1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
|
/*****************************************************************************
*
* ECPP - Elliptic Curve Primality Proving
*
* Copyright (c) 2013-2014 Dana Jacobsen (dana@acm.org).
* This is free software; you can redistribute it and/or modify it under
* the same terms as the Perl 5 programming language system itself.
*
* This file is part of the Math::Prime::Util::GMP Perl module. A script
* is included to build this as a standalone program (see the README file).
*
* This is pretty good for numbers less than 800 digits. Over that, it needs
* larger discriminant sets. Comparing to other contemporary software:
*
* - Primo is much faster for inputs over 300 digits. Not open source.
* - mpz_aprcl 1.1 (APR-CL). Nearly the same speed to ~600 digits, with
* very little speed variation. Faster over 800 digits. No certificate.
* - GMP-ECPP is much slower at all sizes, and nearly useless > 300 digits.
* - AKS is stupendously slow, even with Bernstein and Voloch improvements.
* - François Morain's 10-20 year old work describes optimizations not
* present here, but his (very old!) binaries run slower than this code at
* all sizes. Not open source.
*
* A set of fixed discriminants are used, rather than calculating them as
* needed. Having a way to calculate values as needed would be a big help.
* In the interests of space for the MPU package, I've chosen ~600 values which
* compile into about 35k of data. This is about 1/5 of the entire code size
* for the MPU package. The github repository includes an expanded set of 5271
* discriminants that compile to 2MB. This is recommended if proving 300+
* digit numbers is a regular occurrence. There is a set available for download
* with almost 15k polys, taking 15.5MB.
*
* This version uses the FAS "factor all strategy", meaning it first constructs
* the entire factor chain, with backtracking if necessary, then will do the
* elliptic curve proof as it recurses back.
*
* If your goal is primality proofs for very large numbers, use Primo. It's
* free, it is very fast, it is widely used, it can process batch results,
* and it makes independently verifiable certificates (including the verifier
* included in this package). MPU's ECPP (this software) is an open source
* alternative with many of the same features for "small" numbers of <1000
* digits. Improvements are possible since it is open source.
*
* Another open source alternative if one does not need certificates is the
* mpz_aprcl code from David Cleaver. To about 600 digits the speeds are
* very similar, but past that this ECPP code starts slowing down.
*
* Thanks to H. Cohen, R. Crandall & C. Pomerance, and H. Riesel for their
* text books. Thanks to the authors of open source software who allow me
* to compare and contrast (GMP-ECM, GMP-ECPP). Thanks to the authors of GMP.
* Thanks to Schoof, Goldwasser, Kilian, Atkin, Morain, Lenstra, etc. for all
* the math and publications. Thanks to Gauss, Euler, et al.
*
* The ECM code in ecm.c was heavily influenced by early GMP-ECM work by Paul
* Zimmermann, as well as all the articles of Montgomery, Bosma, Lentra,
* Cohen, and others.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <gmp.h>
#include "ptypes.h"
#include "ecpp.h"
#include "gmp_main.h" /* is_prob_prime, pminus1_factor, miller_rabin_random */
#include "ecm.h"
#include "utility.h"
#include "prime_iterator.h"
#include "bls75.h"
#define MAX_SFACS 1000
#ifdef USE_LIBECM
#include <ecm.h>
#endif
#ifdef USE_APRCL
#include "mpz_aprcl.h"
#include "mpz_aprcl.c"
#endif
/*********** big primorials and lcm for divisibility tests **********/
static int _gcdinit = 0;
static mpz_t _gcd_small;
static mpz_t _gcd_large;
void init_ecpp_gcds(UV nsize) {
if (_gcdinit == 0) {
mpz_init(_gcd_small);
mpz_init(_gcd_large);
_GMP_pn_primorial(_gcd_small, 3000);
/* This is never re-adjusted -- first number proved sets the size */
nsize *= 20;
if (nsize < 20000) nsize = 20000;
else if (nsize > 500000) nsize = 500000;
_GMP_pn_primorial(_gcd_large, nsize);
mpz_divexact(_gcd_large, _gcd_large, _gcd_small);
mpz_divexact_ui(_gcd_small, _gcd_small, 2*3*5);
_gcdinit = 1;
}
}
void destroy_ecpp_gcds(void) {
if (!_gcdinit) return;
mpz_clear(_gcd_small);
mpz_clear(_gcd_large);
_gcdinit = 0;
}
/* We could use a function with a prefilter here, but my tests are showing
* that adding a Fermat test (ala GMP's is_probab_prime) is slower than going
* straight to the base-2 Miller-Rabin test we use in BPSW. */
#define is_bpsw_prime(n) _GMP_BPSW(n)
static int check_for_factor(mpz_t f, mpz_t inputn, mpz_t fmin, mpz_t n, int stage, mpz_t* sfacs, int* nsfacs, int degree)
{
int success, sfaci;
UV B1;
/* Use this so we don't modify their input value */
mpz_set(n, inputn);
if (mpz_cmp(n, fmin) <= 0) return 0;
#if 0
/* Use this to really encourage n-1 / n+1 proof types */
if (degree <= 0) {
if (stage == 1) return -1;
if (stage == 0) stage = 1;
}
#endif
/* Utilize GMP's fast gcd algorithms. Trial to 224737+ with two gcds. */
mpz_tdiv_q_2exp(n, n, mpz_scan1(n, 0));
while (mpz_divisible_ui_p(n, 3)) mpz_divexact_ui(n, n, 3);
while (mpz_divisible_ui_p(n, 5)) mpz_divexact_ui(n, n, 5);
if (mpz_cmp(n, fmin) <= 0) return 0;
mpz_gcd(f, n, _gcd_small);
while (mpz_cmp_ui(f, 1) > 0) {
mpz_divexact(n, n, f);
mpz_gcd(f, f, n);
}
if (mpz_cmp(n, fmin) <= 0) return 0;
mpz_gcd(f, n, _gcd_large);
while (mpz_cmp_ui(f, 1) > 0) {
mpz_divexact(n, n, f);
mpz_gcd(f, f, n);
}
sfaci = 0;
success = 1;
while (success) {
UV nsize = mpz_sizeinbase(n, 2);
const int do_pm1 = 1;
const int do_pp1 = 1;
const int do_pbr = 0;
const int do_ecm = 0;
if (mpz_cmp(n, fmin) <= 0) return 0;
if (is_bpsw_prime(n)) { mpz_set(f, n); return (mpz_cmp(f, fmin) > 0); }
success = 0;
B1 = 300 + 3 * nsize;
if (degree <= 2) B1 += nsize; /* D1 & D2 are cheap to prove. */
if (degree <= 0) B1 += 2*nsize; /* N-1 and N+1 are really cheap. */
if (degree > 20 && stage <= 1) B1 -= nsize; /* Less time on big polys. */
if (degree > 40) B1 -= nsize/2; /* Less time on big polys. */
if (stage == 0) {
/* A relatively small performance hit, makes slightly smaller proofs. */
if (nsize < 900 && degree <= 2) B1 *= 1.8;
/* We need to try a bit harder for the large sizes :( */
if (nsize > 1400) B1 *= 2;
if (nsize > 2000) B1 *= 2;
if (!success)
success = _GMP_pminus1_factor(n, f, 100+B1/8, 100+B1);
} else if (stage >= 1) {
/* P-1 */
if ((!success && do_pm1))
success = _GMP_pminus1_factor(n, f, B1, 6*B1);
/* Pollard's Rho */
if ((!success && do_pbr && nsize < 500))
success = _GMP_pbrent_factor(n, f, nsize % 53, 1000-nsize);
/* P+1 */
if ((!success && do_pp1)) {
UV ppB = (nsize < 2000) ? B1/4 : B1/16;
success = _GMP_pplus1_factor(n, f, 0, ppB, ppB);
}
if ((!success && do_ecm))
success = _GMP_ecm_factor_projective(n, f, 400, 2000, 1);
#ifdef USE_LIBECM
/* TODO: LIBECM in other stages */
/* Note: this will be substantially slower than our code for small sizes
* and the small B1/B2 values we're using. */
if (!success && degree <= 2 && nsize > 600) {
ecm_params params;
ecm_init(params);
params->method = ECM_ECM;
mpz_set_ui(params->B2, 10*B1);
mpz_set_ui(params->sigma, 0);
success = ecm_factor(f, n, B1/4, params);
ecm_clear(params);
if (mpz_cmp(f, n) == 0) success = 0;
if (success) { printf("ECM FOUND FACTOR\n"); }
}
#endif
}
/* Try any factors found in previous stage 2+ calls */
while (!success && sfaci < *nsfacs) {
if (mpz_divisible_p(n, sfacs[sfaci])) {
mpz_set(f, sfacs[sfaci]);
success = 1;
}
sfaci++;
}
if (stage > 1 && !success) {
if (stage == 2) {
/* if (!success) success = _GMP_pbrent_factor(n, f, nsize-1, 8192); */
if (!success) success = _GMP_pminus1_factor(n, f, 6*B1, 60*B1);
/* p+1 with different initial point and searching farther */
if (!success) success = _GMP_pplus1_factor(n, f, 1, B1/2, B1/2);
if (!success) success = _GMP_ecm_factor_projective(n, f, 250, 2500, 8);
} else if (stage == 3) {
if (!success) success = _GMP_pbrent_factor(n, f, nsize+1, 16384);
if (!success) success = _GMP_pminus1_factor(n, f, 60*B1, 600*B1);
/* p+1 with a third initial point and searching farther */
if (!success) success = _GMP_pplus1_factor(n, f, 2, 1*B1, 1*B1);
if (!success) success = _GMP_ecm_factor_projective(n, f, B1/4, B1*4, 5);
} else if (stage == 4) {
if (!success) success = _GMP_pminus1_factor(n, f, 300*B1, 300*20*B1);
if (!success) success = _GMP_ecm_factor_projective(n, f, B1/2, B1*8, 4);
} else if (stage >= 5) {
UV B = B1 * (stage-4) * (stage-4) * (stage-4);
if (!success) success = _GMP_ecm_factor_projective(n, f, B, 10*B, 8+stage);
}
}
if (success) {
if (mpz_cmp_ui(f, 1) == 0 || mpz_cmp(f, n) == 0) {
gmp_printf("factoring %Zd resulted in factor %Zd\n", n, f);
croak("internal error in ECPP factoring");
}
/* Add the factor to the saved factors list */
if (stage > 1 && *nsfacs < MAX_SFACS) {
/* gmp_printf(" ***** adding factor %Zd ****\n", f); */
mpz_init_set(sfacs[*nsfacs], f);
nsfacs[0]++;
}
/* Is the factor f what we want? */
if ( mpz_cmp(f, fmin) > 0 && is_bpsw_prime(f) ) return 1;
/* Divide out f */
mpz_divexact(n, n, f);
}
}
/* n is larger than fmin and not prime */
mpz_set(f, n);
return -1;
}
/* See:
* (1) Kaltofen, Valente, Yui 1989
* (2) Valente 1992 (Thesis)
* (3) Konstantinou, Stamatiou, and Zaroliagis (CHES 2002)
* This code is performing table 1 of reference 3.
*/
static void weber_root_to_hilbert_root(mpz_t r, mpz_t N, long D)
{
mpz_t A, t;
if (D < 0) D = -D;
D = ((D % 4) == 0) ? D/4 : D;
if ( (D % 8) == 0 )
return;
mpz_init(A); mpz_init(t);
switch (D % 8) {
case 1: if ((D % 3) != 0) mpz_powm_ui(t, r, 12, N);
else mpz_powm_ui(t, r, 4, N);
mpz_mul_ui(A, t, 64);
mpz_sub_ui(t, A, 16);
break;
case 2:
case 6: if ((D % 3) != 0) mpz_powm_ui(t, r, 12, N);
else mpz_powm_ui(t, r, 4, N);
mpz_mul_ui(A, t, 64);
mpz_add_ui(t, A, 16);
break;
case 5: if ((D % 3) != 0) mpz_powm_ui(t, r, 6, N);
else mpz_powm_ui(t, r, 2, N);
mpz_mul_ui(A, t, 64);
mpz_sub_ui(t, A, 16);
break;
case 7: if (!mpz_invert(t, r, N)) mpz_set_ui(t, 0);
if ((D % 3) != 0) mpz_powm_ui(A, t, 24, N);
else mpz_powm_ui(A, t, 8, N);
mpz_sub_ui(t, A, 16);
break;
/* Results in degree 3x Hilbert, so typically not used */
case 3: if (!mpz_invert(t, r, N)) mpz_set_ui(t, 0);
if ((D % 3) != 0) {
mpz_powm_ui(t, t, 24, N);
mpz_mul_2exp(A, t, 12);
} else {
mpz_powm_ui(t, t, 8, N);
mpz_mul_2exp(A, t, 4);
}
mpz_sub_ui(t, A, 16);
break;
default: break;
}
/* r = t^3 / A */
mpz_powm_ui(t, t, 3, N);
if ( ! mpz_divmod(r, t, A, N, r) )
mpz_set_ui(r, 0);
mpz_clear(A); mpz_clear(t);
}
static int find_roots(long D, int poly_index, mpz_t N, mpz_t** roots, int maxroots)
{
mpz_t* T;
UV degree;
long dT, i, nroots;
int poly_type;
gmp_randstate_t* p_randstate = get_randstate();
if (D == -3 || D == -4) {
*roots = 0;
return 1;
}
degree = poly_class_poly_num(poly_index, NULL, &T, &poly_type);
if (degree == 0 || (poly_type != 1 && poly_type != 2))
return 0;
dT = degree;
polyz_mod(T, T, &dT, N);
polyz_roots_modp(roots, &nroots, maxroots, T, dT, N, p_randstate);
if (nroots == 0) {
gmp_printf("N = %Zd\n", N);
croak("Failed to find roots for D = %ld\n", D);
}
for (i = 0; i <= dT; i++)
mpz_clear(T[i]);
Safefree(T);
#if 0
if (nroots != dT && get_verbose_level())
printf(" found %ld roots of the %ld degree poly\n", nroots, dT);
#endif
/* Convert Weber roots to Hilbert roots */
if (poly_type == 2)
for (i = 0; i < nroots; i++)
weber_root_to_hilbert_root((*roots)[i], N, D);
return nroots;
}
static void select_curve_params(mpz_t a, mpz_t b, mpz_t g,
long D, mpz_t *roots, long i, mpz_t N, mpz_t t)
{
int N_is_not_1_congruent_3;
mpz_set_ui(a, 0);
mpz_set_ui(b, 0);
if (D == -3) { mpz_set_si(b, -1); }
else if (D == -4) { mpz_set_si(a, -1); }
else {
mpz_sub_ui(t, roots[i], 1728);
mpz_mod(t, t, N);
/* c = (j * inverse(j-1728)) mod n */
if (mpz_divmod(b, roots[i], t, N, b)) {
mpz_mul_si(a, b, -3); /* r = -3c */
mpz_mul_si(b, b, 2); /* s = 2c */
}
}
mpz_mod(a, a, N);
mpz_mod(b, b, N);
/* g: 1 < g < Ni && (g/Ni) != -1 && (g%3!=1 || cubic non-residue) */
N_is_not_1_congruent_3 = ! mpz_congruent_ui_p(N, 1, 3);
for ( mpz_set_ui(g, 2); mpz_cmp(g, N) < 0; mpz_add_ui(g, g, 1) ) {
if (mpz_jacobi(g, N) != -1)
continue;
if (N_is_not_1_congruent_3)
break;
mpz_sub_ui(t, N, 1);
mpz_tdiv_q_ui(t, t, 3);
mpz_powm(t, g, t, N); /* t = g^((Ni-1)/3) mod Ni */
if (mpz_cmp_ui(t, 1) == 0)
continue;
if (D == -3) {
mpz_powm_ui(t, t, 3, N);
if (mpz_cmp_ui(t, 1) != 0) /* Additional check when D == -3 */
continue;
}
break;
}
if (mpz_cmp(g, N) >= 0) /* No g can be found: N is composite */
mpz_set_ui(g, 0);
}
static void select_point(mpz_t x, mpz_t y, mpz_t a, mpz_t b, mpz_t N,
mpz_t t, mpz_t t2)
{
mpz_t Q, t3, t4;
gmp_randstate_t* p_randstate = get_randstate();
mpz_init(Q); mpz_init(t3); mpz_init(t4);
mpz_set_ui(y, 0);
while (mpz_sgn(y) == 0) {
/* select a Q s.t. (Q,N) != -1 */
do {
do {
/* mpz_urandomm(x, *p_randstate, N); */
mpz_urandomb(x, *p_randstate, 32); /* May as well make x small */
mpz_mod(x, x, N);
} while (mpz_sgn(x) == 0);
mpz_mul(t, x, x);
mpz_add(t, t, a);
mpz_mul(t, t, x);
mpz_add(t, t, b);
mpz_mod(Q, t, N);
} while (mpz_jacobi(Q, N) == -1);
/* Select Y */
sqrtmod(y, Q, N, t, t2, t3, t4);
/* TODO: if y^2 mod Ni != t, return composite */
if (mpz_sgn(y) == 0) croak("y == 0 in point selection\n");
}
mpz_clear(Q); mpz_clear(t3); mpz_clear(t4);
}
/* Returns 0 (composite), 1 (didn't find a point), 2 (found point) */
int ecpp_check_point(mpz_t x, mpz_t y, mpz_t m, mpz_t q, mpz_t a, mpz_t N,
mpz_t t, mpz_t t2)
{
struct ec_affine_point P, P1, P2;
int result = 1;
mpz_init_set(P.x, x); mpz_init_set(P.y, y);
mpz_init(P1.x); mpz_init(P1.y);
mpz_init(P2.x); mpz_init(P2.y);
mpz_tdiv_q(t, m, q);
if (!ec_affine_multiply(a, t, N, P, &P2, t2)) {
mpz_tdiv_q(t, m, q);
/* P2 should not be (0,1) */
if (!(mpz_cmp_ui(P2.x, 0) == 0 && mpz_cmp_ui(P2.y, 1) == 0)) {
mpz_set(t, q);
if (!ec_affine_multiply(a, t, N, P2, &P1, t2)) {
/* P1 should be (0,1) */
if (mpz_cmp_ui(P1.x, 0) == 0 && mpz_cmp_ui(P1.y, 1) == 0) {
result = 2;
}
} else result = 0;
}
} else result = 0;
mpz_clear(P.x); mpz_clear(P.y);
mpz_clear(P1.x); mpz_clear(P1.y);
mpz_clear(P2.x); mpz_clear(P2.y);
return result;
}
static void update_ab(mpz_t a, mpz_t b, long D, mpz_t g, mpz_t N)
{
if (D == -3) { mpz_mul(b, b, g); }
else if (D == -4) { mpz_mul(a, a, g); }
else {
mpz_mul(a, a, g);
mpz_mul(a, a, g);
mpz_mul(b, b, g);
mpz_mul(b, b, g);
mpz_mul(b, b, g);
}
mpz_mod(a, a, N);
mpz_mod(b, b, N);
}
/* Once we have found a D and q, this will find a curve and point.
* Returns: 0 (composite), 1 (didn't work), 2 (success)
* It's debatable what to do with a 1 return.
*/
static int find_curve(mpz_t a, mpz_t b, mpz_t x, mpz_t y,
long D, int poly_index, mpz_t m, mpz_t q, mpz_t N, int maxroots)
{
long nroots, npoints, i, rooti, unity, result;
mpz_t g, t, t2;
mpz_t* roots = 0;
/* TODO: A better way to do this, I believe, would be to have the root
* finder set up as an iterator. That way we'd get the first root,
* try to find a curve, and probably we'd be done. Only if we tried
* 10+ points on that root would we get another root. This would
* probably be set up as a stack (array) of polynomials plus one
* saved root (for when we solve a degree 2 poly).
*/
/* Step 1: Get the roots of the Hilbert class polynomial. */
nroots = find_roots(D, poly_index, N, &roots, maxroots);
if (nroots == 0)
return 1;
/* Step 2: Loop selecting curves and trying points.
* On average it takes about 3 points, but we'll try 100+. */
mpz_init(g); mpz_init(t); mpz_init(t2);
npoints = 0;
result = 1;
for (rooti = 0; result == 1 && rooti < 50*nroots; rooti++) {
/* Given this D and root, select curve a,b */
select_curve_params(a, b, g, D, roots, rooti % nroots, N, t);
if (mpz_sgn(g) == 0) { result = 0; break; }
/* See Cohen 5.3.1, page 231 */
unity = (D == -3) ? 6 : (D == -4) ? 4 : 2;
for (i = 0; result == 1 && i < unity; i++) {
if (i > 0)
update_ab(a, b, D, g, N);
npoints++;
select_point(x, y, a, b, N, t, t2);
result = ecpp_check_point(x, y, m, q, a, N, t, t2);
}
}
if (npoints > 10 && get_verbose_level() > 0)
printf(" # point finding took %ld points\n", npoints);
if (roots != 0) {
for (rooti = 0; rooti < nroots; rooti++)
mpz_clear(roots[rooti]);
Safefree(roots);
}
mpz_clear(g); mpz_clear(t); mpz_clear(t2);
return result;
}
/* Select the 2, 4, or 6 numbers we will try to factor. */
static void choose_m(mpz_t* mlist, long D, mpz_t u, mpz_t v, mpz_t N,
mpz_t t, mpz_t Nplus1)
{
int i, j;
mpz_add_ui(Nplus1, N, 1);
mpz_sub(mlist[0], Nplus1, u); /* N+1-u */
mpz_add(mlist[1], Nplus1, u); /* N+1+u */
for (i = 2; i < 6; i++)
mpz_set_ui(mlist[i], 0);
if (D == -3) {
/* If reading Cohen, be sure to see the errata for page 474. */
mpz_mul_si(t, v, 3);
mpz_add(t, t, u);
mpz_tdiv_q_2exp(t, t, 1);
mpz_sub(mlist[2], Nplus1, t); /* N+1-(u+3v)/2 */
mpz_add(mlist[3], Nplus1, t); /* N+1+(u+3v)/2 */
mpz_mul_si(t, v, -3);
mpz_add(t, t, u);
mpz_tdiv_q_2exp(t, t, 1);
mpz_sub(mlist[4], Nplus1, t); /* N+1-(u-3v)/2 */
mpz_add(mlist[5], Nplus1, t); /* N+1+(u-3v)/2 */
} else if (D == -4) {
mpz_mul_ui(t, v, 2);
mpz_sub(mlist[2], Nplus1, t); /* N+1-2v */
mpz_add(mlist[3], Nplus1, t); /* N+1+2v */
}
/* m must not be prime */
for (i = 0; i < 6; i++)
if (mpz_sgn(mlist[i]) && _GMP_is_prob_prime(mlist[i]))
mpz_set_ui(mlist[i], 0);
/* Sort the m values so we test the smallest first */
for (i = 0; i < 5; i++)
if (mpz_sgn(mlist[i]))
for (j = i+1; j < 6; j++)
if (mpz_sgn(mlist[j]) && mpz_cmp(mlist[i],mlist[j]) > 0)
mpz_swap( mlist[i], mlist[j] );
}
/* This is the "factor all strategy" FAS version, which ends up being a lot
* simpler than the FPS code.
*
* It should have a little more smarts for not repeating work when repeating
* steps. This could be complicated trying to save all state, but I think we
* could get most of the benefit by keeping a simple list of all factors
* found after stage 1, and we just try each of them.
*/
#define VERBOSE_PRINT_N(step, ndigits, maxH, factorstage) \
if (verbose) { \
printf("%*sN[%d] (%d dig)", i, "", step, ndigits); \
if (factorstage > 1) printf(" [FS %d]", factorstage); \
fflush(stdout); \
}
/* Recursive routine to prove via ECPP */
static int ecpp_down(int i, mpz_t Ni, int facstage, int *pmaxH, int* dilist, mpz_t* sfacs, int* nsfacs, char** prooftextptr)
{
mpz_t a, b, u, v, m, q, minfactor, sqrtn, mD, t, t2;
mpz_t mlist[6];
mpz_t qlist[6];
UV nm1a;
IV np1lp, np1lq;
struct ec_affine_point P;
int k, dindex, pindex, nidigits, facresult, curveresult, downresult, stage, D;
int verbose = get_verbose_level();
nidigits = mpz_sizeinbase(Ni, 10);
downresult = _GMP_is_prob_prime(Ni);
if (downresult == 0) return 0;
if (downresult == 2) {
/* No need to put anything in the proof */
if (verbose) printf("%*sN[%d] (%d dig) PRIME\n", i, "", i, nidigits);
return 2;
}
if (i == 0 && facstage == 2 && _GMP_miller_rabin_random(Ni, 2, 0) == 0) {
gmp_printf("\n\n**** BPSW counter-example found? ****\n**** N = %Zd ****\n\n", Ni);
return 0;
}
VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);
mpz_init(a); mpz_init(b);
mpz_init(u); mpz_init(v);
mpz_init(m); mpz_init(q);
mpz_init(mD); mpz_init(minfactor); mpz_init(sqrtn);
mpz_init(t); mpz_init(t2);
mpz_init(P.x);mpz_init(P.y);
for (k = 0; k < 6; k++) {
mpz_init(mlist[k]);
mpz_init(qlist[k]);
}
/* Any factors q found must be strictly > minfactor.
* See Atkin and Morain, 1992, section 6.4 */
mpz_root(minfactor, Ni, 4);
mpz_add_ui(minfactor, minfactor, 1);
mpz_mul(minfactor, minfactor, minfactor);
mpz_sqrt(sqrtn, Ni);
stage = 0;
if (nidigits > 700) stage = 1; /* Too rare to find them */
if (i == 0 && facstage > 1) stage = facstage;
for ( ; stage <= facstage; stage++) {
int next_stage = (stage > 1) ? stage : 1;
for (dindex = -1; dindex < 0 || dilist[dindex] != 0; dindex++) {
int poly_type; /* just for debugging/verbose */
int poly_degree;
int allq = (nidigits < 400); /* Do all q values together, or not */
if (dindex == -1) { /* n-1 and n+1 tests */
int nm1_success = 0;
int np1_success = 0;
const char* ptype = "";
mpz_sub_ui(m, Ni, 1);
mpz_sub_ui(t2, sqrtn, 1);
mpz_tdiv_q_2exp(t2, t2, 1); /* t2 = minfactor */
nm1_success = check_for_factor(u, m, t2, t, stage, sfacs, nsfacs, 0);
mpz_add_ui(m, Ni, 1);
mpz_add_ui(t2, sqrtn, 1);
mpz_tdiv_q_2exp(t2, t2, 1); /* t2 = minfactor */
np1_success = check_for_factor(v, m, t2, t, stage, sfacs, nsfacs, 0);
/* If both successful, pick smallest */
if (nm1_success > 0 && np1_success > 0) {
if (mpz_cmp(u, v) <= 0) np1_success = 0;
else nm1_success = 0;
}
if (nm1_success > 0) { ptype = "n-1"; mpz_set(q, u); D = 1; }
else if (np1_success > 0) { ptype = "n+1"; mpz_set(q, v); D = -1; }
else continue;
if (verbose) { printf(" %s\n", ptype); fflush(stdout); }
downresult = ecpp_down(i+1, q, next_stage, pmaxH, dilist, sfacs, nsfacs, prooftextptr);
if (downresult == 0) goto end_down; /* composite */
if (downresult == 1) { /* nothing found at this stage */
VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);
continue;
}
if (verbose)
{ printf("%*sN[%d] (%d dig) %s", i, "", i, nidigits, ptype); fflush(stdout); }
curveresult = (nm1_success > 0)
? _GMP_primality_bls_3(Ni, q, &nm1a)
: _GMP_primality_bls_15(Ni, q, &np1lp, &np1lq);
if (verbose) { printf(" %d\n", curveresult); fflush(stdout); }
if ( ! curveresult ) { /* This ought not happen */
if (verbose)
gmp_printf("\n Could not prove %s with N = %Zd\n", ptype, Ni);
downresult = 1;
continue;
}
goto end_down;
}
pindex = dilist[dindex];
if (pindex < 0) continue; /* We marked this for skip */
/* Get the values for D, degree, and poly type */
poly_degree = poly_class_poly_num(pindex, &D, NULL, &poly_type);
if (poly_degree == 0)
croak("Unknown value in dilist[%d]: %d\n", dindex, pindex);
if ( (-D % 4) != 3 && (-D % 16) != 4 && (-D % 16) != 8 )
croak("Invalid discriminant '%d' in list\n", D);
/* D must also be squarefree in odd divisors, but assume it. */
/* Make sure we can get a class polynomial for this D. */
if (poly_degree > 16 && stage == 0) {
if (verbose) printf(" [1]");
break;
}
/* Make the continue-search vs. backtrack decision */
if (*pmaxH > 0 && poly_degree > *pmaxH) break;
mpz_set_si(mD, D);
/* (D/N) must be 1, and we have to have a u,v solution */
if (mpz_jacobi(mD, Ni) != 1)
continue;
if ( ! modified_cornacchia(u, v, mD, Ni) )
continue;
if (verbose > 1)
{ printf(" %d", D); fflush(stdout); }
/* We're going to factor all the values for this discriminant then pick
* the smallest. This adds a little time, but it means we go down
* faster. This makes smaller proofs, and might even save time. */
choose_m(mlist, D, u, v, Ni, t, t2);
if (allq) {
int i, j;
/* We have 0 to 6 m values. Try to factor them, put in qlist. */
for (k = 0; k < 6; k++) {
mpz_set_ui(qlist[k], 0);
if (mpz_sgn(mlist[k])) {
facresult = check_for_factor(qlist[k], mlist[k], minfactor, t, stage, sfacs, nsfacs, poly_degree);
/* -1 = couldn't find, 0 = no big factors, 1 = found */
if (facresult <= 0)
mpz_set_ui(qlist[k], 0);
}
}
/* Sort any q values by size, so we work on the smallest first */
for (i = 0; i < 5; i++)
if (mpz_sgn(qlist[i]))
for (j = i+1; j < 6; j++)
if (mpz_sgn(qlist[j]) && mpz_cmp(qlist[i],qlist[j]) > 0) {
mpz_swap( qlist[i], qlist[j] );
mpz_swap( mlist[i], mlist[j] );
}
}
/* Try to make a proof with the first (smallest) q value.
* Repeat for others if we have to. */
for (k = 0; k < 6; k++) {
int maxH = *pmaxH;
int minH = (nidigits <= 240) ? 7 : (nidigits+39)/40;
if (allq) {
if (mpz_sgn(qlist[k]) == 0) continue;
mpz_set(m, mlist[k]);
mpz_set(q, qlist[k]);
} else {
if (mpz_sgn(mlist[k]) == 0) continue;
mpz_set(m, mlist[k]);
facresult = check_for_factor(q, m, minfactor, t, stage, sfacs, nsfacs, poly_degree);
if (facresult <= 0) continue;
}
if (verbose)
{ printf(" %d (%s %d)\n", D, (poly_type == 1) ? "Hilbert" : "Weber", poly_degree); fflush(stdout); }
if (maxH == 0) {
maxH = minH-1 + poly_degree;
if (facstage > 1) /* We worked hard to get here, */
maxH = 2*maxH + 10; /* try hard to make use of it. */
} else if (maxH > minH && maxH > (poly_degree+2)) {
maxH--;
}
/* Great, now go down. */
downresult = ecpp_down(i+1, q, next_stage, &maxH, dilist, sfacs, nsfacs, prooftextptr);
/* Nothing found, look at more polys in the future */
if (downresult == 1 && *pmaxH > 0) *pmaxH = maxH;
if (downresult == 0) goto end_down; /* composite */
if (downresult == 1) { /* nothing found at this stage */
VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);
continue;
}
/* Awesome, we found the q chain and are in STAGE 2 */
if (verbose)
{ printf("%*sN[%d] (%d dig) %d (%s %d)", i, "", i, nidigits, D, (poly_type == 1) ? "Hilbert" : "Weber", poly_degree); fflush(stdout); }
/* Try with only one or two roots, then 8 if that didn't work. */
/* TODO: This should be done using a root iterator in find_curve() */
curveresult = find_curve(a, b, P.x, P.y, D, pindex, m, q, Ni, 1);
if (curveresult == 1) {
if (verbose) { printf(" [redo roots]"); fflush(stdout); }
curveresult = find_curve(a, b, P.x, P.y, D, pindex, m, q, Ni, 8);
}
if (verbose) { printf(" %d\n", curveresult); fflush(stdout); }
if (curveresult == 1) {
/* Something is wrong. Very likely the class poly coefficients are
incorrect. We've wasted lots of time, and need to try again. */
dilist[dindex] = -2; /* skip this D value from now on */
if (verbose) gmp_printf("\n Invalidated D = %d with N = %Zd\n", D, Ni);
downresult = 1;
continue;
}
/* We found it was composite or proved it */
goto end_down;
} /* k loop for D */
} /* D */
} /* fac stage */
/* Nothing at this level */
if (downresult != 1) croak("ECPP internal error: downresult is %d at end\n", downresult);
if (verbose) {
if (*pmaxH > 0) printf(" (max %d)", *pmaxH);
printf(" ---\n");
fflush(stdout);
}
if (*pmaxH > 0) *pmaxH = *pmaxH + 2;
end_down:
if (downresult == 2) {
if (0 && verbose > 1) {
gmp_printf("\n");
if (D == 1) {
gmp_printf("Type BLS3\nN %Zd\nQ %Zd\nA %"UVuf"\n", Ni, q, nm1a);
} else if (D == -1) {
gmp_printf("Type BLS15\nN %Zd\nQ %Zd\nLP %"IVdf"\nLQ %"IVdf"\n", Ni, q, np1lp, np1lq);
} else {
gmp_printf("Type ECPP\nN %Zd\nA %Zd\nB %Zd\nM %Zd\nQ %Zd\nX %Zd\nY %Zd\n", Ni, a, b, m, q, P.x, P.y);
}
gmp_printf("\n");
fflush(stdout);
}
/* Prepend our proof to anything that exists. */
if (prooftextptr != 0) {
char *proofstr, *proofptr;
int curprooflen = (*prooftextptr == 0) ? 0 : strlen(*prooftextptr);
if (D == 1) {
int myprooflen = 20 + 2*(4 + mpz_sizeinbase(Ni, 10)) + 1*21;
New(0, proofstr, myprooflen + curprooflen + 1, char);
proofptr = proofstr;
proofptr += gmp_sprintf(proofptr, "Type BLS3\nN %Zd\nQ %Zd\nA %"UVuf"\n", Ni, q, nm1a);
} else if (D == -1) {
int myprooflen = 20 + 2*(4 + mpz_sizeinbase(Ni, 10)) + 2*21;
New(0, proofstr, myprooflen + curprooflen + 1, char);
proofptr = proofstr;
proofptr += gmp_sprintf(proofptr, "Type BLS15\nN %Zd\nQ %Zd\nLP %"IVdf"\nLQ %"IVdf"\n", Ni, q, np1lp, np1lq);
} else {
int myprooflen = 20 + 7*(4 + mpz_sizeinbase(Ni, 10)) + 0;
New(0, proofstr, myprooflen + curprooflen + 1, char);
proofptr = proofstr;
mpz_sub_ui(t, Ni, 1);
if (mpz_cmp(a, t) == 0) mpz_set_si(a, -1);
if (mpz_cmp(b, t) == 0) mpz_set_si(b, -1);
proofptr += gmp_sprintf(proofptr, "Type ECPP\nN %Zd\nA %Zd\nB %Zd\nM %Zd\nQ %Zd\nX %Zd\nY %Zd\n", Ni, a, b, m, q, P.x, P.y);
}
if (*prooftextptr) {
proofptr += gmp_sprintf(proofptr, "\n");
strcat(proofptr, *prooftextptr);
Safefree(*prooftextptr);
}
*prooftextptr = proofstr;
}
}
/* Ni passed BPSW, so it's highly unlikely to be composite */
if (downresult == 0) {
if (mpz_probab_prime_p(Ni, 2) == 0) {
gmp_printf("\n\n**** BPSW counter-example found? ****\n**** N = %Zd ****\n\n", Ni);
} else {
/* Q was composite, but we don't seem to be. */
downresult = 1;
}
}
mpz_clear(a); mpz_clear(b);
mpz_clear(u); mpz_clear(v);
mpz_clear(m); mpz_clear(q);
mpz_clear(mD); mpz_clear(minfactor); mpz_clear(sqrtn);
mpz_clear(t); mpz_clear(t2);
mpz_clear(P.x);mpz_clear(P.y);
for (k = 0; k < 6; k++) {
mpz_clear(mlist[k]);
mpz_clear(qlist[k]);
}
return downresult;
}
/* returns 2 if N is proven prime, 1 if probably prime, 0 if composite */
int _GMP_ecpp(mpz_t N, char** prooftextptr)
{
int* dilist;
mpz_t* sfacs;
int i, fstage, result, nsfacs;
UV nsize = mpz_sizeinbase(N,2);
/* We must check gcd(N,6), let's check 2*3*5*7*11*13*17*19*23. */
if (nsize <= 64 || mpz_gcd_ui(NULL, N, 223092870UL) != 1) {
result = _GMP_is_prob_prime(N);
if (result != 1) return result;
}
init_ecpp_gcds( nsize );
if (prooftextptr)
*prooftextptr = 0;
New(0, sfacs, MAX_SFACS, mpz_t);
dilist = poly_class_nums();
nsfacs = 0;
result = 1;
for (fstage = 1; fstage < 20; fstage++) {
int maxH = 0;
if (fstage == 3 && get_verbose_level())
gmp_printf("Working hard on: %Zd\n", N);
result = ecpp_down(0, N, fstage, &maxH, dilist, sfacs, &nsfacs, prooftextptr);
if (result != 1)
break;
}
Safefree(dilist);
for (i = 0; i < nsfacs; i++)
mpz_clear(sfacs[i]);
Safefree(sfacs);
return result;
}
#ifdef STANDALONE_ECPP
static void dieusage(char* prog) {
printf("ECPP-DJ version 1.04. Dana Jacobsen, 2014.\n\n");
printf("Usage: %s [options] <number or expression>\n\n", prog);
printf("Options:\n");
printf(" -v set verbose\n");
printf(" -V set extra verbose\n");
printf(" -q no output other than return code\n");
printf(" -c print certificate to stdout (redirect to save to a file)\n");
printf(" -bpsw use the extra strong BPSW test (probable prime test)\n");
printf(" -nm1 use n-1 proof only (BLS75 theorem 5)\n");
printf(" -aks use AKS for proof\n");
#ifdef USE_APRCL
printf(" -aprcl use APR-CL for proof\n");
#endif
printf(" -help this message\n");
printf("\n");
printf("Return codes: 0 prime, 1 composite, 2 prp, 3 error\n");
exit(3);
}
#include "expr.h"
int main(int argc, char **argv)
{
mpz_t n;
int isprime, i, do_printcert;
int do_nminus1 = 0;
int do_aks = 0;
int do_aprcl = 0;
int do_bpsw = 0;
int be_quiet = 0;
int retcode = 3;
char* cert = 0;
if (argc < 2) dieusage(argv[0]);
_GMP_init();
mpz_init(n);
set_verbose_level(0);
do_printcert = 0;
/* Braindead hacky option parsing */
for (i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
if (strcmp(argv[i], "-v") == 0) {
set_verbose_level(1);
} else if (strcmp(argv[i], "-V") == 0) {
set_verbose_level(2);
} else if (strcmp(argv[i], "-q") == 0) {
be_quiet = 1;
set_verbose_level(0);
do_printcert = 0;
} else if (strcmp(argv[i], "-c") == 0) {
do_printcert = 1;
} else if (strcmp(argv[i], "-nm1") == 0) {
do_nminus1 = 1;
} else if (strcmp(argv[i], "-aks") == 0) {
do_aks = 1;
} else if (strcmp(argv[i], "-aprcl") == 0) {
do_aprcl = 1;
} else if (strcmp(argv[i], "-bpsw") == 0) {
do_bpsw = 1;
} else if (strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0) {
dieusage(argv[0]);
} else {
printf("Unknown option: %s\n\n", argv[i]);
dieusage(argv[0]);
}
continue;
}
/* mpz_set_str(n, argv[i], 10); */
if (mpz_expr(n, 10, argv[i])) croak("Can't parse input: '%s'\n",argv[i]);
if (get_verbose_level() > 1) gmp_printf("N: %Zd\n", n);
isprime = _GMP_is_prob_prime(n);
/* If isprime = 2 here, that means it's so small it fits in the
* deterministic M-R or BPSW range. */
if (isprime == 2) {
Newz(0, cert, 20 + mpz_sizeinbase(n, 10), char);
gmp_sprintf(cert, "Type Small\nN %Zd\n", n);
} else if (isprime == 1) {
if (do_bpsw) {
/* Done */
} else if (do_nminus1) {
isprime = _GMP_primality_bls_nm1(n, 100, &cert);
} else if (do_aks) {
isprime = 2 * _GMP_is_aks_prime(n);
do_printcert = 0;
} else if (do_aprcl) {
#ifdef USE_APRCL
/* int i; for (i = 0; i < 10000; i++) */
isprime = mpz_aprtcle(n, get_verbose_level());
do_printcert = 0;
#else
croak("Compiled without USE_APRCL. Sorry.");
#endif
} else {
/* Quick n-1 test */
isprime = _GMP_primality_bls_nm1(n, 1, &cert);
if (isprime == 1)
isprime = _GMP_ecpp(n, &cert);
}
}
/* printf("(%d digit) ", (int)mpz_sizeinbase(n, 10)); */
if (isprime == 0) {
if (!be_quiet) printf("COMPOSITE\n");
retcode = 1;
} else if (isprime == 1) {
/* This would normally only be from BPSW */
if (!be_quiet) printf("PROBABLY PRIME\n");
retcode = 2;
} else if (isprime == 2) {
if (do_printcert) {
gmp_printf("[MPU - Primality Certificate]\n");
gmp_printf("Version 1.0\n");
gmp_printf("\n");
gmp_printf("Proof for:\n");
gmp_printf("N %Zd\n", n);
gmp_printf("\n");
printf("%s", cert);
} else {
if (!be_quiet) printf("PRIME\n");
}
retcode = 0;
} else {
/* E.g. APRCL returns -1 for error */
croak("Unknown return code, probable error.\n");
}
if (cert != 0) {
Safefree(cert);
cert = 0;
}
}
mpz_clear(n);
_GMP_destroy();
return retcode;
}
#endif
|