odd. When
wider>0, that reversal must allow for the horizontals and verticals
different lengths.
=head2 Rectangle N Range
For C<rect_to_n_range()>, the largest gnomon is either the top or right of
the rectangle, depending where the top right corner x2,y2 falls relative to
the leading diagonal,
| A---B / x2<y2 | / x2>y2
| | |/ top | +------B right
| | | row | | / | side
| | /| biggest | | / | biggest
| +---+ gnomon | +------C gnomon
| / | /
+--------- +-----------
Then the maximum is at A or B, or B or C according as which way that gnomon
goes, so odd or even.
If it happens that B is on the diagonal, so x2=y2, then it's either A or C
according as the gnomon odd or even
| /
| A----+ x2=y2
| | /|
| | / |
| +----C
| /
+-----------
For wider E<gt> 0, the diagonal shifts across so that x2-wider E<lt>=E<gt>
y2 is the relevant test.
=head1 OEIS
This path is in Sloane's Online Encyclopedia of Integer Sequences as,
=over
L<http://oeis.org/A319289> (etc)
=back
wider=0, n_start=1 (the defaults)
A220603 X+1 coordinate
A220604 Y+1 coordinate
A213088 X+Y sum
A081346 N on X axis
A081345 N on Y axis
A002061 N on X=Y diagonal, extra initial 1
A081344 permutation N by diagonals
A194280 inverse
A020703 permutation N at transpose Y,X
A027709 boundary length of N unit squares
A078633 grid sticks of N points
n_start=0
A319290 X coordinate
A319289 Y coordinate
A319514 Y,X coordinate pairs
A329116 X-Y diff
A053615 abs(X-Y) diff
A000196 max(X,Y), being floor(sqrt(N))
A339265 dX-dY increments (runs +1,-1)
A002378 N on X=Y diagonal, pronic numbers
A220516 permutation N by diagonals
n_start=2
A014206 N on X=Y diagonal, pronic+2
wider=1, n_start=1
A081347 N on X axis
A081348 N on Y axis
A080335 N on X=Y diagonal
A093650 permutation N by diagonals
wider=1, n_start=0
A180714 X-Y diff
wider=2, n_start=1
A081350 N on X axis
A081351 N on Y axis
A081352 N on X=Y diagonal
A081349 permutation N by diagonals
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::Corner>,
L<Math::PlanePath::DiagonalsAlternating>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2021 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|