File: prime_iterator.c

package info (click to toggle)
libmath-prime-util-gmp-perl 0.27-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 1,024 kB
  • ctags: 696
  • sloc: ansic: 10,302; perl: 2,855; sh: 158; makefile: 2
file content (599 lines) | stat: -rw-r--r-- 21,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "ptypes.h"
#include "prime_iterator.h"


/* Add this to a number and you'll ensure you're on a wheel location */
static const unsigned char distancewheel30[30] =
    {1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0};
/* The bit mask within a byte */
static const unsigned char masktab30[30] = {
    0,  1,  0,  0,  0,  0,  0,  2,  0,  0,  0,  4,  0,  8,  0,
    0,  0, 16,  0, 32,  0,  0,  0, 64,  0,  0,  0,  0,  0,128  };
static const unsigned char nextwheel30[30] = {
    1,  7,  7,  7,  7,  7,  7, 11, 11, 11, 11, 13, 13, 17, 17,
   17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29,  1 };
static const unsigned char prevwheel30[30] = {
   29, 29,  1,  1,  1,  1,  1,  1,  7,  7,  7,  7, 11, 11, 13,
   13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23 };

static INLINE UV next_prime_in_segment( const unsigned char* sieve, UV segment_start, UV segment_bytes, UV p)
{
  UV d, m;
  if (p < segment_start) return 0;
  d = (p-segment_start)/30;
  if (d >= segment_bytes) return 0;
  m = (p-segment_start) - d*30;
  do {
    if (m==29) {
      d++; m = 1;
      if (d >= segment_bytes) return 0;
    } else {
      m = nextwheel30[m];
    }
  } while (sieve[d] & masktab30[m]);
  return (segment_start + d*30 + m);
}
static INLINE int is_prime_in_segment( const unsigned char* sieve, UV segment_start, UV segment_bytes, UV p)
{
  UV d, m, mtab;
  if (p < segment_start) return -1;
  d = (p-segment_start)/30;
  if (d >= segment_bytes) return -1;
  m = (p-segment_start) - d*30;
  mtab = masktab30[m];
  if (mtab == 0)  return 0;
  return ((sieve[d] & mtab) == 0);
}

#define next_prime_in_sieve(sieve, p) next_prime_in_segment(sieve, 0, UV_MAX, p)


/* 1001 bytes of presieved mod-30 bytes.  If the area to be sieved is
 * appropriately filled with this data, then 7, 11, and 13 do not have
 * to be sieved.  It wraps, so multiple memcpy's can be used.  Do be
 * aware that if you start at 0, you'll have to correct the first byte.
 */
#define PRESIEVE_SIZE (7*11*13)
static const unsigned char presieve13[PRESIEVE_SIZE] =
{ 0x0e,0x20,0x10,0x81,0x49,0x24,0xc2,0x06,0x2a,0x90,0xa1,0x0c,0x14,
  0x58,0x02,0x61,0x11,0xc3,0x28,0x0c,0x44,0x22,0xa4,0x10,0x91,0x18,
  0x4d,0x40,0x82,0x21,0x58,0xa1,0x28,0x04,0x42,0x92,0x20,0x51,0x91,
  0x8a,0x04,0x48,0x03,0x60,0x34,0x81,0x1c,0x06,0xc1,0x02,0xa2,0x10,
  0x89,0x08,0x24,0x45,0x42,0x30,0x10,0xc5,0x0a,0x86,0x40,0x0a,0x30,
  0x38,0x85,0x08,0x15,0x40,0x63,0x20,0x96,0x83,0x88,0x04,0x60,0x16,
  0x28,0x10,0x81,0x49,0x44,0xe2,0x02,0x2c,0x12,0xa1,0x0c,0x04,0x50,
  0x0a,0x61,0x10,0x83,0x48,0x2c,0x40,0x26,0x26,0x90,0x91,0x08,0x55,
  0x48,0x82,0x20,0x19,0xc1,0x28,0x04,0x44,0x12,0xa0,0x51,0x81,0x9a,
  0x0c,0x48,0x02,0x21,0x54,0xa1,0x18,0x04,0x43,0x82,0xa2,0x10,0x99,
  0x08,0x24,0x44,0x03,0x70,0x30,0xc1,0x0c,0x86,0xc0,0x0a,0x20,0x30,
  0x8d,0x08,0x14,0x41,0x43,0x20,0x92,0x85,0x0a,0x84,0x60,0x06,0x30,
  0x18,0x81,0x49,0x05,0xc2,0x22,0x28,0x14,0xa3,0x8c,0x04,0x50,0x12,
  0x69,0x10,0x83,0x09,0x4c,0x60,0x22,0x24,0x12,0x91,0x08,0x45,0x50,
  0x8a,0x20,0x18,0x81,0x68,0x24,0x40,0x16,0x22,0xd1,0x81,0x8a,0x14,
  0x48,0x02,0x20,0x15,0xc1,0x38,0x04,0x45,0x02,0xa2,0x10,0x89,0x18,
  0x2c,0x44,0x02,0x31,0x50,0xe1,0x08,0x86,0x42,0x8a,0x20,0x30,0x95,
  0x08,0x14,0x40,0x43,0x60,0xb2,0x81,0x0c,0x06,0xe0,0x06,0x20,0x10,
  0x89,0x49,0x04,0xc3,0x42,0x28,0x10,0xa5,0x0e,0x84,0x50,0x02,0x71,
  0x18,0x83,0x08,0x0d,0x40,0x22,0x24,0x14,0x93,0x88,0x45,0x40,0x92,
  0x28,0x18,0x81,0x29,0x44,0x60,0x12,0x24,0x53,0x81,0x8a,0x04,0x58,
  0x0a,0x20,0x14,0x81,0x58,0x24,0x41,0x06,0xa2,0x90,0x89,0x08,0x34,
  0x4c,0x02,0x30,0x11,0xc1,0x28,0x86,0x44,0x0a,0xa0,0x30,0x85,0x18,
  0x1c,0x40,0x43,0x21,0xd2,0xa1,0x08,0x04,0x62,0x86,0x20,0x10,0x91,
  0x49,0x04,0xc2,0x03,0x68,0x30,0xa1,0x0c,0x06,0xd0,0x02,0x61,0x10,
  0x8b,0x08,0x0c,0x41,0x62,0x24,0x10,0x95,0x0a,0xc5,0x40,0x82,0x30,
  0x18,0x81,0x28,0x05,0x40,0x32,0x20,0x55,0x83,0x8a,0x04,0x48,0x12,
  0x28,0x14,0x81,0x19,0x44,0x61,0x02,0xa6,0x12,0x89,0x08,0x24,0x54,
  0x0a,0x30,0x10,0xc1,0x48,0xa6,0x40,0x0e,0x22,0xb0,0x85,0x08,0x14,
  0x48,0x43,0x20,0x93,0xc1,0x28,0x04,0x64,0x06,0xa0,0x10,0x81,0x59,
  0x0c,0xc2,0x02,0x29,0x50,0xa1,0x0c,0x04,0x52,0x82,0x61,0x10,0x93,
  0x08,0x0c,0x40,0x23,0x64,0x30,0x91,0x0c,0x47,0xc0,0x82,0x20,0x18,
  0x89,0x28,0x04,0x41,0x52,0x20,0x51,0x85,0x8a,0x84,0x48,0x02,0x30,
  0x1c,0x81,0x18,0x05,0x41,0x22,0xa2,0x14,0x8b,0x88,0x24,0x44,0x12,
  0x38,0x10,0xc1,0x09,0xc6,0x60,0x0a,0x24,0x32,0x85,0x08,0x14,0x50,
  0x4b,0x20,0x92,0x81,0x48,0x24,0x60,0x06,0x22,0x90,0x81,0x49,0x14,
  0xca,0x02,0x28,0x11,0xe1,0x2c,0x04,0x54,0x02,0xe1,0x10,0x83,0x18,
  0x0c,0x40,0x22,0x25,0x50,0xb1,0x08,0x45,0x42,0x82,0x20,0x18,0x91,
  0x28,0x04,0x40,0x13,0x60,0x71,0x81,0x8e,0x06,0xc8,0x02,0x20,0x14,
  0x89,0x18,0x04,0x41,0x42,0xa2,0x10,0x8d,0x0a,0xa4,0x44,0x02,0x30,
  0x18,0xc1,0x08,0x87,0x40,0x2a,0x20,0x34,0x87,0x88,0x14,0x40,0x53,
  0x28,0x92,0x81,0x09,0x44,0x60,0x06,0x24,0x12,0x81,0x49,0x04,0xd2,
  0x0a,0x28,0x10,0xa1,0x4c,0x24,0x50,0x06,0x63,0x90,0x83,0x08,0x1c,
  0x48,0x22,0x24,0x11,0xd1,0x28,0x45,0x44,0x82,0xa0,0x18,0x81,0x38,
  0x0c,0x40,0x12,0x21,0x51,0xa1,0x8a,0x04,0x4a,0x82,0x20,0x14,0x91,
  0x18,0x04,0x41,0x03,0xe2,0x30,0x89,0x0c,0x26,0xc4,0x02,0x30,0x10,
  0xc9,0x08,0x86,0x41,0x4a,0x20,0x30,0x85,0x0a,0x94,0x40,0x43,0x30,
  0x9a,0x81,0x08,0x05,0x60,0x26,0x20,0x14,0x83,0xc9,0x04,0xc2,0x12,
  0x28,0x10,0xa1,0x0d,0x44,0x70,0x02,0x65,0x12,0x83,0x08,0x0c,0x50,
  0x2a,0x24,0x10,0x91,0x48,0x65,0x40,0x86,0x22,0x98,0x81,0x28,0x14,
  0x48,0x12,0x20,0x51,0xc1,0xaa,0x04,0x4c,0x02,0xa0,0x14,0x81,0x18,
  0x0c,0x41,0x02,0xa3,0x50,0xa9,0x08,0x24,0x46,0x82,0x30,0x10,0xd1,
  0x08,0x86,0x40,0x0b,0x60,0x30,0x85,0x0c,0x16,0xc0,0x43,0x20,0x92,
  0x89,0x08,0x04,0x61,0x46,0x20,0x10,0x85,0x4b,0x84,0xc2,0x02,0x38,
  0x18,0xa1,0x0c,0x05,0x50,0x22,0x61,0x14,0x83,0x88,0x0c,0x40,0x32,
  0x2c,0x10,0x91,0x09,0x45,0x60,0x82,0x24,0x1a,0x81,0x28,0x04,0x50,
  0x1a,0x20,0x51,0x81,0xca,0x24,0x48,0x06,0x22,0x94,0x81,0x18,0x14,
  0x49,0x02,0xa2,0x11,0xc9,0x28,0x24,0x44,0x02,0xb0,0x10,0xc1,0x18,
  0x8e,0x40,0x0a,0x21,0x70,0xa5,0x08,0x14,0x42,0xc3,0x20,0x92,0x91,
  0x08,0x04,0x60,0x07,0x60,0x30,0x81,0x4d,0x06,0xc2,0x02,0x28,0x10,
  0xa9,0x0c,0x04,0x51,0x42,0x61,0x10,0x87,0x0a,0x8c,0x40,0x22,0x34,
  0x18,0x91,0x08,0x45,0x40,0xa2,0x20,0x1c,0x83,0xa8,0x04,0x40,0x12,
  0x28,0x51,0x81,0x8b,0x44,0x68,0x02,0x24,0x16,0x81,0x18,0x04,0x51,
  0x0a,0xa2,0x10,0x89,0x48,0x24,0x44,0x06,0x32,0x90,0xc1,0x08,0x96,
  0x48,0x0a,0x20,0x31,0xc5,0x28,0x14,0x44,0x43,0xa0,0x92,0x81,0x18,
  0x0c,0x60,0x06,0x21,0x50,0xa1,0x49,0x04,0xc2,0x82,0x28,0x10,0xb1,
  0x0c,0x04,0x50,0x03,0x61,0x30,0x83,0x0c,0x0e,0xc0,0x22,0x24,0x10,
  0x99,0x08,0x45,0x41,0xc2,0x20,0x18,0x85,0x2a,0x84,0x40,0x12,0x30,
  0x59,0x81,0x8a,0x05,0x48,0x22,0x20,0x14,0x83,0x98,0x04,0x41,0x12,
  0xaa,0x10,0x89,0x09,0x64,0x64,0x02,0x34,0x12,0xc1,0x08,0x86,0x50,
  0x0a,0x20,0x30,0x85,0x48,0x34,0x40,0x47,0x22,0x92,0x81,0x08,0x14,
  0x68,0x06,0x20,0x11,0xc1,0x69,0x04,0xc6,0x02,0xa8,0x10,0xa1,0x1c,
  0x0c,0x50,0x02,0x61,0x50,0xa3,0x08,0x0c,0x42,0xa2,0x24,0x10,0x91,
  0x08,0x45,0x40,0x83,0x60,0x38,0x81,0x2c,0x06,0xc0,0x12,0x20,0x51,
  0x89,0x8a,0x04,0x49,0x42,0x20,0x14,0x85,0x1a,0x84,0x41,0x02,0xb2,
  0x18,0x89,0x08,0x25,0x44,0x22,0x30,0x14,0xc3,0x88,0x86,0x40,0x1a,
  0x28,0x30,0x85,0x09,0x54,0x60,0x43,0x24,0x92,0x81,0x08,0x04,0x70};

#define FIND_COMPOSITE_POS(i,j) \
  { \
    UV dlast = d; \
    do { \
      d += dinc; \
      m += minc; \
      if (m >= 30) { d++; m -= 30; } \
    } while ( masktab30[m] == 0 ); \
    wdinc[i] = d - dlast; \
    wmask[j] = masktab30[m]; \
  }
#define FIND_COMPOSITE_POSITIONS(p) \
  do { \
    FIND_COMPOSITE_POS(0,1) \
    FIND_COMPOSITE_POS(1,2) \
    FIND_COMPOSITE_POS(2,3) \
    FIND_COMPOSITE_POS(3,4) \
    FIND_COMPOSITE_POS(4,5) \
    FIND_COMPOSITE_POS(5,6) \
    FIND_COMPOSITE_POS(6,7) \
    FIND_COMPOSITE_POS(7,0) \
    d -= p; \
  } while (0)

static void sieve_prefill(unsigned char* mem, UV startd, UV endd)
{
  UV nbytes = endd - startd + 1;
  MPUassert( (mem != 0) && (endd >= startd), "sieve_prefill bad arguments");

  /* Walk the memory, tiling in the presieve area using memcpy.
   * This is pretty fast, but it might still benefit from using copy
   * doubling (where we copy to the memory, then copy memory to memory
   * doubling in size each time), as memcpy usually loves big chunks.
   */
  while (startd <= endd) {
    UV pstartd = startd % PRESIEVE_SIZE;
    UV sieve_bytes = PRESIEVE_SIZE - pstartd;
    UV bytes = (nbytes > sieve_bytes) ? sieve_bytes : nbytes;
    memcpy(mem, presieve13 + pstartd, bytes);
    if (startd == 0)  mem[0] = 0x01; /* Correct first byte */
    startd += bytes;
    mem += bytes;
    nbytes -= bytes;
  }
}



/* Wheel 30 sieve.  Ideas from Terje Mathisen and Quesada / Van Pelt. */
static unsigned char* sieve_erat30(UV end)
{
  unsigned char* mem;
  UV max_buf, limit;
  UV prime;

  max_buf = (end/30) + ((end%30) != 0);
  /* Round up to a word */
  max_buf = ((max_buf + sizeof(UV) - 1) / sizeof(UV)) * sizeof(UV);
  New(0, mem, max_buf, unsigned char );
  if (mem == 0) {
    croak("allocation failure in sieve_erat30: could not alloc %"UVuf" bytes", max_buf);
    return 0;
  }

  /* Fill buffer with marked 7, 11, and 13 */
  sieve_prefill(mem, 0, max_buf-1);

  limit = sqrt((double) end);  /* prime*prime can overflow */
  for (prime = 17; prime <= limit; prime = next_prime_in_sieve(mem,prime)) {
    UV d = (prime*prime)/30;
    UV m = (prime*prime) - d*30;
    UV dinc = (2*prime)/30;
    UV minc = (2*prime) - dinc*30;
    UV wdinc[8];
    unsigned char wmask[8];

    /* Find the positions of the next composites we will mark */
    FIND_COMPOSITE_POSITIONS(prime);

    /* Mark the composites (unrolled) */
    while (1) {
      mem[d] |= wmask[0];  d += wdinc[0];  if (d >= max_buf) break;
      mem[d] |= wmask[1];  d += wdinc[1];  if (d >= max_buf) break;
      mem[d] |= wmask[2];  d += wdinc[2];  if (d >= max_buf) break;
      mem[d] |= wmask[3];  d += wdinc[3];  if (d >= max_buf) break;
      mem[d] |= wmask[4];  d += wdinc[4];  if (d >= max_buf) break;
      mem[d] |= wmask[5];  d += wdinc[5];  if (d >= max_buf) break;
      mem[d] |= wmask[6];  d += wdinc[6];  if (d >= max_buf) break;
      mem[d] |= wmask[7];  d += wdinc[7];  if (d >= max_buf) break;
    }
  }

  return mem;
}



static int sieve_segment(unsigned char* mem, UV startd, UV endd,
                         const unsigned char* prim_sieve, UV prim_limit)
{
  const unsigned char* sieve;
  UV limit, p;
  UV startp = 30*startd;
  UV endp = (endd >= (UV_MAX/30))  ?  UV_MAX-2  :  30*endd+29;

  MPUassert( (mem != 0) && (endd >= startd) && (endp >= startp),
             "sieve_segment bad arguments");

  /* Fill buffer with marked 7, 11, and 13 */
  sieve_prefill(mem, startd, endd);

  limit = sqrt((double) endp);
  if (limit*limit < endp) limit++;  /* ceil(sqrt(endp)) */
  /* printf("segment sieve from %"UVuf" to %"UVuf" (aux sieve to %"UVuf")\n", startp, endp, limit); */
  if ( (prim_sieve != 0) && (limit <= prim_limit) ) {
    sieve = prim_sieve;
  } else {
    sieve = sieve_erat30(limit);
  }
  MPUassert( sieve != 0, "Could not generate base sieve" );

  for (p = 17; p <= limit; p = next_prime_in_sieve(sieve,p))
  {
    /* p increments from 17 to at least sqrt(endp) */
    UV p2 = p*p;   /* TODO: overflow */
    if (p2 > endp)  break;
    /* Find first multiple of p greater than p*p and larger than startp */
    if (p2 < startp) {
      p2 = (startp / p) * p;
      if (p2 < startp)  p2 += p;
    }
    /* Bump to next multiple that isn't divisible by 2, 3, or 5 */
    while (masktab30[p2%30] == 0) { p2 += p; }
    /* It is possible we've overflowed p2, so check for that */
    if ( (p2 <= endp) && (p2 >= startp) ) {
      /* Sieve from startd to endd starting at p2, stepping p */
      UV d = (p2)/30;
      UV m = (p2) - d*30;
      UV dinc = (2*p)/30;
      UV minc = (2*p) - dinc*30;
      UV wdinc[8];
      unsigned char wmask[8];
      UV offset_endd = endd - startd;

      /* Find the positions of the next composites we will mark */
      FIND_COMPOSITE_POSITIONS(p);
      d -= startd;
      /* Mark composites (unrolled) */
      while ( (d+p) <= offset_endd ) {
        mem[d] |= wmask[0];  d += wdinc[0];
        mem[d] |= wmask[1];  d += wdinc[1];
        mem[d] |= wmask[2];  d += wdinc[2];
        mem[d] |= wmask[3];  d += wdinc[3];
        mem[d] |= wmask[4];  d += wdinc[4];
        mem[d] |= wmask[5];  d += wdinc[5];
        mem[d] |= wmask[6];  d += wdinc[6];
        mem[d] |= wmask[7];  d += wdinc[7];
      }
      while (1) {
        mem[d] |= wmask[0];  d += wdinc[0];  if (d > offset_endd) break;
        mem[d] |= wmask[1];  d += wdinc[1];  if (d > offset_endd) break;
        mem[d] |= wmask[2];  d += wdinc[2];  if (d > offset_endd) break;
        mem[d] |= wmask[3];  d += wdinc[3];  if (d > offset_endd) break;
        mem[d] |= wmask[4];  d += wdinc[4];  if (d > offset_endd) break;
        mem[d] |= wmask[5];  d += wdinc[5];  if (d > offset_endd) break;
        mem[d] |= wmask[6];  d += wdinc[6];  if (d > offset_endd) break;
        mem[d] |= wmask[7];  d += wdinc[7];  if (d > offset_endd) break;
      }
    }
  }

  if (sieve != prim_sieve)  Safefree(sieve);
  return 1;
}




/*****************************************************************************/
/*                            Prime iterator                                 */
/*****************************************************************************/

/* These sizes are a tradeoff.  For better memory use I think 16k,4k is good.
 * For performance, 32k,16k or 64k,16k is better.  To avoid threading hell,
 * this is just decided statically.  At 24k,16k we handle 736800 numbers in
 * the primary sieve and won't redo for segments until after 5*10^11.  Each
 * segment will store a range of 30*(16384-16) = 491040 numbers.
 */
#define PRIMARY_SIZE  (32768-16)
#define SEGMENT_SIZE  (24576-16)
#define NSMALL_PRIMES (83970-180)

static const unsigned char* primary_sieve = 0;
static const UV primary_limit = (30 * PRIMARY_SIZE)-1;
static const uint32_t* small_primes = 0;
static UV num_small_primes = 0;

void prime_iterator_global_startup(void)
{
  primary_sieve = sieve_erat30(primary_limit);
#ifdef NSMALL_PRIMES
  {
    UV p;
    uint32_t *primes32;
    UV *primes64 = sieve_to_n(NSMALL_PRIMES + 180, &num_small_primes);
    New(0, primes32, num_small_primes, uint32_t);
    for (p = 0; p < num_small_primes; p++)  primes32[p] = primes64[p];
    Safefree(primes64);
    small_primes = primes32;
  }
#endif
}

void prime_iterator_global_shutdown(void)
{
  if (primary_sieve != 0)  Safefree(primary_sieve);
  if (small_primes != 0)   Safefree(small_primes);
  primary_sieve = 0;
  small_primes = 0;
}

#if 0
void prime_iterator_init(prime_iterator *iter)
{
  iter->p = 2;
  iter->segment_start = 0;
  iter->segment_bytes = 0;
  iter->segment_mem = 0;
}

prime_iterator prime_iterator_default(void)
{
  prime_iterator iter = {2, 0, 0, 0};
  return iter;
}
#endif

void prime_iterator_destroy(prime_iterator *iter)
{
  if (iter->segment_mem != 0)  Safefree(iter->segment_mem);
  iter->segment_mem = 0;
  iter->segment_start = 0;
  iter->segment_bytes = 0;
  iter->p = 0;
}

#ifdef NSMALL_PRIMES
static UV pcount(UV n)
{
  UV lo = 0 + (n >> 4);
  UV hi = (n >> 3) - (n >> 6) + ( (n<503) ? 40 : (n<1669) ? 80 : 139 );
  if (hi > num_small_primes) hi = num_small_primes;
  while (lo < hi) {
    UV mid = lo + (hi-lo)/2;
    if (small_primes[mid] <= n) lo = mid+1;
    else                        hi = mid;
  }
  return lo;   /* Because 2 is stored at location 0 */
}
#endif

void prime_iterator_setprime(prime_iterator *iter, UV n) {
  /* Is it inside the current segment? */
  if (    (iter->segment_mem != 0)
       && (n >= iter->segment_start)
       && (n <= iter->segment_start + 30*iter->segment_bytes - 1) ) {
    iter->p = n;
    return;
  }
  prime_iterator_destroy(iter);
#ifdef NSMALL_PRIMES
  /* In small area? */
  if (n < NSMALL_PRIMES) {
    UV pc = pcount(n);
    iter->segment_start = pc-1;
    iter->p = (pc == 0)  ?  2  :  small_primes[pc-1];
  } else
#endif
  if (n <= primary_limit) { /* Is it inside the primary cache range? */
    iter->p = n;
  } else { /* Sieve this range */
    UV lod, hid;
    lod = n/30;
    hid = lod + SEGMENT_SIZE;
    New(0, iter->segment_mem, SEGMENT_SIZE, unsigned char );
    iter->segment_start = lod * 30;
    iter->segment_bytes = SEGMENT_SIZE;
    if (!sieve_segment((unsigned char*)iter->segment_mem, lod, hid, primary_sieve, primary_limit))
      croak("Could not segment sieve");
    iter->p = n;
  }
}

UV prime_iterator_next(prime_iterator *iter)
{
  UV lod, hid, seg_beg, seg_end;
  const unsigned char* sieve;
  UV n = iter->p;

#ifdef NSMALL_PRIMES
  if (n < NSMALL_PRIMES) {
    iter->p = small_primes[++iter->segment_start];
    return iter->p;
  }
#else
  if (n < 11) {
    switch (n) {
      case 0: case 1:  iter->p =  2; break;
      case 2:          iter->p =  3; break;
      case 3: case 4:  iter->p =  5; break;
      case 5: case 6:  iter->p =  7; break;
      default:         iter->p = 11; break;
    }
    return iter->p;
  }
#endif

  /* Primary sieve */
  if (primary_sieve != 0 && n < 30*PRIMARY_SIZE) {
    n = next_prime_in_segment(primary_sieve, 0, PRIMARY_SIZE, iter->p);
    if (n > 0) {
      iter->p = n;
      return n;
    }
  }

  sieve = iter->segment_mem;
  /* Current segment */
  if (sieve != 0) {
    seg_beg = iter->segment_start;
    seg_end = iter->segment_start + 30*iter->segment_bytes - 1;
    n = next_prime_in_segment(sieve, seg_beg, iter->segment_bytes, iter->p);
    if (n > 0) {
      iter->p = n;
      return n;
    }
    /* Not found in this segment */
    lod = (seg_end+1)/30;
  } else {
    lod = PRIMARY_SIZE;
    New(0, sieve, SEGMENT_SIZE, unsigned char );
  }

  hid = lod + SEGMENT_SIZE - 1;
  iter->segment_start = lod * 30;
  iter->segment_bytes = SEGMENT_SIZE;
  seg_beg = iter->segment_start;
  seg_end = iter->segment_start + 30*iter->segment_bytes - 1;

  if (!sieve_segment((unsigned char*)sieve, lod, hid, primary_sieve, primary_limit))
    croak("Could not segment sieve from %"UVuf" to %"UVuf, seg_beg, seg_end);
  iter->segment_mem = sieve;

  n = next_prime_in_segment(sieve, seg_beg, iter->segment_bytes, seg_beg);
  if (n > 0) {
    iter->p = n;
    return n;
  }
  croak("MPU: segment size too small, could not find prime\n");
}

static int _is_trial_prime(UV n)
{
  UV i = 7;
  UV limit = (UV)sqrt(n);
  while (1) {   /* trial division, skipping multiples of 2/3/5 */
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 4;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 2;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 4;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 2;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 4;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 6;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 2;
    if (i > limit) break;  if ((n % i) == 0) return 0;  i += 6;
  }
  return 1;
}

int prime_iterator_isprime(prime_iterator *iter, UV n)
{
  if (n < 11) {
    switch (n) {
      case 2: case 3: case 5: case 7:  return 1;  break;
      default: break;
    }
    return 0;
  }

  /* Primary sieve */
  if (primary_sieve != 0 && n <= primary_limit) {
    UV d = n/30;
    UV m = n - d*30;
    unsigned char mtab = masktab30[m];
    return mtab && !(primary_sieve[d] & mtab);
  }

  /* Current segment */
  if (iter->segment_mem != 0) {
    int isp = is_prime_in_segment(iter->segment_mem, iter->segment_start, iter->segment_bytes, n);
    if (isp >= 0) return isp;
  }

  /* Out of segment range, can't answer.  Try simple divisibility */
  {
    UV d = n/30;
    UV m = n - d*30;
    unsigned char mtab = masktab30[m];
    if (mtab == 0)  return 0;
    return _is_trial_prime(n);
  }
}

UV* sieve_to_n(UV n, UV* count)
{
  UV pi_max, max_buf, i, p, pi;
  const unsigned char* sieve;
  UV* primes;

#ifdef NSMALL_PRIMES
  if (small_primes != 0 && n < NSMALL_PRIMES) {
    pi = pcount(n);
    New(0, primes, pi, UV);
    for (i = 0; i < pi; i++)  primes[i] = small_primes[i];
    if (count != 0) *count = pi;
    return primes;
  }
#endif

  pi_max = (n < 67)     ? 18
           : (n < 355991) ? 15+(n/(log(n)-1.09))
           : (n/log(n)) * (1.0+1.0/log(n)+2.51/(log(n)*log(n)));
  New(0, primes, pi_max + 10, UV);

  pi = 0;
  primes[pi++] =  2; primes[pi++] =  3; primes[pi++] =  5; primes[pi++] =  7;
  primes[pi++] = 11; primes[pi++] = 13; primes[pi++] = 17; primes[pi++] = 19;
  primes[pi++] = 23; primes[pi++] = 29;

  if (primary_sieve != 0 && n < 30*PRIMARY_SIZE)
    sieve = primary_sieve;
  else
    sieve = sieve_erat30(n);
  max_buf = (n/30) + ((n%30) != 0);
  for (i = 1, p = 30;   i < max_buf;   i++, p += 30) {
    UV c = sieve[i];
    if (!(c &   1)) primes[pi++] = p+ 1;
    if (!(c &   2)) primes[pi++] = p+ 7;
    if (!(c &   4)) primes[pi++] = p+11;
    if (!(c &   8)) primes[pi++] = p+13;
    if (!(c &  16)) primes[pi++] = p+17;
    if (!(c &  32)) primes[pi++] = p+19;
    if (!(c &  64)) primes[pi++] = p+23;
    if (!(c & 128)) primes[pi++] = p+29;
  }
  while (pi > 0 && primes[pi-1] > n) pi--;
  if (sieve != primary_sieve) Safefree(sieve);
  if (count != 0) *count = pi;
  return primes;
}