File: ecpp.c

package info (click to toggle)
libmath-prime-util-gmp-perl 0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,024 kB
  • ctags: 696
  • sloc: ansic: 10,302; perl: 2,855; sh: 158; makefile: 2
file content (1073 lines) | stat: -rw-r--r-- 37,100 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/*****************************************************************************
 *
 * ECPP - Elliptic Curve Primality Proving
 *
 * Copyright (c) 2013-2014 Dana Jacobsen (dana@acm.org).
 * This is free software; you can redistribute it and/or modify it under
 * the same terms as the Perl 5 programming language system itself.
 *
 * This file is part of the Math::Prime::Util::GMP Perl module.  A script
 * is included to build this as a standalone program (see the README file).
 *
 * This is pretty good for numbers less than 800 digits.  Over that, it needs
 * larger discriminant sets.  Comparing to other contemporary software:
 *
 *   - Primo is much faster for inputs over 300 digits.  Not open source.
 *   - mpz_aprcl 1.1 (APR-CL).  Nearly the same speed to ~600 digits, with
 *     very little speed variation.  Faster over 800 digits.  No certificate.
 *   - GMP-ECPP is much slower at all sizes, and nearly useless > 300 digits.
 *   - AKS is stupendously slow, even with Bernstein and Voloch improvements.
 *   - François Morain's 10-20 year old work describes optimizations not
 *     present here, but his (very old!) binaries run slower than this code at
 *     all sizes.  Not open source.
 *
 * A set of fixed discriminants are used, rather than calculating them as
 * needed.  Having a way to calculate values as needed would be a big help.
 * In the interests of space for the MPU package, I've chosen ~600 values which
 * compile into about 35k of data.  This is about 1/5 of the entire code size
 * for the MPU package.  The github repository includes an expanded set of 5271
 * discriminants that compile to 2MB.  This is recommended if proving 300+
 * digit numbers is a regular occurrence.  There is a set available for download
 * with almost 15k polys, taking 15.5MB.
 *
 * This version uses the FAS "factor all strategy", meaning it first constructs
 * the entire factor chain, with backtracking if necessary, then will do the
 * elliptic curve proof as it recurses back.
 *
 * If your goal is primality proofs for very large numbers, use Primo.  It's
 * free, it is very fast, it is widely used, it can process batch results,
 * and it makes independently verifiable certificates (including the verifier
 * included in this package).  MPU's ECPP (this software) is an open source
 * alternative with many of the same features for "small" numbers of <1000
 * digits.  Improvements are possible since it is open source.
 *
 * Another open source alternative if one does not need certificates is the
 * mpz_aprcl code from David Cleaver.  To about 600 digits the speeds are
 * very similar, but past that this ECPP code starts slowing down.
 *
 * Thanks to H. Cohen, R. Crandall & C. Pomerance, and H. Riesel for their
 * text books.  Thanks to the authors of open source software who allow me
 * to compare and contrast (GMP-ECM, GMP-ECPP).  Thanks to the authors of GMP.
 * Thanks to Schoof, Goldwasser, Kilian, Atkin, Morain, Lenstra, etc. for all
 * the math and publications.  Thanks to Gauss, Euler, et al.
 *
 * The ECM code in ecm.c was heavily influenced by early GMP-ECM work by Paul
 * Zimmermann, as well as all the articles of Montgomery, Bosma, Lentra,
 * Cohen, and others.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <gmp.h>

#include "ptypes.h"
#include "ecpp.h"
#include "gmp_main.h"  /* is_prob_prime, pminus1_factor, miller_rabin_random */
#include "ecm.h"
#include "utility.h"
#include "prime_iterator.h"
#include "bls75.h"

#define MAX_SFACS 1000

#ifdef USE_LIBECM
 #include <ecm.h>
#endif

#ifdef USE_APRCL
 #include "mpz_aprcl.h"
 #include "mpz_aprcl.c"
#endif

/*********** big primorials and lcm for divisibility tests  **********/
static int _gcdinit = 0;
static mpz_t _gcd_small;
static mpz_t _gcd_large;

void init_ecpp_gcds(UV nsize) {
  if (_gcdinit == 0) {
    mpz_init(_gcd_small);
    mpz_init(_gcd_large);
    _GMP_pn_primorial(_gcd_small,  3000);
    /* This is never re-adjusted -- first number proved sets the size */
    nsize *= 20;
    if      (nsize < 20000) nsize = 20000;
    else if (nsize > 500000) nsize = 500000;
    _GMP_pn_primorial(_gcd_large, nsize);
    mpz_divexact(_gcd_large, _gcd_large, _gcd_small);
    mpz_divexact_ui(_gcd_small, _gcd_small, 2*3*5);
    _gcdinit = 1;
  }
}

void destroy_ecpp_gcds(void) {
  if (!_gcdinit) return;
  mpz_clear(_gcd_small);
  mpz_clear(_gcd_large);
  _gcdinit = 0;
}

/* We could use a function with a prefilter here, but my tests are showing
 * that adding a Fermat test (ala GMP's is_probab_prime) is slower than going
 * straight to the base-2 Miller-Rabin test we use in BPSW. */
#define is_bpsw_prime(n) _GMP_BPSW(n)

static int check_for_factor(mpz_t f, mpz_t inputn, mpz_t fmin, mpz_t n, int stage, mpz_t* sfacs, int* nsfacs, int degree)
{
  int success, sfaci;
  UV B1;

  /* Use this so we don't modify their input value */
  mpz_set(n, inputn);

  if (mpz_cmp(n, fmin) <= 0) return 0;

#if 0
  /* Use this to really encourage n-1 / n+1 proof types */
  if (degree <= 0) {
    if (stage == 1) return -1;
    if (stage == 0) stage = 1;
  }
#endif

  /* Utilize GMP's fast gcd algorithms.  Trial to 224737+ with two gcds. */
  mpz_tdiv_q_2exp(n, n, mpz_scan1(n, 0));
  while (mpz_divisible_ui_p(n, 3))  mpz_divexact_ui(n, n, 3);
  while (mpz_divisible_ui_p(n, 5))  mpz_divexact_ui(n, n, 5);
  if (mpz_cmp(n, fmin) <= 0) return 0;
  mpz_gcd(f, n, _gcd_small);
  while (mpz_cmp_ui(f, 1) > 0) {
    mpz_divexact(n, n, f);
    mpz_gcd(f, f, n);
  }
  if (mpz_cmp(n, fmin) <= 0) return 0;
  mpz_gcd(f, n, _gcd_large);
  while (mpz_cmp_ui(f, 1) > 0) {
    mpz_divexact(n, n, f);
    mpz_gcd(f, f, n);
  }

  sfaci = 0;
  success = 1;
  while (success) {
    UV nsize = mpz_sizeinbase(n, 2);
    const int do_pm1 = 1;
    const int do_pp1 = 1;
    const int do_pbr = 0;
    const int do_ecm = 0;

    if (mpz_cmp(n, fmin) <= 0) return 0;
    if (is_bpsw_prime(n)) { mpz_set(f, n); return (mpz_cmp(f, fmin) > 0); }

    success = 0;
    B1 = 300 + 3 * nsize;
    if (degree <= 2) B1 += nsize;             /* D1 & D2 are cheap to prove. */
    if (degree <= 0) B1 += 2*nsize;         /* N-1 and N+1 are really cheap. */
    if (degree > 20 && stage <= 1) B1 -= nsize;   /* Less time on big polys. */
    if (degree > 40) B1 -= nsize/2;               /* Less time on big polys. */
    if (stage == 0) {
      /* A relatively small performance hit, makes slightly smaller proofs. */
      if (nsize < 900 && degree <= 2) B1 *= 1.8;
      /* We need to try a bit harder for the large sizes :( */
      if (nsize > 1400)  B1 *= 2;
      if (nsize > 2000)  B1 *= 2;
      if (!success)
        success = _GMP_pminus1_factor(n, f, 100+B1/8, 100+B1);
    } else if (stage >= 1) {
      /* P-1 */
      if ((!success && do_pm1))
        success = _GMP_pminus1_factor(n, f, B1, 6*B1);
      /* Pollard's Rho */
      if ((!success && do_pbr && nsize < 500))
        success = _GMP_pbrent_factor(n, f, nsize % 53, 1000-nsize);
      /* P+1 */
      if ((!success && do_pp1)) {
        UV ppB = (nsize < 2000) ? B1/4 : B1/16;
        success = _GMP_pplus1_factor(n, f, 0, ppB, ppB);
      }
      if ((!success && do_ecm))
        success = _GMP_ecm_factor_projective(n, f, 400, 2000, 1);
#ifdef USE_LIBECM
      /* TODO: LIBECM in other stages */
      /* Note: this will be substantially slower than our code for small sizes
       *       and the small B1/B2 values we're using. */
      if (!success && degree <= 2 && nsize > 600) {
        ecm_params params;
        ecm_init(params);
        params->method = ECM_ECM;
        mpz_set_ui(params->B2, 10*B1);
        mpz_set_ui(params->sigma, 0);
        success = ecm_factor(f, n, B1/4, params);
        ecm_clear(params);
        if (mpz_cmp(f, n) == 0)  success = 0;
        if (success) { printf("ECM FOUND FACTOR\n"); }
      }
#endif
    }
    /* Try any factors found in previous stage 2+ calls */
    while (!success && sfaci < *nsfacs) {
      if (mpz_divisible_p(n, sfacs[sfaci])) {
        mpz_set(f, sfacs[sfaci]);
        success = 1;
      }
      sfaci++;
    }
    if (stage > 1 && !success) {
      if (stage == 2) {
        /* if (!success) success = _GMP_pbrent_factor(n, f, nsize-1, 8192); */
        if (!success) success = _GMP_pminus1_factor(n, f, 6*B1, 60*B1);
        /* p+1 with different initial point and searching farther */
        if (!success) success = _GMP_pplus1_factor(n, f, 1, B1/2, B1/2);
        if (!success) success = _GMP_ecm_factor_projective(n, f, 250, 2500, 8);
      } else if (stage == 3) {
        if (!success) success = _GMP_pbrent_factor(n, f, nsize+1, 16384);
        if (!success) success = _GMP_pminus1_factor(n, f, 60*B1, 600*B1);
        /* p+1 with a third initial point and searching farther */
        if (!success) success = _GMP_pplus1_factor(n, f, 2, 1*B1, 1*B1);
        if (!success) success = _GMP_ecm_factor_projective(n, f, B1/4, B1*4, 5);
      } else if (stage == 4) {
        if (!success) success = _GMP_pminus1_factor(n, f, 300*B1, 300*20*B1);
        if (!success) success = _GMP_ecm_factor_projective(n, f, B1/2, B1*8, 4);
      } else if (stage >= 5) {
        UV B = B1 * (stage-4) * (stage-4) * (stage-4);
        if (!success) success = _GMP_ecm_factor_projective(n, f, B, 10*B, 8+stage);
      }
    }
    if (success) {
      if (mpz_cmp_ui(f, 1) == 0 || mpz_cmp(f, n) == 0) {
        gmp_printf("factoring %Zd resulted in factor %Zd\n", n, f);
        croak("internal error in ECPP factoring");
      }
      /* Add the factor to the saved factors list */
      if (stage > 1 && *nsfacs < MAX_SFACS) {
        /* gmp_printf(" ***** adding factor %Zd ****\n", f); */
        mpz_init_set(sfacs[*nsfacs], f);
        nsfacs[0]++;
      }
      /* Is the factor f what we want? */
      if ( mpz_cmp(f, fmin) > 0 && is_bpsw_prime(f) )  return 1;
      /* Divide out f */
      mpz_divexact(n, n, f);
    }
  }
  /* n is larger than fmin and not prime */
  mpz_set(f, n);
  return -1;
}

/* See:
 *   (1) Kaltofen, Valente, Yui 1989
 *   (2) Valente 1992 (Thesis)
 *   (3) Konstantinou, Stamatiou, and Zaroliagis (CHES 2002)
 * This code is performing table 1 of reference 3.
 */
static void weber_root_to_hilbert_root(mpz_t r, mpz_t N, long D)
{
  mpz_t A, t;

  if (D < 0) D = -D;
  D = ((D % 4) == 0)  ?  D/4  :  D;
  if ( (D % 8) == 0 )
    return;

  mpz_init(A);  mpz_init(t);

  switch (D % 8) {
    case 1:  if ((D % 3) != 0)  mpz_powm_ui(t, r, 12, N);
             else               mpz_powm_ui(t, r,  4, N);
             mpz_mul_ui(A, t, 64);
             mpz_sub_ui(t, A, 16);
             break;
    case 2:
    case 6:  if ((D % 3) != 0)  mpz_powm_ui(t, r, 12, N);
             else               mpz_powm_ui(t, r,  4, N);
             mpz_mul_ui(A, t, 64);
             mpz_add_ui(t, A, 16);
             break;
    case 5:  if ((D % 3) != 0)  mpz_powm_ui(t, r, 6, N);
             else               mpz_powm_ui(t, r, 2, N);
             mpz_mul_ui(A, t, 64);
             mpz_sub_ui(t, A, 16);
             break;
    case 7:  if (!mpz_invert(t, r, N)) mpz_set_ui(t, 0);
             if ((D % 3) != 0)  mpz_powm_ui(A, t, 24, N);
             else               mpz_powm_ui(A, t,  8, N);
             mpz_sub_ui(t, A, 16);
             break;
    /* Results in degree 3x Hilbert, so typically not used */
    case 3:  if (!mpz_invert(t, r, N)) mpz_set_ui(t, 0);
             if ((D % 3) != 0) {
               mpz_powm_ui(t, t, 24, N);
               mpz_mul_2exp(A, t, 12);
             } else {
               mpz_powm_ui(t, t, 8, N);
               mpz_mul_2exp(A, t, 4);
             }
             mpz_sub_ui(t, A, 16);
             break;
    default: break;
  }
  /* r = t^3 / A */
  mpz_powm_ui(t, t, 3, N);
  if ( ! mpz_divmod(r, t, A, N, r) )
    mpz_set_ui(r, 0);
  mpz_clear(A);  mpz_clear(t);
}


static int find_roots(long D, int poly_index, mpz_t N, mpz_t** roots, int maxroots)
{
  mpz_t* T;
  UV degree;
  long dT, i, nroots;
  int poly_type;
  gmp_randstate_t* p_randstate = get_randstate();

  if (D == -3 || D == -4) {
    *roots = 0;
    return 1;
  }

  degree = poly_class_poly_num(poly_index, NULL, &T, &poly_type);
  if (degree == 0 || (poly_type != 1 && poly_type != 2))
    return 0;

  dT = degree;
  polyz_mod(T, T, &dT, N);

  polyz_roots_modp(roots, &nroots, maxroots, T, dT, N, p_randstate);
  if (nroots == 0) {
    gmp_printf("N = %Zd\n", N);
    croak("Failed to find roots for D = %ld\n", D);
  }
  for (i = 0; i <= dT; i++)
    mpz_clear(T[i]);
  Safefree(T);
#if 0
  if (nroots != dT && get_verbose_level())
    printf("  found %ld roots of the %ld degree poly\n", nroots, dT);
#endif

  /* Convert Weber roots to Hilbert roots */
  if (poly_type == 2)
    for (i = 0; i < nroots; i++)
      weber_root_to_hilbert_root((*roots)[i], N, D);

  return nroots;
}

static void select_curve_params(mpz_t a, mpz_t b, mpz_t g,
                                long D, mpz_t *roots, long i, mpz_t N, mpz_t t)
{
  int N_is_not_1_congruent_3;

  mpz_set_ui(a, 0);
  mpz_set_ui(b, 0);
  if      (D == -3) { mpz_set_si(b, -1); }
  else if (D == -4) { mpz_set_si(a, -1); }
  else {
    mpz_sub_ui(t, roots[i], 1728);
    mpz_mod(t, t, N);
    /* c = (j * inverse(j-1728)) mod n */
    if (mpz_divmod(b, roots[i], t, N, b)) {
      mpz_mul_si(a, b, -3);   /* r = -3c */
      mpz_mul_si(b, b, 2);    /* s =  2c */
    }
  }
  mpz_mod(a, a, N);
  mpz_mod(b, b, N);

  /* g:  1 < g < Ni && (g/Ni) != -1 && (g%3!=1 || cubic non-residue) */
  N_is_not_1_congruent_3 = ! mpz_congruent_ui_p(N, 1, 3);
  for ( mpz_set_ui(g, 2);  mpz_cmp(g, N) < 0;  mpz_add_ui(g, g, 1) ) {
    if (mpz_jacobi(g, N) != -1)
      continue;
    if (N_is_not_1_congruent_3)
      break;
    mpz_sub_ui(t, N, 1);
    mpz_tdiv_q_ui(t, t, 3);
    mpz_powm(t, g, t, N);   /* t = g^((Ni-1)/3) mod Ni */
    if (mpz_cmp_ui(t, 1) == 0)
      continue;
    if (D == -3) {
      mpz_powm_ui(t, t, 3, N);
      if (mpz_cmp_ui(t, 1) != 0)   /* Additional check when D == -3 */
        continue;
    }
    break;
  }
  if (mpz_cmp(g, N) >= 0)    /* No g can be found: N is composite */
    mpz_set_ui(g, 0);
}

static void select_point(mpz_t x, mpz_t y, mpz_t a, mpz_t b, mpz_t N,
                         mpz_t t, mpz_t t2)
{
  mpz_t Q, t3, t4;
  gmp_randstate_t* p_randstate = get_randstate();

  mpz_init(Q); mpz_init(t3); mpz_init(t4);
  mpz_set_ui(y, 0);

  while (mpz_sgn(y) == 0) {
    /* select a Q s.t. (Q,N) != -1 */
    do {
      do {
        /* mpz_urandomm(x, *p_randstate, N); */
        mpz_urandomb(x, *p_randstate, 32);   /* May as well make x small */
        mpz_mod(x, x, N);
      } while (mpz_sgn(x) == 0);
      mpz_mul(t, x, x);
      mpz_add(t, t, a);
      mpz_mul(t, t, x);
      mpz_add(t, t, b);
      mpz_mod(Q, t, N);
    } while (mpz_jacobi(Q, N) == -1);
    /* Select Y */
    sqrtmod(y, Q, N, t, t2, t3, t4);
    /* TODO: if y^2 mod Ni != t, return composite */
    if (mpz_sgn(y) == 0) croak("y == 0 in point selection\n");
  }
  mpz_clear(Q); mpz_clear(t3); mpz_clear(t4);
}

/* Returns 0 (composite), 1 (didn't find a point), 2 (found point) */
int ecpp_check_point(mpz_t x, mpz_t y, mpz_t m, mpz_t q, mpz_t a, mpz_t N,
                     mpz_t t, mpz_t t2)
{
  struct ec_affine_point P, P1, P2;
  int result = 1;

  mpz_init_set(P.x, x);  mpz_init_set(P.y, y);
  mpz_init(P1.x); mpz_init(P1.y);
  mpz_init(P2.x); mpz_init(P2.y);

  mpz_tdiv_q(t, m, q);
  if (!ec_affine_multiply(a, t, N, P, &P2, t2)) {
    mpz_tdiv_q(t, m, q);
    /* P2 should not be (0,1) */
    if (!(mpz_cmp_ui(P2.x, 0) == 0 && mpz_cmp_ui(P2.y, 1) == 0)) {
      mpz_set(t, q);
      if (!ec_affine_multiply(a, t, N, P2, &P1, t2)) {
        /* P1 should be (0,1) */
        if (mpz_cmp_ui(P1.x, 0) == 0 && mpz_cmp_ui(P1.y, 1) == 0) {
          result = 2;
        }
      } else result = 0;
    }
  } else result = 0;

  mpz_clear(P.x);  mpz_clear(P.y);
  mpz_clear(P1.x); mpz_clear(P1.y);
  mpz_clear(P2.x); mpz_clear(P2.y);
  return result;
}

static void update_ab(mpz_t a, mpz_t b, long D, mpz_t g, mpz_t N)
{
  if      (D == -3) { mpz_mul(b, b, g); }
  else if (D == -4) { mpz_mul(a, a, g); }
  else {
    mpz_mul(a, a, g);
    mpz_mul(a, a, g);
    mpz_mul(b, b, g);
    mpz_mul(b, b, g);
    mpz_mul(b, b, g);
  }
  mpz_mod(a, a, N);
  mpz_mod(b, b, N);
}

/* Once we have found a D and q, this will find a curve and point.
 * Returns: 0 (composite), 1 (didn't work), 2 (success)
 * It's debatable what to do with a 1 return.
 */
static int find_curve(mpz_t a, mpz_t b, mpz_t x, mpz_t y,
                      long D, int poly_index, mpz_t m, mpz_t q, mpz_t N, int maxroots)
{
  long nroots, npoints, i, rooti, unity, result;
  mpz_t g, t, t2;
  mpz_t* roots = 0;

  /* TODO: A better way to do this, I believe, would be to have the root
   *       finder set up as an iterator.  That way we'd get the first root,
   *       try to find a curve, and probably we'd be done.  Only if we tried
   *       10+ points on that root would we get another root.  This would
   *       probably be set up as a stack (array) of polynomials plus one
   *       saved root (for when we solve a degree 2 poly).
   */
  /* Step 1: Get the roots of the Hilbert class polynomial. */
  nroots = find_roots(D, poly_index, N, &roots, maxroots);
  if (nroots == 0)
    return 1;

  /* Step 2: Loop selecting curves and trying points.
   *         On average it takes about 3 points, but we'll try 100+. */

  mpz_init(g);  mpz_init(t);  mpz_init(t2);
  npoints = 0;
  result = 1;
  for (rooti = 0; result == 1 && rooti < 50*nroots; rooti++) {
    /* Given this D and root, select curve a,b */
    select_curve_params(a, b, g,  D, roots, rooti % nroots, N, t);
    if (mpz_sgn(g) == 0) { result = 0; break; }

    /* See Cohen 5.3.1, page 231 */
    unity = (D == -3) ? 6 : (D == -4) ? 4 : 2;
    for (i = 0; result == 1 && i < unity; i++) {
      if (i > 0)
        update_ab(a, b, D, g, N);
      npoints++;
      select_point(x, y,  a, b, N, t, t2);
      result = ecpp_check_point(x, y, m, q, a, N, t, t2);
    }
  }
  if (npoints > 10 && get_verbose_level() > 0)
    printf("  # point finding took %ld points\n", npoints);

  if (roots != 0) {
    for (rooti = 0; rooti < nroots; rooti++)
      mpz_clear(roots[rooti]);
    Safefree(roots);
  }
  mpz_clear(g);  mpz_clear(t);  mpz_clear(t2);

  return result;
}

/* Select the 2, 4, or 6 numbers we will try to factor. */
static void choose_m(mpz_t* mlist, long D, mpz_t u, mpz_t v, mpz_t N,
                     mpz_t t, mpz_t Nplus1)
{
  int i, j;
  mpz_add_ui(Nplus1, N, 1);

  mpz_sub(mlist[0], Nplus1, u);     /* N+1-u */
  mpz_add(mlist[1], Nplus1, u);     /* N+1+u */
  for (i = 2; i < 6; i++)
    mpz_set_ui(mlist[i], 0);

  if (D == -3) {
    /* If reading Cohen, be sure to see the errata for page 474. */
    mpz_mul_si(t, v, 3);
    mpz_add(t, t, u);
    mpz_tdiv_q_2exp(t, t, 1);
    mpz_sub(mlist[2], Nplus1, t);   /* N+1-(u+3v)/2 */
    mpz_add(mlist[3], Nplus1, t);   /* N+1+(u+3v)/2 */
    mpz_mul_si(t, v, -3);
    mpz_add(t, t, u);
    mpz_tdiv_q_2exp(t, t, 1);
    mpz_sub(mlist[4], Nplus1, t);   /* N+1-(u-3v)/2 */
    mpz_add(mlist[5], Nplus1, t);   /* N+1+(u-3v)/2 */
  } else if (D == -4) {
    mpz_mul_ui(t, v, 2);
    mpz_sub(mlist[2], Nplus1, t);   /* N+1-2v */
    mpz_add(mlist[3], Nplus1, t);   /* N+1+2v */
  }
  /* m must not be prime */
  for (i = 0; i < 6; i++)
    if (mpz_sgn(mlist[i]) && _GMP_is_prob_prime(mlist[i]))
      mpz_set_ui(mlist[i], 0);
  /* Sort the m values so we test the smallest first */
  for (i = 0; i < 5; i++)
    if (mpz_sgn(mlist[i]))
      for (j = i+1; j < 6; j++)
        if (mpz_sgn(mlist[j]) && mpz_cmp(mlist[i],mlist[j]) > 0)
          mpz_swap( mlist[i], mlist[j] );
}





/* This is the "factor all strategy" FAS version, which ends up being a lot
 * simpler than the FPS code.
 *
 * It should have a little more smarts for not repeating work when repeating
 * steps.  This could be complicated trying to save all state, but I think we
 * could get most of the benefit by keeping a simple list of all factors
 * found after stage 1, and we just try each of them.
 */

#define VERBOSE_PRINT_N(step, ndigits, maxH, factorstage) \
  if (verbose) { \
    printf("%*sN[%d] (%d dig)", i, "", step, ndigits); \
    if (factorstage > 1) printf(" [FS %d]", factorstage); \
    fflush(stdout); \
  }

/* Recursive routine to prove via ECPP */
static int ecpp_down(int i, mpz_t Ni, int facstage, int *pmaxH, int* dilist, mpz_t* sfacs, int* nsfacs, char** prooftextptr)
{
  mpz_t a, b, u, v, m, q, minfactor, sqrtn, mD, t, t2;
  mpz_t mlist[6];
  mpz_t qlist[6];
  UV nm1a;
  IV np1lp, np1lq;
  struct ec_affine_point P;
  int k, dindex, pindex, nidigits, facresult, curveresult, downresult, stage, D;
  int verbose = get_verbose_level();

  nidigits = mpz_sizeinbase(Ni, 10);

  downresult = _GMP_is_prob_prime(Ni);
  if (downresult == 0)  return 0;
  if (downresult == 2) {
    /* No need to put anything in the proof */
    if (verbose) printf("%*sN[%d] (%d dig)  PRIME\n", i, "", i, nidigits);
    return 2;
  }
  if (i == 0 && facstage == 2 && _GMP_miller_rabin_random(Ni, 2, 0) == 0) {
    gmp_printf("\n\n**** BPSW counter-example found?  ****\n**** N = %Zd ****\n\n", Ni);
    return 0;
  }

  VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);

  mpz_init(a);  mpz_init(b);
  mpz_init(u);  mpz_init(v);
  mpz_init(m);  mpz_init(q);
  mpz_init(mD); mpz_init(minfactor);  mpz_init(sqrtn);
  mpz_init(t);  mpz_init(t2);
  mpz_init(P.x);mpz_init(P.y);
  for (k = 0; k < 6; k++) {
    mpz_init(mlist[k]);
    mpz_init(qlist[k]);
  }

  /* Any factors q found must be strictly > minfactor.
   * See Atkin and Morain, 1992, section 6.4 */
  mpz_root(minfactor, Ni, 4);
  mpz_add_ui(minfactor, minfactor, 1);
  mpz_mul(minfactor, minfactor, minfactor);
  mpz_sqrt(sqrtn, Ni);

  stage = 0;
  if (nidigits > 700) stage = 1;  /* Too rare to find them */
  if (i == 0 && facstage > 1)  stage = facstage;
  for ( ; stage <= facstage; stage++) {
    int next_stage = (stage > 1) ? stage : 1;
    for (dindex = -1; dindex < 0 || dilist[dindex] != 0; dindex++) {
      int poly_type;  /* just for debugging/verbose */
      int poly_degree;
      int allq = (nidigits < 400);  /* Do all q values together, or not */

      if (dindex == -1) {   /* n-1 and n+1 tests */
        int nm1_success = 0;
        int np1_success = 0;
        const char* ptype = "";
        mpz_sub_ui(m, Ni, 1);
        mpz_sub_ui(t2, sqrtn, 1);
        mpz_tdiv_q_2exp(t2, t2, 1);    /* t2 = minfactor */
        nm1_success = check_for_factor(u, m, t2, t, stage, sfacs, nsfacs, 0);
        mpz_add_ui(m, Ni, 1);
        mpz_add_ui(t2, sqrtn, 1);
        mpz_tdiv_q_2exp(t2, t2, 1);    /* t2 = minfactor */
        np1_success = check_for_factor(v, m, t2, t, stage, sfacs, nsfacs, 0);
        /* If both successful, pick smallest */
        if (nm1_success > 0 && np1_success > 0) {
          if (mpz_cmp(u, v) <= 0) np1_success = 0;
          else                    nm1_success = 0;
        }
        if      (nm1_success > 0) {  ptype = "n-1";  mpz_set(q, u);  D =  1; }
        else if (np1_success > 0) {  ptype = "n+1";  mpz_set(q, v);  D = -1; }
        else                      continue;
        if (verbose) { printf(" %s\n", ptype); fflush(stdout); }
        downresult = ecpp_down(i+1, q, next_stage, pmaxH, dilist, sfacs, nsfacs, prooftextptr);
        if (downresult == 0) goto end_down;   /* composite */
        if (downresult == 1) {   /* nothing found at this stage */
          VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);
          continue;
        }
        if (verbose)
          { printf("%*sN[%d] (%d dig) %s", i, "", i, nidigits, ptype); fflush(stdout); }
        curveresult = (nm1_success > 0)
                    ? _GMP_primality_bls_3(Ni, q, &nm1a)
                    : _GMP_primality_bls_15(Ni, q, &np1lp, &np1lq);
        if (verbose) { printf("  %d\n", curveresult); fflush(stdout); }
        if ( ! curveresult ) { /* This ought not happen */
          if (verbose)
            gmp_printf("\n  Could not prove %s with N = %Zd\n", ptype, Ni);
          downresult = 1;
          continue;
        }
        goto end_down;
      }

      pindex = dilist[dindex];
      if (pindex < 0) continue;  /* We marked this for skip */
      /* Get the values for D, degree, and poly type */
      poly_degree = poly_class_poly_num(pindex, &D, NULL, &poly_type);
      if (poly_degree == 0)
        croak("Unknown value in dilist[%d]: %d\n", dindex, pindex);

      if ( (-D % 4) != 3 && (-D % 16) != 4 && (-D % 16) != 8 )
        croak("Invalid discriminant '%d' in list\n", D);
      /* D must also be squarefree in odd divisors, but assume it. */
      /* Make sure we can get a class polynomial for this D. */
      if (poly_degree > 16 && stage == 0) {
        if (verbose) printf(" [1]");
        break;
      }
      /* Make the continue-search vs. backtrack decision */
      if (*pmaxH > 0 && poly_degree > *pmaxH)  break;
      mpz_set_si(mD, D);
      /* (D/N) must be 1, and we have to have a u,v solution */
      if (mpz_jacobi(mD, Ni) != 1)
        continue;
      if ( ! modified_cornacchia(u, v, mD, Ni) )
        continue;

      if (verbose > 1)
        { printf(" %d", D); fflush(stdout); }

      /* We're going to factor all the values for this discriminant then pick
       * the smallest.  This adds a little time, but it means we go down
       * faster.  This makes smaller proofs, and might even save time. */

      choose_m(mlist, D, u, v, Ni, t, t2);
      if (allq) {
        int i, j;
        /* We have 0 to 6 m values.  Try to factor them, put in qlist. */
        for (k = 0; k < 6; k++) {
          mpz_set_ui(qlist[k], 0);
          if (mpz_sgn(mlist[k])) {
            facresult = check_for_factor(qlist[k], mlist[k], minfactor, t, stage, sfacs, nsfacs, poly_degree);
            /* -1 = couldn't find, 0 = no big factors, 1 = found */
            if (facresult <= 0)
              mpz_set_ui(qlist[k], 0);
          }
        }
        /* Sort any q values by size, so we work on the smallest first */
        for (i = 0; i < 5; i++)
          if (mpz_sgn(qlist[i]))
            for (j = i+1; j < 6; j++)
              if (mpz_sgn(qlist[j]) && mpz_cmp(qlist[i],qlist[j]) > 0) {
                mpz_swap( qlist[i], qlist[j] );
                mpz_swap( mlist[i], mlist[j] );
              }
      }
      /* Try to make a proof with the first (smallest) q value.
       * Repeat for others if we have to. */
      for (k = 0; k < 6; k++) {
        int maxH = *pmaxH;
        int minH = (nidigits <= 240) ? 7 : (nidigits+39)/40;

        if (allq) {
          if (mpz_sgn(qlist[k]) == 0) continue;
          mpz_set(m, mlist[k]);
          mpz_set(q, qlist[k]);
        } else {
          if (mpz_sgn(mlist[k]) == 0) continue;
          mpz_set(m, mlist[k]);
          facresult = check_for_factor(q, m, minfactor, t, stage, sfacs, nsfacs, poly_degree);
          if (facresult <= 0) continue;
        }

        if (verbose)
          { printf(" %d (%s %d)\n", D, (poly_type == 1) ? "Hilbert" : "Weber", poly_degree); fflush(stdout); }
        if (maxH == 0) {
          maxH = minH-1 + poly_degree;
          if (facstage > 1)              /* We worked hard to get here, */
            maxH = 2*maxH + 10;          /* try hard to make use of it. */
        } else if (maxH > minH && maxH > (poly_degree+2)) {
          maxH--;
        }
        /* Great, now go down. */
        downresult = ecpp_down(i+1, q, next_stage, &maxH, dilist, sfacs, nsfacs, prooftextptr);
        /* Nothing found, look at more polys in the future */
        if (downresult == 1 && *pmaxH > 0)  *pmaxH = maxH;

        if (downresult == 0) goto end_down;   /* composite */
        if (downresult == 1) {   /* nothing found at this stage */
          VERBOSE_PRINT_N(i, nidigits, *pmaxH, facstage);
          continue;
        }

        /* Awesome, we found the q chain and are in STAGE 2 */
        if (verbose)
          { printf("%*sN[%d] (%d dig) %d (%s %d)", i, "", i, nidigits, D, (poly_type == 1) ? "Hilbert" : "Weber", poly_degree); fflush(stdout); }

        /* Try with only one or two roots, then 8 if that didn't work. */
        /* TODO: This should be done using a root iterator in find_curve() */
        curveresult = find_curve(a, b, P.x, P.y, D, pindex, m, q, Ni, 1);
        if (curveresult == 1) {
          if (verbose) { printf(" [redo roots]"); fflush(stdout); }
          curveresult = find_curve(a, b, P.x, P.y, D, pindex, m, q, Ni, 8);
        }
        if (verbose) { printf("  %d\n", curveresult); fflush(stdout); }
        if (curveresult == 1) {
          /* Something is wrong.  Very likely the class poly coefficients are
             incorrect.  We've wasted lots of time, and need to try again. */
          dilist[dindex] = -2; /* skip this D value from now on */
          if (verbose) gmp_printf("\n  Invalidated D = %d with N = %Zd\n", D, Ni);
          downresult = 1;
          continue;
        }
        /* We found it was composite or proved it */
        goto end_down;
      } /* k loop for D */
    } /* D */
  } /* fac stage */
  /* Nothing at this level */
  if (downresult != 1) croak("ECPP internal error: downresult is %d at end\n", downresult);
  if (verbose) {
    if (*pmaxH > 0) printf(" (max %d)", *pmaxH);
    printf(" ---\n");
    fflush(stdout);
  }
  if (*pmaxH > 0) *pmaxH = *pmaxH + 2;

end_down:

  if (downresult == 2) {
    if (0 && verbose > 1) {
      gmp_printf("\n");
      if (D == 1) {
        gmp_printf("Type BLS3\nN  %Zd\nQ  %Zd\nA  %"UVuf"\n", Ni, q, nm1a);
      } else if (D == -1) {
        gmp_printf("Type BLS15\nN  %Zd\nQ  %Zd\nLP %"IVdf"\nLQ %"IVdf"\n", Ni, q, np1lp, np1lq);
      } else {
        gmp_printf("Type ECPP\nN  %Zd\nA  %Zd\nB  %Zd\nM  %Zd\nQ  %Zd\nX  %Zd\nY  %Zd\n", Ni, a, b, m, q, P.x, P.y);
      }
      gmp_printf("\n");
      fflush(stdout);
    }
    /* Prepend our proof to anything that exists. */
    if (prooftextptr != 0) {
      char *proofstr, *proofptr;
      int curprooflen = (*prooftextptr == 0) ? 0 : strlen(*prooftextptr);

      if (D == 1) {
        int myprooflen = 20 + 2*(4 + mpz_sizeinbase(Ni, 10)) + 1*21;
        New(0, proofstr, myprooflen + curprooflen + 1, char);
        proofptr = proofstr;
        proofptr += gmp_sprintf(proofptr, "Type BLS3\nN  %Zd\nQ  %Zd\nA  %"UVuf"\n", Ni, q, nm1a);
      } else if (D == -1) {
        int myprooflen = 20 + 2*(4 + mpz_sizeinbase(Ni, 10)) + 2*21;
        New(0, proofstr, myprooflen + curprooflen + 1, char);
        proofptr = proofstr;
        proofptr += gmp_sprintf(proofptr, "Type BLS15\nN  %Zd\nQ  %Zd\nLP %"IVdf"\nLQ %"IVdf"\n", Ni, q, np1lp, np1lq);
      } else {
        int myprooflen = 20 + 7*(4 + mpz_sizeinbase(Ni, 10)) + 0;
        New(0, proofstr, myprooflen + curprooflen + 1, char);
        proofptr = proofstr;
        mpz_sub_ui(t, Ni, 1);
        if (mpz_cmp(a, t) == 0)  mpz_set_si(a, -1);
        if (mpz_cmp(b, t) == 0)  mpz_set_si(b, -1);
        proofptr += gmp_sprintf(proofptr, "Type ECPP\nN  %Zd\nA  %Zd\nB  %Zd\nM  %Zd\nQ  %Zd\nX  %Zd\nY  %Zd\n", Ni, a, b, m, q, P.x, P.y);
      }
      if (*prooftextptr) {
        proofptr += gmp_sprintf(proofptr, "\n");
        strcat(proofptr, *prooftextptr);
        Safefree(*prooftextptr);
      }
      *prooftextptr = proofstr;
    }
  }

  /* Ni passed BPSW, so it's highly unlikely to be composite */
  if (downresult == 0) {
    if (mpz_probab_prime_p(Ni, 2) == 0) {
      gmp_printf("\n\n**** BPSW counter-example found?  ****\n**** N = %Zd ****\n\n", Ni);
    } else {
      /* Q was composite, but we don't seem to be. */
      downresult = 1;
    }
  }

  mpz_clear(a);  mpz_clear(b);
  mpz_clear(u);  mpz_clear(v);
  mpz_clear(m);  mpz_clear(q);
  mpz_clear(mD); mpz_clear(minfactor);  mpz_clear(sqrtn);
  mpz_clear(t);  mpz_clear(t2);
  mpz_clear(P.x);mpz_clear(P.y);
  for (k = 0; k < 6; k++) {
    mpz_clear(mlist[k]);
    mpz_clear(qlist[k]);
  }

  return downresult;
}

/* returns 2 if N is proven prime, 1 if probably prime, 0 if composite */
int _GMP_ecpp(mpz_t N, char** prooftextptr)
{
  int* dilist;
  mpz_t* sfacs;
  int i, fstage, result, nsfacs;
  UV nsize = mpz_sizeinbase(N,2);

  /* We must check gcd(N,6), let's check 2*3*5*7*11*13*17*19*23. */
  if (nsize <= 64 || mpz_gcd_ui(NULL, N, 223092870UL) != 1) {
    result = _GMP_is_prob_prime(N);
    if (result != 1) return result;
  }

  init_ecpp_gcds( nsize );

  if (prooftextptr)
    *prooftextptr = 0;

  New(0, sfacs, MAX_SFACS, mpz_t);
  dilist = poly_class_nums();
  nsfacs = 0;
  result = 1;
  for (fstage = 1; fstage < 20; fstage++) {
    int maxH = 0;
    if (fstage == 3 && get_verbose_level())
      gmp_printf("Working hard on: %Zd\n", N);
    result = ecpp_down(0, N, fstage, &maxH, dilist, sfacs, &nsfacs, prooftextptr);
    if (result != 1)
      break;
  }
  Safefree(dilist);
  for (i = 0; i < nsfacs; i++)
    mpz_clear(sfacs[i]);
  Safefree(sfacs);

  return result;
}


#ifdef STANDALONE_ECPP
static void dieusage(char* prog) {
  printf("ECPP-DJ version 1.04.  Dana Jacobsen, 2014.\n\n");
  printf("Usage: %s [options] <number or expression>\n\n", prog);
  printf("Options:\n");
  printf("   -v     set verbose\n");
  printf("   -V     set extra verbose\n");
  printf("   -q     no output other than return code\n");
  printf("   -c     print certificate to stdout (redirect to save to a file)\n");
  printf("   -bpsw  use the extra strong BPSW test (probable prime test)\n");
  printf("   -nm1   use n-1 proof only (BLS75 theorem 5)\n");
  printf("   -aks   use AKS for proof\n");
#ifdef USE_APRCL
  printf("   -aprcl use APR-CL for proof\n");
#endif
  printf("   -help  this message\n");
  printf("\n");
  printf("Return codes: 0 prime, 1 composite, 2 prp, 3 error\n");
  exit(3);
}

#include "expr.h"

int main(int argc, char **argv)
{
  mpz_t n;
  int isprime, i, do_printcert;
  int do_nminus1 = 0;
  int do_aks = 0;
  int do_aprcl = 0;
  int do_bpsw = 0;
  int be_quiet = 0;
  int retcode = 3;
  char* cert = 0;

  if (argc < 2) dieusage(argv[0]);
  _GMP_init();
  mpz_init(n);
  set_verbose_level(0);
  do_printcert = 0;

  /* Braindead hacky option parsing */
  for (i = 1; i < argc; i++) {
    if (argv[i][0] == '-') {
      if (strcmp(argv[i], "-v") == 0) {
        set_verbose_level(1);
      } else if (strcmp(argv[i], "-V") == 0) {
        set_verbose_level(2);
      } else if (strcmp(argv[i], "-q") == 0) {
        be_quiet = 1;
        set_verbose_level(0);
        do_printcert = 0;
      } else if (strcmp(argv[i], "-c") == 0) {
        do_printcert = 1;
      } else if (strcmp(argv[i], "-nm1") == 0) {
        do_nminus1 = 1;
      } else if (strcmp(argv[i], "-aks") == 0) {
        do_aks = 1;
      } else if (strcmp(argv[i], "-aprcl") == 0) {
        do_aprcl = 1;
      } else if (strcmp(argv[i], "-bpsw") == 0) {
        do_bpsw = 1;
      } else if (strcmp(argv[i], "-help") == 0 || strcmp(argv[i], "--help") == 0) {
        dieusage(argv[0]);
      } else {
        printf("Unknown option: %s\n\n", argv[i]);
        dieusage(argv[0]);
      }
      continue;
    }
    /* mpz_set_str(n, argv[i], 10); */
    if (mpz_expr(n, 10, argv[i]))  croak("Can't parse input: '%s'\n",argv[i]);
    if (get_verbose_level() > 1) gmp_printf("N: %Zd\n", n);

    isprime = _GMP_is_prob_prime(n);
    /* If isprime = 2 here, that means it's so small it fits in the
     * deterministic M-R or BPSW range. */
    if (isprime == 2) {
      Newz(0, cert, 20 + mpz_sizeinbase(n, 10), char);
      gmp_sprintf(cert, "Type Small\nN  %Zd\n", n);
    } else if (isprime == 1) {
      if (do_bpsw) {
        /* Done */
      } else if (do_nminus1) {
        isprime = _GMP_primality_bls_nm1(n, 100, &cert);
      } else if (do_aks) {
        isprime = 2 * _GMP_is_aks_prime(n);
        do_printcert = 0;
      } else if (do_aprcl) {
#ifdef USE_APRCL
        /* int i; for (i = 0; i < 10000; i++) */
        isprime = mpz_aprtcle(n, get_verbose_level());
        do_printcert = 0;
#else
        croak("Compiled without USE_APRCL.  Sorry.");
#endif
      } else {
        /* Quick n-1 test */
        isprime = _GMP_primality_bls_nm1(n, 1, &cert);
        if (isprime == 1)
          isprime = _GMP_ecpp(n, &cert);
      }
    }

    /* printf("(%d digit) ", (int)mpz_sizeinbase(n, 10)); */
    if (isprime == 0) {
      if (!be_quiet) printf("COMPOSITE\n");
      retcode = 1;
    } else if (isprime == 1) {
      /* This would normally only be from BPSW */
      if (!be_quiet) printf("PROBABLY PRIME\n");
      retcode = 2;
    } else if (isprime == 2) {
      if (do_printcert) {
        gmp_printf("[MPU - Primality Certificate]\n");
        gmp_printf("Version 1.0\n");
        gmp_printf("\n");
        gmp_printf("Proof for:\n");
        gmp_printf("N %Zd\n", n);
        gmp_printf("\n");
        printf("%s", cert);
      } else {
        if (!be_quiet) printf("PRIME\n");
      }
      retcode = 0;
    } else {
      /* E.g. APRCL returns -1 for error */
      croak("Unknown return code, probable error.\n");
    }
    if (cert != 0) {
      Safefree(cert);
      cert = 0;
    }
  }
  mpz_clear(n);
  _GMP_destroy();
  return retcode;
}
#endif