1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "ptypes.h"
#include "prime_iterator.h"
/* Add this to a number and you'll ensure you're on a wheel location */
static const unsigned char distancewheel30[30] =
{1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0};
/* The bit mask within a byte */
static const unsigned char masktab30[30] = {
0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 8, 0,
0, 0, 16, 0, 32, 0, 0, 0, 64, 0, 0, 0, 0, 0,128 };
static const unsigned char nextwheel30[30] = {
1, 7, 7, 7, 7, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17,
17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 1 };
static const unsigned char prevwheel30[30] = {
29, 29, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 11, 11, 13,
13, 13, 13, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23 };
static INLINE UV next_prime_in_segment( const unsigned char* sieve, UV segment_start, UV segment_bytes, UV p)
{
UV d, m;
if (p < segment_start) return 0;
d = (p-segment_start)/30;
if (d >= segment_bytes) return 0;
m = (p-segment_start) - d*30;
do {
if (m==29) {
d++; m = 1;
if (d >= segment_bytes) return 0;
} else {
m = nextwheel30[m];
}
} while (sieve[d] & masktab30[m]);
return (segment_start + d*30 + m);
}
static INLINE int is_prime_in_segment( const unsigned char* sieve, UV segment_start, UV segment_bytes, UV p)
{
UV d, m, mtab;
if (p < segment_start) return -1;
d = (p-segment_start)/30;
if (d >= segment_bytes) return -1;
m = (p-segment_start) - d*30;
mtab = masktab30[m];
if (mtab == 0) return 0;
return ((sieve[d] & mtab) == 0);
}
#define next_prime_in_sieve(sieve, p) next_prime_in_segment(sieve, 0, UV_MAX, p)
/* 1001 bytes of presieved mod-30 bytes. If the area to be sieved is
* appropriately filled with this data, then 7, 11, and 13 do not have
* to be sieved. It wraps, so multiple memcpy's can be used. Do be
* aware that if you start at 0, you'll have to correct the first byte.
*/
#define PRESIEVE_SIZE (7*11*13)
static const unsigned char presieve13[PRESIEVE_SIZE] =
{ 0x0e,0x20,0x10,0x81,0x49,0x24,0xc2,0x06,0x2a,0x90,0xa1,0x0c,0x14,
0x58,0x02,0x61,0x11,0xc3,0x28,0x0c,0x44,0x22,0xa4,0x10,0x91,0x18,
0x4d,0x40,0x82,0x21,0x58,0xa1,0x28,0x04,0x42,0x92,0x20,0x51,0x91,
0x8a,0x04,0x48,0x03,0x60,0x34,0x81,0x1c,0x06,0xc1,0x02,0xa2,0x10,
0x89,0x08,0x24,0x45,0x42,0x30,0x10,0xc5,0x0a,0x86,0x40,0x0a,0x30,
0x38,0x85,0x08,0x15,0x40,0x63,0x20,0x96,0x83,0x88,0x04,0x60,0x16,
0x28,0x10,0x81,0x49,0x44,0xe2,0x02,0x2c,0x12,0xa1,0x0c,0x04,0x50,
0x0a,0x61,0x10,0x83,0x48,0x2c,0x40,0x26,0x26,0x90,0x91,0x08,0x55,
0x48,0x82,0x20,0x19,0xc1,0x28,0x04,0x44,0x12,0xa0,0x51,0x81,0x9a,
0x0c,0x48,0x02,0x21,0x54,0xa1,0x18,0x04,0x43,0x82,0xa2,0x10,0x99,
0x08,0x24,0x44,0x03,0x70,0x30,0xc1,0x0c,0x86,0xc0,0x0a,0x20,0x30,
0x8d,0x08,0x14,0x41,0x43,0x20,0x92,0x85,0x0a,0x84,0x60,0x06,0x30,
0x18,0x81,0x49,0x05,0xc2,0x22,0x28,0x14,0xa3,0x8c,0x04,0x50,0x12,
0x69,0x10,0x83,0x09,0x4c,0x60,0x22,0x24,0x12,0x91,0x08,0x45,0x50,
0x8a,0x20,0x18,0x81,0x68,0x24,0x40,0x16,0x22,0xd1,0x81,0x8a,0x14,
0x48,0x02,0x20,0x15,0xc1,0x38,0x04,0x45,0x02,0xa2,0x10,0x89,0x18,
0x2c,0x44,0x02,0x31,0x50,0xe1,0x08,0x86,0x42,0x8a,0x20,0x30,0x95,
0x08,0x14,0x40,0x43,0x60,0xb2,0x81,0x0c,0x06,0xe0,0x06,0x20,0x10,
0x89,0x49,0x04,0xc3,0x42,0x28,0x10,0xa5,0x0e,0x84,0x50,0x02,0x71,
0x18,0x83,0x08,0x0d,0x40,0x22,0x24,0x14,0x93,0x88,0x45,0x40,0x92,
0x28,0x18,0x81,0x29,0x44,0x60,0x12,0x24,0x53,0x81,0x8a,0x04,0x58,
0x0a,0x20,0x14,0x81,0x58,0x24,0x41,0x06,0xa2,0x90,0x89,0x08,0x34,
0x4c,0x02,0x30,0x11,0xc1,0x28,0x86,0x44,0x0a,0xa0,0x30,0x85,0x18,
0x1c,0x40,0x43,0x21,0xd2,0xa1,0x08,0x04,0x62,0x86,0x20,0x10,0x91,
0x49,0x04,0xc2,0x03,0x68,0x30,0xa1,0x0c,0x06,0xd0,0x02,0x61,0x10,
0x8b,0x08,0x0c,0x41,0x62,0x24,0x10,0x95,0x0a,0xc5,0x40,0x82,0x30,
0x18,0x81,0x28,0x05,0x40,0x32,0x20,0x55,0x83,0x8a,0x04,0x48,0x12,
0x28,0x14,0x81,0x19,0x44,0x61,0x02,0xa6,0x12,0x89,0x08,0x24,0x54,
0x0a,0x30,0x10,0xc1,0x48,0xa6,0x40,0x0e,0x22,0xb0,0x85,0x08,0x14,
0x48,0x43,0x20,0x93,0xc1,0x28,0x04,0x64,0x06,0xa0,0x10,0x81,0x59,
0x0c,0xc2,0x02,0x29,0x50,0xa1,0x0c,0x04,0x52,0x82,0x61,0x10,0x93,
0x08,0x0c,0x40,0x23,0x64,0x30,0x91,0x0c,0x47,0xc0,0x82,0x20,0x18,
0x89,0x28,0x04,0x41,0x52,0x20,0x51,0x85,0x8a,0x84,0x48,0x02,0x30,
0x1c,0x81,0x18,0x05,0x41,0x22,0xa2,0x14,0x8b,0x88,0x24,0x44,0x12,
0x38,0x10,0xc1,0x09,0xc6,0x60,0x0a,0x24,0x32,0x85,0x08,0x14,0x50,
0x4b,0x20,0x92,0x81,0x48,0x24,0x60,0x06,0x22,0x90,0x81,0x49,0x14,
0xca,0x02,0x28,0x11,0xe1,0x2c,0x04,0x54,0x02,0xe1,0x10,0x83,0x18,
0x0c,0x40,0x22,0x25,0x50,0xb1,0x08,0x45,0x42,0x82,0x20,0x18,0x91,
0x28,0x04,0x40,0x13,0x60,0x71,0x81,0x8e,0x06,0xc8,0x02,0x20,0x14,
0x89,0x18,0x04,0x41,0x42,0xa2,0x10,0x8d,0x0a,0xa4,0x44,0x02,0x30,
0x18,0xc1,0x08,0x87,0x40,0x2a,0x20,0x34,0x87,0x88,0x14,0x40,0x53,
0x28,0x92,0x81,0x09,0x44,0x60,0x06,0x24,0x12,0x81,0x49,0x04,0xd2,
0x0a,0x28,0x10,0xa1,0x4c,0x24,0x50,0x06,0x63,0x90,0x83,0x08,0x1c,
0x48,0x22,0x24,0x11,0xd1,0x28,0x45,0x44,0x82,0xa0,0x18,0x81,0x38,
0x0c,0x40,0x12,0x21,0x51,0xa1,0x8a,0x04,0x4a,0x82,0x20,0x14,0x91,
0x18,0x04,0x41,0x03,0xe2,0x30,0x89,0x0c,0x26,0xc4,0x02,0x30,0x10,
0xc9,0x08,0x86,0x41,0x4a,0x20,0x30,0x85,0x0a,0x94,0x40,0x43,0x30,
0x9a,0x81,0x08,0x05,0x60,0x26,0x20,0x14,0x83,0xc9,0x04,0xc2,0x12,
0x28,0x10,0xa1,0x0d,0x44,0x70,0x02,0x65,0x12,0x83,0x08,0x0c,0x50,
0x2a,0x24,0x10,0x91,0x48,0x65,0x40,0x86,0x22,0x98,0x81,0x28,0x14,
0x48,0x12,0x20,0x51,0xc1,0xaa,0x04,0x4c,0x02,0xa0,0x14,0x81,0x18,
0x0c,0x41,0x02,0xa3,0x50,0xa9,0x08,0x24,0x46,0x82,0x30,0x10,0xd1,
0x08,0x86,0x40,0x0b,0x60,0x30,0x85,0x0c,0x16,0xc0,0x43,0x20,0x92,
0x89,0x08,0x04,0x61,0x46,0x20,0x10,0x85,0x4b,0x84,0xc2,0x02,0x38,
0x18,0xa1,0x0c,0x05,0x50,0x22,0x61,0x14,0x83,0x88,0x0c,0x40,0x32,
0x2c,0x10,0x91,0x09,0x45,0x60,0x82,0x24,0x1a,0x81,0x28,0x04,0x50,
0x1a,0x20,0x51,0x81,0xca,0x24,0x48,0x06,0x22,0x94,0x81,0x18,0x14,
0x49,0x02,0xa2,0x11,0xc9,0x28,0x24,0x44,0x02,0xb0,0x10,0xc1,0x18,
0x8e,0x40,0x0a,0x21,0x70,0xa5,0x08,0x14,0x42,0xc3,0x20,0x92,0x91,
0x08,0x04,0x60,0x07,0x60,0x30,0x81,0x4d,0x06,0xc2,0x02,0x28,0x10,
0xa9,0x0c,0x04,0x51,0x42,0x61,0x10,0x87,0x0a,0x8c,0x40,0x22,0x34,
0x18,0x91,0x08,0x45,0x40,0xa2,0x20,0x1c,0x83,0xa8,0x04,0x40,0x12,
0x28,0x51,0x81,0x8b,0x44,0x68,0x02,0x24,0x16,0x81,0x18,0x04,0x51,
0x0a,0xa2,0x10,0x89,0x48,0x24,0x44,0x06,0x32,0x90,0xc1,0x08,0x96,
0x48,0x0a,0x20,0x31,0xc5,0x28,0x14,0x44,0x43,0xa0,0x92,0x81,0x18,
0x0c,0x60,0x06,0x21,0x50,0xa1,0x49,0x04,0xc2,0x82,0x28,0x10,0xb1,
0x0c,0x04,0x50,0x03,0x61,0x30,0x83,0x0c,0x0e,0xc0,0x22,0x24,0x10,
0x99,0x08,0x45,0x41,0xc2,0x20,0x18,0x85,0x2a,0x84,0x40,0x12,0x30,
0x59,0x81,0x8a,0x05,0x48,0x22,0x20,0x14,0x83,0x98,0x04,0x41,0x12,
0xaa,0x10,0x89,0x09,0x64,0x64,0x02,0x34,0x12,0xc1,0x08,0x86,0x50,
0x0a,0x20,0x30,0x85,0x48,0x34,0x40,0x47,0x22,0x92,0x81,0x08,0x14,
0x68,0x06,0x20,0x11,0xc1,0x69,0x04,0xc6,0x02,0xa8,0x10,0xa1,0x1c,
0x0c,0x50,0x02,0x61,0x50,0xa3,0x08,0x0c,0x42,0xa2,0x24,0x10,0x91,
0x08,0x45,0x40,0x83,0x60,0x38,0x81,0x2c,0x06,0xc0,0x12,0x20,0x51,
0x89,0x8a,0x04,0x49,0x42,0x20,0x14,0x85,0x1a,0x84,0x41,0x02,0xb2,
0x18,0x89,0x08,0x25,0x44,0x22,0x30,0x14,0xc3,0x88,0x86,0x40,0x1a,
0x28,0x30,0x85,0x09,0x54,0x60,0x43,0x24,0x92,0x81,0x08,0x04,0x70};
#define FIND_COMPOSITE_POS(i,j) \
{ \
UV dlast = d; \
do { \
d += dinc; \
m += minc; \
if (m >= 30) { d++; m -= 30; } \
} while ( masktab30[m] == 0 ); \
wdinc[i] = d - dlast; \
wmask[j] = masktab30[m]; \
}
#define FIND_COMPOSITE_POSITIONS(p) \
do { \
FIND_COMPOSITE_POS(0,1) \
FIND_COMPOSITE_POS(1,2) \
FIND_COMPOSITE_POS(2,3) \
FIND_COMPOSITE_POS(3,4) \
FIND_COMPOSITE_POS(4,5) \
FIND_COMPOSITE_POS(5,6) \
FIND_COMPOSITE_POS(6,7) \
FIND_COMPOSITE_POS(7,0) \
d -= p; \
} while (0)
static void sieve_prefill(unsigned char* mem, UV startd, UV endd)
{
UV nbytes = endd - startd + 1;
MPUassert( (mem != 0) && (endd >= startd), "sieve_prefill bad arguments");
/* Walk the memory, tiling in the presieve area using memcpy.
* This is pretty fast, but it might still benefit from using copy
* doubling (where we copy to the memory, then copy memory to memory
* doubling in size each time), as memcpy usually loves big chunks.
*/
while (startd <= endd) {
UV pstartd = startd % PRESIEVE_SIZE;
UV sieve_bytes = PRESIEVE_SIZE - pstartd;
UV bytes = (nbytes > sieve_bytes) ? sieve_bytes : nbytes;
memcpy(mem, presieve13 + pstartd, bytes);
if (startd == 0) mem[0] = 0x01; /* Correct first byte */
startd += bytes;
mem += bytes;
nbytes -= bytes;
}
}
/* Wheel 30 sieve. Ideas from Terje Mathisen and Quesada / Van Pelt. */
static unsigned char* sieve_erat30(UV end)
{
unsigned char* mem;
UV max_buf, limit;
UV prime;
max_buf = (end/30) + ((end%30) != 0);
/* Round up to a word */
max_buf = ((max_buf + sizeof(UV) - 1) / sizeof(UV)) * sizeof(UV);
New(0, mem, max_buf, unsigned char );
if (mem == 0) {
croak("allocation failure in sieve_erat30: could not alloc %"UVuf" bytes", max_buf);
return 0;
}
/* Fill buffer with marked 7, 11, and 13 */
sieve_prefill(mem, 0, max_buf-1);
limit = sqrt((double) end); /* prime*prime can overflow */
for (prime = 17; prime <= limit; prime = next_prime_in_sieve(mem,prime)) {
UV d = (prime*prime)/30;
UV m = (prime*prime) - d*30;
UV dinc = (2*prime)/30;
UV minc = (2*prime) - dinc*30;
UV wdinc[8];
unsigned char wmask[8];
/* Find the positions of the next composites we will mark */
FIND_COMPOSITE_POSITIONS(prime);
/* Mark the composites (unrolled) */
while (1) {
mem[d] |= wmask[0]; d += wdinc[0]; if (d >= max_buf) break;
mem[d] |= wmask[1]; d += wdinc[1]; if (d >= max_buf) break;
mem[d] |= wmask[2]; d += wdinc[2]; if (d >= max_buf) break;
mem[d] |= wmask[3]; d += wdinc[3]; if (d >= max_buf) break;
mem[d] |= wmask[4]; d += wdinc[4]; if (d >= max_buf) break;
mem[d] |= wmask[5]; d += wdinc[5]; if (d >= max_buf) break;
mem[d] |= wmask[6]; d += wdinc[6]; if (d >= max_buf) break;
mem[d] |= wmask[7]; d += wdinc[7]; if (d >= max_buf) break;
}
}
return mem;
}
static int sieve_segment(unsigned char* mem, UV startd, UV endd,
const unsigned char* prim_sieve, UV prim_limit)
{
const unsigned char* sieve;
UV limit, p;
UV startp = 30*startd;
UV endp = (endd >= (UV_MAX/30)) ? UV_MAX-2 : 30*endd+29;
MPUassert( (mem != 0) && (endd >= startd) && (endp >= startp),
"sieve_segment bad arguments");
/* Fill buffer with marked 7, 11, and 13 */
sieve_prefill(mem, startd, endd);
limit = sqrt((double) endp);
if (limit*limit < endp) limit++; /* ceil(sqrt(endp)) */
/* printf("segment sieve from %"UVuf" to %"UVuf" (aux sieve to %"UVuf")\n", startp, endp, limit); */
if ( (prim_sieve != 0) && (limit <= prim_limit) ) {
sieve = prim_sieve;
} else {
sieve = sieve_erat30(limit);
}
MPUassert( sieve != 0, "Could not generate base sieve" );
for (p = 17; p <= limit; p = next_prime_in_sieve(sieve,p))
{
/* p increments from 17 to at least sqrt(endp) */
UV p2 = p*p; /* TODO: overflow */
if (p2 > endp) break;
/* Find first multiple of p greater than p*p and larger than startp */
if (p2 < startp) {
p2 = (startp / p) * p;
if (p2 < startp) p2 += p;
}
/* Bump to next multiple that isn't divisible by 2, 3, or 5 */
while (masktab30[p2%30] == 0) { p2 += p; }
/* It is possible we've overflowed p2, so check for that */
if ( (p2 <= endp) && (p2 >= startp) ) {
/* Sieve from startd to endd starting at p2, stepping p */
UV d = (p2)/30;
UV m = (p2) - d*30;
UV dinc = (2*p)/30;
UV minc = (2*p) - dinc*30;
UV wdinc[8];
unsigned char wmask[8];
UV offset_endd = endd - startd;
/* Find the positions of the next composites we will mark */
FIND_COMPOSITE_POSITIONS(p);
d -= startd;
/* Mark composites (unrolled) */
while ( (d+p) <= offset_endd ) {
mem[d] |= wmask[0]; d += wdinc[0];
mem[d] |= wmask[1]; d += wdinc[1];
mem[d] |= wmask[2]; d += wdinc[2];
mem[d] |= wmask[3]; d += wdinc[3];
mem[d] |= wmask[4]; d += wdinc[4];
mem[d] |= wmask[5]; d += wdinc[5];
mem[d] |= wmask[6]; d += wdinc[6];
mem[d] |= wmask[7]; d += wdinc[7];
}
while (1) {
mem[d] |= wmask[0]; d += wdinc[0]; if (d > offset_endd) break;
mem[d] |= wmask[1]; d += wdinc[1]; if (d > offset_endd) break;
mem[d] |= wmask[2]; d += wdinc[2]; if (d > offset_endd) break;
mem[d] |= wmask[3]; d += wdinc[3]; if (d > offset_endd) break;
mem[d] |= wmask[4]; d += wdinc[4]; if (d > offset_endd) break;
mem[d] |= wmask[5]; d += wdinc[5]; if (d > offset_endd) break;
mem[d] |= wmask[6]; d += wdinc[6]; if (d > offset_endd) break;
mem[d] |= wmask[7]; d += wdinc[7]; if (d > offset_endd) break;
}
}
}
if (sieve != prim_sieve) Safefree(sieve);
return 1;
}
/*****************************************************************************/
/* Prime iterator */
/*****************************************************************************/
/* These sizes are a tradeoff. For better memory use I think 16k,4k is good.
* For performance, 32k,16k or 64k,16k is better. To avoid threading hell,
* this is just decided statically. At 24k,16k we handle 736800 numbers in
* the primary sieve and won't redo for segments until after 5*10^11. Each
* segment will store a range of 30*(16384-16) = 491040 numbers.
*/
#define PRIMARY_SIZE (32768-16)
#define SEGMENT_SIZE (24576-16)
#define NSMALL_PRIMES (83970-180)
static const unsigned char* primary_sieve = 0;
static const UV primary_limit = (30 * PRIMARY_SIZE)-1;
static const uint32_t* small_primes = 0;
static UV num_small_primes = 0;
void prime_iterator_global_startup(void)
{
primary_sieve = sieve_erat30(primary_limit);
#ifdef NSMALL_PRIMES
{
UV p;
uint32_t *primes32;
UV *primes64 = sieve_to_n(NSMALL_PRIMES + 180, &num_small_primes);
New(0, primes32, num_small_primes, uint32_t);
for (p = 0; p < num_small_primes; p++) primes32[p] = primes64[p];
Safefree(primes64);
small_primes = primes32;
}
#endif
}
void prime_iterator_global_shutdown(void)
{
if (primary_sieve != 0) Safefree(primary_sieve);
if (small_primes != 0) Safefree(small_primes);
primary_sieve = 0;
small_primes = 0;
}
#if 0
void prime_iterator_init(prime_iterator *iter)
{
iter->p = 2;
iter->segment_start = 0;
iter->segment_bytes = 0;
iter->segment_mem = 0;
}
prime_iterator prime_iterator_default(void)
{
prime_iterator iter = {2, 0, 0, 0};
return iter;
}
#endif
void prime_iterator_destroy(prime_iterator *iter)
{
if (iter->segment_mem != 0) Safefree(iter->segment_mem);
iter->segment_mem = 0;
iter->segment_start = 0;
iter->segment_bytes = 0;
iter->p = 0;
}
#ifdef NSMALL_PRIMES
static UV pcount(UV n)
{
UV lo = 0 + (n >> 4);
UV hi = (n >> 3) - (n >> 6) + ( (n<503) ? 40 : (n<1669) ? 80 : 139 );
if (hi > num_small_primes) hi = num_small_primes;
while (lo < hi) {
UV mid = lo + (hi-lo)/2;
if (small_primes[mid] <= n) lo = mid+1;
else hi = mid;
}
return lo; /* Because 2 is stored at location 0 */
}
#endif
void prime_iterator_setprime(prime_iterator *iter, UV n) {
/* Is it inside the current segment? */
if ( (iter->segment_mem != 0)
&& (n >= iter->segment_start)
&& (n <= iter->segment_start + 30*iter->segment_bytes - 1) ) {
iter->p = n;
return;
}
prime_iterator_destroy(iter);
#ifdef NSMALL_PRIMES
/* In small area? */
if (n < NSMALL_PRIMES) {
UV pc = pcount(n);
iter->segment_start = pc-1;
iter->p = (pc == 0) ? 2 : small_primes[pc-1];
} else
#endif
if (n <= primary_limit) { /* Is it inside the primary cache range? */
iter->p = n;
} else { /* Sieve this range */
UV lod, hid;
lod = n/30;
hid = lod + SEGMENT_SIZE;
New(0, iter->segment_mem, SEGMENT_SIZE, unsigned char );
iter->segment_start = lod * 30;
iter->segment_bytes = SEGMENT_SIZE;
if (!sieve_segment((unsigned char*)iter->segment_mem, lod, hid, primary_sieve, primary_limit))
croak("Could not segment sieve");
iter->p = n;
}
}
UV prime_iterator_next(prime_iterator *iter)
{
UV lod, hid, seg_beg, seg_end;
const unsigned char* sieve;
UV n = iter->p;
#ifdef NSMALL_PRIMES
if (n < NSMALL_PRIMES) {
iter->p = small_primes[++iter->segment_start];
return iter->p;
}
#else
if (n < 11) {
switch (n) {
case 0: case 1: iter->p = 2; break;
case 2: iter->p = 3; break;
case 3: case 4: iter->p = 5; break;
case 5: case 6: iter->p = 7; break;
default: iter->p = 11; break;
}
return iter->p;
}
#endif
/* Primary sieve */
if (primary_sieve != 0 && n < 30*PRIMARY_SIZE) {
n = next_prime_in_segment(primary_sieve, 0, PRIMARY_SIZE, iter->p);
if (n > 0) {
iter->p = n;
return n;
}
}
sieve = iter->segment_mem;
/* Current segment */
if (sieve != 0) {
seg_beg = iter->segment_start;
seg_end = iter->segment_start + 30*iter->segment_bytes - 1;
n = next_prime_in_segment(sieve, seg_beg, iter->segment_bytes, iter->p);
if (n > 0) {
iter->p = n;
return n;
}
/* Not found in this segment */
lod = (seg_end+1)/30;
} else {
lod = PRIMARY_SIZE;
New(0, sieve, SEGMENT_SIZE, unsigned char );
}
hid = lod + SEGMENT_SIZE - 1;
iter->segment_start = lod * 30;
iter->segment_bytes = SEGMENT_SIZE;
seg_beg = iter->segment_start;
seg_end = iter->segment_start + 30*iter->segment_bytes - 1;
if (!sieve_segment((unsigned char*)sieve, lod, hid, primary_sieve, primary_limit))
croak("Could not segment sieve from %"UVuf" to %"UVuf, seg_beg, seg_end);
iter->segment_mem = sieve;
n = next_prime_in_segment(sieve, seg_beg, iter->segment_bytes, seg_beg);
if (n > 0) {
iter->p = n;
return n;
}
croak("MPU: segment size too small, could not find prime\n");
}
static int _is_trial_prime(UV n)
{
UV i = 7;
UV limit = (UV)sqrt(n);
while (1) { /* trial division, skipping multiples of 2/3/5 */
if (i > limit) break; if ((n % i) == 0) return 0; i += 4;
if (i > limit) break; if ((n % i) == 0) return 0; i += 2;
if (i > limit) break; if ((n % i) == 0) return 0; i += 4;
if (i > limit) break; if ((n % i) == 0) return 0; i += 2;
if (i > limit) break; if ((n % i) == 0) return 0; i += 4;
if (i > limit) break; if ((n % i) == 0) return 0; i += 6;
if (i > limit) break; if ((n % i) == 0) return 0; i += 2;
if (i > limit) break; if ((n % i) == 0) return 0; i += 6;
}
return 1;
}
int prime_iterator_isprime(prime_iterator *iter, UV n)
{
if (n < 11) {
switch (n) {
case 2: case 3: case 5: case 7: return 1; break;
default: break;
}
return 0;
}
/* Primary sieve */
if (primary_sieve != 0 && n <= primary_limit) {
UV d = n/30;
UV m = n - d*30;
unsigned char mtab = masktab30[m];
return mtab && !(primary_sieve[d] & mtab);
}
/* Current segment */
if (iter->segment_mem != 0) {
int isp = is_prime_in_segment(iter->segment_mem, iter->segment_start, iter->segment_bytes, n);
if (isp >= 0) return isp;
}
/* Out of segment range, can't answer. Try simple divisibility */
{
UV d = n/30;
UV m = n - d*30;
unsigned char mtab = masktab30[m];
if (mtab == 0) return 0;
return _is_trial_prime(n);
}
}
UV* sieve_to_n(UV n, UV* count)
{
UV pi_max, max_buf, i, p, pi;
const unsigned char* sieve;
UV* primes;
#ifdef NSMALL_PRIMES
if (small_primes != 0 && n < NSMALL_PRIMES) {
pi = pcount(n);
New(0, primes, pi, UV);
for (i = 0; i < pi; i++) primes[i] = small_primes[i];
if (count != 0) *count = pi;
return primes;
}
#endif
pi_max = (n < 67) ? 18
: (n < 355991) ? 15+(n/(log(n)-1.09))
: (n/log(n)) * (1.0+1.0/log(n)+2.51/(log(n)*log(n)));
New(0, primes, pi_max + 10, UV);
pi = 0;
primes[pi++] = 2; primes[pi++] = 3; primes[pi++] = 5; primes[pi++] = 7;
primes[pi++] = 11; primes[pi++] = 13; primes[pi++] = 17; primes[pi++] = 19;
primes[pi++] = 23; primes[pi++] = 29;
if (primary_sieve != 0 && n < 30*PRIMARY_SIZE)
sieve = primary_sieve;
else
sieve = sieve_erat30(n);
max_buf = (n/30) + ((n%30) != 0);
for (i = 1, p = 30; i < max_buf; i++, p += 30) {
UV c = sieve[i];
if (!(c & 1)) primes[pi++] = p+ 1;
if (!(c & 2)) primes[pi++] = p+ 7;
if (!(c & 4)) primes[pi++] = p+11;
if (!(c & 8)) primes[pi++] = p+13;
if (!(c & 16)) primes[pi++] = p+17;
if (!(c & 32)) primes[pi++] = p+19;
if (!(c & 64)) primes[pi++] = p+23;
if (!(c & 128)) primes[pi++] = p+29;
}
while (pi > 0 && primes[pi-1] > n) pi--;
if (sieve != primary_sieve) Safefree(sieve);
if (count != 0) *count = pi;
return primes;
}
|