File: PeanoDiagonals.pm

package info (click to toggle)
libmath-planepath-perl 129-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 8,100 kB
  • sloc: perl: 115,748; ansic: 299; sh: 272; lisp: 73; makefile: 13
file content (544 lines) | stat: -rw-r--r-- 16,044 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# Copyright 2019, 2020 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::PeanoDiagonals;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 129;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath;
*max = \&Math::PlanePath::_max;

use Math::PlanePath::PeanoCurve;
*_n_to_xykk = \&Math::PlanePath::PeanoCurve::_n_to_xykk;
*_xykk_to_n = \&Math::PlanePath::PeanoCurve::_xykk_to_n;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_up_pow',
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';


# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant turn_any_straight => 0; # never straight

use constant dx_minimum => -1;
use constant dx_maximum => 1;
use constant dy_minimum => -1;
use constant dy_maximum => 1;

use constant parameter_info_array =>
  [ { name      => 'radix',
      share_key => 'radix_3',
      display   => 'Radix',
      type      => 'integer',
      minimum   => 2,
      default   => 3,
      width     => 3,
    } ];

# odd radix is unit steps diagonally,
# even radix unlimited
sub _UNDOCUMENTED__dxdy_list {
  my ($self) = @_;
  return ($self->{'radix'} % 2
          ? (1,1, -1,1, -1,-1, 1,-1)
          : ());   # even, unlimited
}

sub new {
  my $self = shift->SUPER::new(@_);

  if (! $self->{'radix'} || $self->{'radix'} < 2) {
    $self->{'radix'} = 3;
  }
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### PeanoDiagonals n_to_xy(): "$n"
  if ($n < 0) {            # negative
    return;
  }
  if (is_infinite($n)) {
    return ($n,$n);
  }

  my $frac;
  {
    my $int = int($n);
    $frac = $n - $int;  # inherit possible BigFloat
    $n = $int;
  }

  my ($x,$y, $xk,$yk) = _n_to_xykk($self,$n);
  ### xykk: "$x,$y  $xk,$yk"

  return ($x + ($xk&1 ? 1-$frac : $frac),
          $y + ($yk&1 ? 1-$frac : $frac));
}

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### PeanoDiagonals xy_to_n(): "$x, $y"

  # For odd radix, if X is even then segments are NE or SW, so offset 0,0 or
  # 1,1 to go to "middle" points.  Conversely if X is odd then segments are
  # NW or SE so offset 0,1 or 1,0.
  #
  # ENHANCE-ME: For odd radix, the two offsets are exactly the two visits.
  # Should be able to pay attention to the low 0s or 2s and so have the
  # digits of both N in one look.
  #
  # ENHANCE-ME: Is the offset rule for even radix found as easily?

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x < 0 || $y < 0) { return; }
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  return
    sort {$a<=>$b}
    map {_xykk_to_n($self, $x,$y, @$_)}
    ($self->{'radix'}&1
     ? ($x&1 ? ([0,1],[1,0]) : ([0,0],[1,1]))
     : ([0,0],[1,1], [0,1],[1,0]));
}


#------------------------------------------------------------------------------
# not exact
# block 0 .. 3^k-1 contains all 

sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### rect_to_n_range(): "$x1,$y1 to $x2,$y2"

  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);
  }

  my $radix = $self->{'radix'};

  my ($power, $level) = round_down_pow (max($x2,$y2)*$radix, $radix);
  if (is_infinite($level)) {
    return (0, $level);
  }
  return (0, $power*$power - 1);
}

#------------------------------------------------------------------------------
# levels

sub level_to_n_range {
  my ($self, $level) = @_;
  return (0,  $self->{'radix'}**(2*$level));
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_up_pow ($n, $self->{'radix'}*$self->{'radix'});
  return $exp;
}

#------------------------------------------------------------------------------

# num low ternary 0s, and whether odd or even above there which is parity of
# how many 1-digits
#
sub _UNDOCUMENTED__n_to_turn_LSR {
  my ($self, $n) = @_;
  if ($n < 1 || is_infinite($n)) { return undef; }
  my $radix = $self->{'radix'};
  if ($radix & 1) {
    my $turn = 1;
    until ($n % $radix) {              # parity of low 0s
      $turn = -$turn;
      $n /= $radix;
    }
    return ($n % 2 ? -$turn : $turn);  # and flip again if odd
  }
  return $self->SUPER::_UNDOCUMENTED__n_to_turn_LSR($n);
}

#------------------------------------------------------------------------------

1;
__END__

=for stopwords Giuseppe Peano Peano's eg Sur Une Courbe Qui Remplit Toute Aire Mathematische Annalen Ryde OEIS ZOrderCurve ie Math-PlanePath versa Online Radix radix HilbertCurve PeanoCurve DOI

=head1 NAME

Math::PlanePath::PeanoDiagonals -- 3x3 self-similar quadrant traversal across squares

=head1 SYNOPSIS

 use Math::PlanePath::PeanoDiagonals;
 my $path = Math::PlanePath::PeanoDiagonals->new;
 my ($x, $y) = $path->n_to_xy (123);

 # or another radix digits ...
 my $path5 = Math::PlanePath::PeanoDiagonals->new (radix => 5);

=head1 DESCRIPTION

This path is the Peano curve with segments going diagonally across unit
squares.

=over

Giuseppe Peano, "Sur Une Courbe, Qui Remplit Toute Une Aire Plane",
Mathematische Annalen, volume 36, number 1, 1890, pages 157-160.
DOI 10.1007/BF01199438.
L<https://link.springer.com/article/10.1007/BF01199438>,
L<https://eudml.org/doc/157489>

=back

Points N are at each corner of the squares, so even locations (X+Y even),

=cut

# generated by:
# math-image --path=PeanoDiagonals --all --output=numbers --size=45x10

=pod

      9 |    61,425      63,423      65,421      79,407      81,405
      8 | 60       58,62       64,68       66,78       76,80
      7 |    55,59       57,69       67,71       73,77       75,87
      6 | 54       52,56       38,70       36,72       34,74
      5 |    49,53       39,51       37,41       31,35       33,129
      4 | 48       46,50       40,44       30,42       28,32
      3 |     7,47        9,45       11,43       25,29       27,135
      2 |  6        4,8        10,14       12,24       22,26
      1 |     1,5         3,15       13,17       19,23       21,141
    Y=0 |  0         2          16          18          20
        +----------------------------------------------------------
         X=0   1     2     3     4     5     6     7     8     9

Moore (figure 3) draws this form, though here is transposed so first unit
squares go East.

=over

E. H. Moore, "On Certain Crinkly Curves", Transactions of the American
Mathematical Society, volume 1, number 1, 1900, pages 72-90.

L<http://www.ams.org/journals/tran/1900-001-01/S0002-9947-1900-1500526-4/>,
L<http://www.ams.org/journals/tran/1900-001-04/S0002-9947-1900-1500428-3/>

=back

=cut

# Eliakim Hastings

=pod

Segments between the initial points can be illustrated,

      |    \              \
      +--- 47,7 ----+--- 45,9 --
      |    ^ | \    |   ^  | \
      |  /   |  \   |  /   |  v
      | /    |   v  | /    |  ...
      6 -----+---- 4,8 ----+--
      | ^    |    / | ^    |
      |   \  |   /  |   \  |
      |    \ | v    |    \ |
      +-----5,1 ----+---- 3,15
      |   ^  | \    |   ^  |
      |  /   |  \   |  /   |
      | /    |   v  | /    |
    N=0------+------2------+--

Segment N=0 to N=1 goes from the origin X=0,Y=0 up to X=1,Y=1, then N=2 is
down again to X=2,Y=0, and so on.  The plain PeanoCurve is the middle of
each square, so points N + 1/2 here (and reckoning the first such midpoint
as the origin).

The rule for block reversals is described with PeanoCurve.  N is split to an
X and Y digit alternately.  If the sum of Y digits above is odd then the X
digit is reversed, and vice versa X odd is Y reversed.

A plain diagonal is North-East per N=0 to 1.  Diagonals are mirrored
according to the final sum of all digits.  If sum of Y digits is odd then
mirror horizontally.  If sum of X digits is odd then mirror vertically.
Such mirroring is X+1 and/or Y+1 as compared to the plain PeanoCurve.

An integer N is at the start of the segment with its final reversal.
Fractional N follows the diagonal across its unit square.

As noted above all locations are even (X+Y even).  Those on the axes are
visited once and all others twice.

=cut

# Peano's conception for a space-filling curve is ternary digits below the
# radix point to X and Y ...  of a fractional f which fills a unit square going from f=0
# at X=0,Y=0 up to f=1 at X=1,Y=1.  The integer form here does this with
# digits above the ternary point.

=pod

=head2 Diamond Shape

Some authors take this diagonals form and raw it rotated -45 degrees so that
the segments are X,Y aligned, and the pattern fills a wedge shape between
diagonals X=Y and X=-Y (for XE<gt>=0).

         6----7,47
         |     |
         |     |
    0---1,5---4,8---9,45
         |     |     |
         |     |    ...
         2----3,15

In terms of the coordinates here, this is (X+Y)/2, (Y-X)/2.

=for GP-Test  ('x+I*'y)/(1+I) == ('x+'y)/2 + ('y-'x)/2 * I

=head2 Even Radix

In an even radix, the mirror rule for diagonals across unit squares is
applied the same way.  But in this case the end of one segment does not
always coincide with the start of the next.

=cut

# compare
# math-image --path=PeanoDiagonals,radix=4 --all --output=numbers --size=30x9

=pod

      +---15,125----+---13,127-- 16 -----+----18,98-
      |   /  | ^    |   /  | ^    | \    |   ^  | \
      |  /   |  \   |  /   |  \   |  \   |  /   |  \
      | v    |   \  | v    |   \  |   v  | /    |   v
      +----- 9 --- 14 --- 11 --- 12 --- 17 -----+--  ...
      |    ^ | \    |   ^  | \    |
      |  /   |  \   |  /   |  \   |
      | /    |   v  | /    |    v |
      8 ---- 7 --- 10 ---- 5 -----+---
      |   /  | ^    |   /  | ^    |
      |  /   |  \   |  /   |  \   |         radix => 4
      | v    |   \  | v    |   \  |
      +----- 1 ---- 6 ---- 3 ---- 4 --
      |   ^  | \    |   ^  | \    |
      |  /   |  \   |  /   |  \   |
      | /    |   v  | /    |   v  |
    N=0------+----- 2 -----+------+---

The first row N=0 to N=3 goes left to right.  The next row N=4 to N=7 is a
horizontal mirror image to go right to left.  N = 3.99.. < 4 follows its
diagonal across its unit square, so approaches X=3.99,Y=0.  There is then a
discontinuity up to N=4 at X=4,Y=1.

Block N=0 to N=15 repeats starting N=16, with vertical mirror image.  There
is a bigger discontinuity between N=15 to N=16 (like there is in even radix
PeanoCurve).

Some double-visited points occur, such as N=15 and N=125 both at X=1,Y=4.
This is when the 4x16 block N=0 to 64 is copied above, mirrored
horizontally.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::PeanoDiagonals-E<gt>new ()>

=item C<$path = Math::PlanePath::PeanoDiagonals-E<gt>new (radix =E<gt> $r)>

Create and return a new path object.

The optional C<radix> parameter gives the base for digit splitting.  The
default is ternary, C<radix =E<gt> 3>.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional C<$n> gives an X,Y position along the diagonals across unit
squares.

=item C<($n_lo, $n_hi) = $path-E<gt>rect_to_n_range ($x1,$y1, $x2,$y2)>

Return a range of N values which covers the rectangle with corners at
C<$x1>,C<$y1> and C<$x2>,C<$y2>.  If the X,Y values are not integers then
the curve is treated as unit squares centred on each integer point and
squares which are partly covered by the given rectangle are included.

In the current implementation, the returned range is an over-estimate, so
that C<$n_lo> might be smaller than the smallest actually in the rectangle,
and C<$n_hi> bigger than the actual biggest.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, $radix**(2*$level) - 1)>.

=back

=head1 FORMULAS

=head2 N to Turn

The curve turns left or right 90 degrees at each point N E<gt>= 1.  The turn
is 90 degrees

    turn(N) = (-1)^(N + number of low ternary 0s of N)
            = -1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,1
    by 90 degrees (+1 left, -1 right)

=cut

# checking in xt/PeanoDiagonals-seq.t too.
#
# GP-DEFINE  turn(n) = (-1)^(n + valuation(n,3));
# GP-Test  vector(18,n, turn(n)) == \
# GP-Test    [-1,1, 1, 1,-1, -1, -1,1,-1,1,-1, -1, -1,1,1,1,-1,1]

# not in OEIS: -1,1,1,1,-1,-1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,1
# not in OEIS: 1,-1,-1,-1,1,1,1,-1,1,-1,1,1,1,-1,-1,-1,1,-1  \\ negated
# not in OEIS: 0,1,1,1,0,0,0,1,0,1,0,0,0,1,1,1,0,1,0,1,1,1,0,0,0,1,1,1,0,0  \\  ones
# not in OEIS: 1,0,0,0,1,1,1,0,1,0,1,1,1,0,0,0,1,0  \\ zeros

# vector(25,n, (-1)^valuation(n,3))
# not in OEIS: 1,1,-1,1,1,-1,1,1,1,1,1,-1,1,1,-1,1,1,1,1,1,-1,1,1,-1,1,1,-1,1
# vector(100,n, valuation(n,3)%2)
# A182581 num ternary low 0s mod 2

=pod

The power of -1 means left or right flip for each low ternary 0 of N, and
flip again if N is odd.  Odd N is an odd number of ternary 1 digits.

This formula follows from the turns in a new low base-9 digit.  For a
segment crossing a given unit square, the expanded segments have the same
start and end directions, so existing turns, now 9*N, are unchanged.  Then
9*N+r goes as r in the base figure, but flipped LE<lt>-E<gt>R when N odd
since blocks are mirrored alternately.

    turn(9N)   = turn(N)
    turn(9N+r) = turn(r)*(-1)^N         for  1 <= r <= 8

=cut

# GP-Test  vector(900,n, turn(9*n)) == \
# GP-Test  vector(900,n, turn(n))
# GP-Test  matrix(90,8,n,r, turn(9*n+r)) == \
# GP-Test  matrix(90,8,n,r, turn(r)*(-1)^n)

=pod

Or in terms of base 3, a single new low ternary digit is a transpose of
what's above, and the base figure turns r=1,2 are LE<lt>-E<gt>R when N above
is odd.

    turn(3N)   = - turn(N)
    turn(3N+r) = turn(r)*(-1)^N         for r = 1 or 2

=cut

# GP-Test  vector(900,n, turn(3*n)) == \
# GP-Test  vector(900,n, - turn(n))
# GP-Test  matrix(900,2,n,r, turn(3*n+r)) == \
# GP-Test  matrix(900,2,n,r, turn(r)*(-1)^n)

# GP-Test  vector(900,n, turn(3*n)) == \
# GP-Test  vector(900,n, -turn(n))
# GP-Test  vector(900,n, turn(3*n+1)) == \
# GP-Test  vector(900,n, -(-1)^n)
# GP-Test  vector(900,n, turn(3*n+2)) == \
# GP-Test  vector(900,n, (-1)^n)

=pod

Similarly in any odd radix.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>,
L<Math::PlanePath::HilbertSides>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2019, 2020 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut