1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
|
/*============================================================================
Quadratic Sieve
This is derived from SIMPQS, copyright 2006 William Hart.
Modifications made in 2013 by Dana Jacobsen:
- returns all coprime factors found
- put it in one file
- merge some of the 2.0 changes
- make it work with smaller values
- fix some memory errors
- free memory all over
- fewer globals
- Use prime_iterator -- much faster than mpz_nextprime
- Alternate multiplier selection routine.
- lots of little changes / optimizations
Version 2.0 scatters temp files everywhere, but that could be solved.
The main benefits left in 2.0 are:
(1) combining partial relations (this is huge for large inputs)
(2) much less memory use, though partly due to using temp files
(3) jasonp's block Lanczos routine.
This code goes through curves slightly faster than v2.0, but with big
inputs it ends up needing 2x the time because of not combining partials
as well as the final linear algebra time.
============================================================================*/
/*============================================================================
SIMPQS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
SIMPQS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with SIMPQS; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
============================================================================*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <limits.h>
#include <math.h>
#include <gmp.h>
#ifdef STANDALONE_SIMPQS
typedef unsigned long UV;
typedef signed long IV;
#define INLINE
#define UV_MAX ULONG_MAX
#define UVCONST(x) ((unsigned long)x##UL)
#define croak(fmt,...) { printf(fmt,##__VA_ARGS__); exit(1); }
#define New(id, mem, size, type) mem = (type*) malloc((size)*sizeof(type))
#define Newz(id, mem, size, type) mem = (type*) calloc(size, sizeof(type))
#define Safefree(mem) free((void*)mem)
#define PRIME_ITERATOR(i) mpz_t i; mpz_init_set_ui(i, 2)
static UV prime_iterator_next(mpz_t *iter) { mpz_nextprime(*iter, *iter); return mpz_get_ui(*iter); }
static void prime_iterator_destroy(mpz_t *iter) { mpz_clear(*iter); }
static void prime_iterator_setprime(mpz_t *iter, UV n) {mpz_set_ui(*iter, n);}
/* static int prime_iterator_isprime(mpz_t *iter, UV n) {int isp; mpz_t t; mpz_init_set_ui(t, n); isp = mpz_probab_prime_p(t, 10); mpz_clear(t); return isp;} */
static int _verbose = 0;
static int get_verbose_level(void) { return _verbose; }
#else
#include "ptypes.h"
#include "simpqs.h"
#include "prime_iterator.h"
#endif
#include "utility.h"
/* DANAJ: Modify matrix code to do 64-bit-padded character arrays */
typedef unsigned char* row_t; /* row of an F2 matrix */
typedef row_t* matrix_t; /* matrix as a list of pointers to rows */
#define insertEntry(m, i, j) m[i][(j)/8] |= (1U << ((j)%8))
#define xorEntry(m, i, j) m[i][(j)/8] ^= (1U << ((j)%8))
#define getEntry(m, i, j) (m[i][(j)/8] & (1U << ((j)%8)))
#define swapRows(m, x, y) \
do { row_t temp = m[x]; m[x] = m[y]; m[y] = temp; } while (0)
#define matBytes(numcols) (((numcols+63)/64) * 8)
#define rightMatrixOffset(numcols) (8 * matBytes(numcols))
/* Clear just the left side */
static INLINE void clearRow(matrix_t m, unsigned int numcols, unsigned int row)
{
memset( m[row], 0, matBytes(numcols) );
}
/* bitwise xor of two rows, both left and right matrices */
static void xorRows(matrix_t m, unsigned int numcols, unsigned int source, unsigned int dest)
{
unsigned int i, q;
UV* x = (UV*) m[dest];
UV* y = (UV*) m[source];
size_t nwords = (2 * matBytes(numcols)) / sizeof(UV);
q = 8 * (nwords / 8);
for (i = 0; i < q; i += 8) {
x[i+0] ^= y[i+0]; x[i+1] ^= y[i+1]; x[i+2] ^= y[i+2]; x[i+3] ^= y[i+3];
x[i+4] ^= y[i+4]; x[i+5] ^= y[i+5]; x[i+6] ^= y[i+6]; x[i+7] ^= y[i+7];
}
for ( ; i < nwords; i++)
x[i] ^= y[i];
}
static matrix_t constructMat(unsigned int cols, unsigned int rows)
{
unsigned int i;
matrix_t m;
size_t nbytes = matBytes(cols);
unsigned int mat2offset = rightMatrixOffset(cols);
/* printf("construct mat %u %u (%lu bytes)\n", cols, rows, rows*sizeof(row) + rows*(2*nbytes)); */
/* If cols > rows, we write off the array */
if (cols < rows) croak("SIMPQS: cols %u > rows %u\n", cols, rows);
New(0, m, rows, row_t);
if (m == 0) croak("SIMPQS: Unable to allocate memory for matrix!\n");
for (i = 0; i < rows; i++) { /* two matrices, side by side */
Newz(0, m[i], 2*nbytes, unsigned char);
if (m[i] == 0) croak("SIMPQS: Unable to allocate memory for matrix!\n");
}
/* make second matrix identity, i.e. 1's along diagonal */
for (i = 0; i < rows; i++)
insertEntry(m, i, mat2offset + i);
return m;
}
static void destroyMat(matrix_t m, unsigned int rows)
{
unsigned int i;
for (i = 0; i < rows; i++)
Safefree(m[i]);
Safefree(m);
}
#if 0
static void displayRow(matrix_t m, unsigned int row, unsigned int numcols)
{
int j;
unsigned int mat2offset = rightMatrixOffset(numcols);
printf("[");
for (j = 0; j < numcols; j++)
printf("%c", getEntry(m,row,j) ? '1' : '0');
printf(" ");
for (j = 0; j < numcols; j++)
printf("%c", getEntry(m,row,mat2offset+j) ? '1' : '0');
printf("]\n");
}
#endif
/* gaussReduce: Apply Gaussian elimination to a matrix. */
static unsigned int gaussReduce(matrix_t m, unsigned int cols, unsigned int rows)
{
unsigned int rowUpto = 0;
unsigned int irow, checkRow;
int icol;
for (icol = cols-1; icol >= 0; icol--) {
irow = rowUpto;
while ( (irow < rows) && (getEntry(m,irow,icol) == 0) )
irow++;
if (irow < rows) {
swapRows(m,rowUpto,irow);
for (checkRow = rowUpto+1; checkRow < rows; checkRow++) {
if (getEntry(m,checkRow,icol) != 0)
xorRows(m, cols, rowUpto, checkRow);
}
rowUpto++;
}
}
return rowUpto;
}
/*===========================================================================*/
/* Uncomment these for various pieces of debugging information */
/* Shows the number of relations generated and curves used during sieving */
/* #define COUNT */
/* Shows the actual factorizations of the relations */
/* #define RELPRINT */
/* Error if relation should be divisible by a prime but isn't */
/* #define ERRORS */
/* Shows the polynomials being used by the sieve */
/* #define POLS */
/* Prints some details about the factors of the A coefficients of the polys */
/* #define ADETAILS */
/* Prints the size of the largest factorbase prime */
/* #define LARGESTP */
/* Prints the number of curves used and number of partial relations */
/* #define CURPARTS */
/* Report sieve size, multiplier and number of primes used */
/* #define REPORT */
#ifdef ERRORS
#define CHECK_EXPONENT(exponent,k) \
if (exponent==0) printf("Error with prime %u!\n", factorBase[k]);
#else
#define CHECK_EXPONENT(exponent,k)
#endif
#ifdef RELPRINT
#define PRINT_FB(exponent, k) \
do { if (exponent > 0) printf(" %u", factorBase[k]); \
if (exponent > 1) printf("^%d", exponent); } while (0)
#else
#define PRINT_FB(exponent, k)
#endif
/*===========================================================================*/
/* Architecture dependent fudge factors */
#if ULONG_MAX == 4294967295UL
#define SIEVEMASK 0xC0C0C0C0UL
#define SIEVEDIV 1
#elif ULONG_MAX == 18446744073709551615UL
#define SIEVEMASK 0xC0C0C0C0C0C0C0C0UL
#define SIEVEDIV 1
#else
#error Cannot determine ulong size
#endif
/* Should be a little less than the L1/L2 cache size and a multiple of 64000 */
#define CACHEBLOCKSIZE 64000
/* Make lower for slower machines */
#define SECONDPRIME 6000
/* Used for tweaking the bit size calculation for FB primes */
#define SIZE_FUDGE 0.15
/* Will not factor numbers with less than this number of decimal digits */
#define MINDIG 30
/*===========================================================================*/
/* Large prime cutoffs, in thousands */
static const unsigned int largeprimes[] =
{
100, 100, 125, 125, 150, 150, 175, 175, 200, 200, /* 30-39 */
250, 300, 370, 440, 510, 580, 650, 720, 790, 8600, /* 40-49 */
930, 1000, 1700, 2400, 3100, 3800, 4500, 5200, 5900, 6600, /* 50-59 */
7300, 8000, 8900, 10000, 11300, 12800, 14500, 16300, 18100, 20000, /* 60-69 */
22000, 24000, 27000, 32000, 39000, /* 70-74 */
53000, 65000, 75000, 87000, 100000, /* 75-79 */
114000, 130000, 150000, 172000, 195000, /* 80-84 */
220000, 250000, 300000, 350000, 400000, /* 85-89 */
450000, 500000 /* 90-91 */
};
/*===========================================================================*/
/* Number of primes to use in factor base */
static const unsigned int primesNo[] =
{
1500, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1600, 1600, /* 30-39 */
1600, 1600, 1600, 1700, 1750, 1800, 1900, 2000, 2050, 2100, /* 40-49 */
2150, 2200, 2250, 2300, 2400, 2500, 2600, 2700, 2800, 2900, /* 50-59 */
3000, 3150, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, /* 60-69 */
9500, 10000, 11500, 13000, 15000, /* 70-74 */
17000, 24000, 27000, 30000, 37000, /* 75-79 */
45000, 47000, 53000, 57000, 58000, /* 80-84 */
59000, 60000, 64000, 68000, 72000, /* 85-89 */
76000, 80000 /* 90-91 */
};
/*===========================================================================*/
/* First prime actually sieved for */
static const unsigned int firstPrimes[] =
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 30-39 */
3, 3, 3, 4, 6, 6, 7, 8, 9, 10, /* 40-49 */
11, 11, 11, 11, 11, 12, 12, 12, 12, 12, /* 50-59 */
14, 14, 14, 14, 14, 14, 14, 14, 15, 17, /* 60-69 */
19, 21, 22, 22, 23, /* 70-74 */
24, 25, 25, 26, 26, /* 75-79 */
27, 27, 27, 27, 28, /* 80-84 */
28, 28, 28, 29, 29, /* 85-89 */
29, 29 /* 90-91 */
};
/*===========================================================================*/
/* Logs of primes are rounded and errors accumulate
* This specifies how great an error to allow */
static const unsigned int errorAmounts[] =
{
10, 10, 10, 11, 13, 14, 14, 15, 15, 16, /* 30-39 */
16, 17, 17, 18, 18, 19, 19, 19, 20, 20, /* 40-49 */
21, 21, 21, 22, 22, 22, 23, 23, 23, 24, /* 50-59 */
24, 24, 25, 25, 25, 25, 26, 26, 26, 26, /* 60-69 */
27, 27, 28, 28, 29, /* 70-74 */
29, 30, 30, 30, 31, /* 75-79 */
31, 31, 31, 32, 32, /* 80-84 */
32, 32, 32, 33, 33, /* 85-89 */
33, 33 /* 90-91 */
};
/*===========================================================================*/
/* Threshold the sieve value must exceed to be considered for smoothness */
static const unsigned int thresholds[] =
{
63, 63, 63, 64, 64, 64, 65, 65, 65, 66, /* 30-39 */
66, 67, 67, 68, 68, 68, 69, 69, 69, 69, /* 40-49 */
70, 70, 70, 71, 71, 71, 72, 72, 73, 73, /* 50-59 */
74, 74, 75, 75, 76, 76, 77, 77, 78, 79, /* 60-69 */
80, 81, 82, 83, 84, /* 70-74 */
85, 86, 87, 88, 89, /* 75-79 */
91, 92, 93, 93, 94, /* 80-84 */
95, 96, 97, 98,100, /* 85-89 */
101, 102 /* 90-91 */
};
/*===========================================================================*/
/* Size of sieve to use divided by 2
* Optimal if chosen to be a multiple of 32000 */
static const unsigned int sieveSize[] =
{
64000,64000,64000,64000,64000,64000,64000,64000,64000,64000, /* 30-39 */
64000,64000,64000,64000,64000,64000,64000,64000,64000,64000, /* 40-49 */
64000,64000,64000,64000,64000,64000,64000,64000,64000,64000, /* 50-59 */
64000,64000,64000,64000,64000,64000,64000,64000,64000,64000, /* 60-69 */
64000, 64000, 64000, 64000, 64000, /* 70-74 */
96000, 96000, 96000, 128000, 128000, /* 75-79 */
160000, 160000, 160000, 160000, 160000, /* 80-84 */
192000, 192000, 192000, 192000, 192000, /* 85-89 */
192000, 192000 /* 90-91 */
};
/*===========================================================================*/
static unsigned int secondprime; /* cutoff for using flags when sieving */
static unsigned int firstprime; /* first prime actually sieved with */
static unsigned char errorbits; /* first prime actually sieved with */
static unsigned char threshold; /* sieve threshold cutoff for smth relations */
static unsigned int largeprime;
static unsigned int *factorBase; /* array of factor base primes */
static unsigned char * primeSizes; /* array of sizes in bits of fb primes */
#define RELATIONS_PER_PRIME 100
static INLINE void set_relation(unsigned long* rel, unsigned int prime, unsigned int nrel, unsigned long val)
{
if (nrel < RELATIONS_PER_PRIME)
rel[ prime*RELATIONS_PER_PRIME + nrel ] = val;
}
static INLINE unsigned long get_relation(unsigned long* rel, unsigned int prime, unsigned int nrel)
{
return rel[ prime*RELATIONS_PER_PRIME + nrel ];
}
/*=========================================================================
Knuth_Schroeppel Multiplier:
This is derived from Jason Papadopoulos's mpqs K-S method. I believe it
does a slightly better job than the K-S in FLINT 2.3, but that's debatable.
An alternative would be to implement the method directly from Silverman 1987.
==========================================================================*/
/* Multiplers should be small square-free numbers, i.e.
* do { say $_ if moebius($_) != 0 } for 1..100
* but SIMPQS doesn't deal well with composite multipliers. So, just primes.
*/
static const unsigned long multipliers[] = {
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97};
#define NUMMULTS (sizeof(multipliers)/sizeof(unsigned long))
#ifndef M_LN2
#define M_LN2 0.69314718055994530942
#endif
static unsigned long knuthSchroeppel(mpz_t n, unsigned long numPrimes)
{
unsigned int i, j, best_mult, knmod8;
unsigned int maxprimes = (2*numPrimes <= 1000) ? 2*numPrimes : 1000;
float best_score, contrib;
float scores[NUMMULTS];
mpz_t temp;
mpz_init(temp);
for (i = 0; i < NUMMULTS; i++) {
scores[i] = 0.5 * logf((float)multipliers[i]);
mpz_mul_ui(temp, n, multipliers[i]);
knmod8 = mpz_mod_ui(temp, temp, 8);
switch (knmod8) {
case 1: scores[i] -= 2 * M_LN2; break;
case 5: scores[i] -= M_LN2; break;
case 3:
case 7: scores[i] -= 0.5 * M_LN2; break;
default: break;
}
}
{
unsigned long prime, modp, knmodp;
PRIME_ITERATOR(iter);
for (i = 1; i < maxprimes; i++) {
prime = prime_iterator_next(&iter);
modp = mpz_mod_ui(temp, n, prime);
contrib = logf((float)prime) / (float)(prime-1);
for (j = 0; j < NUMMULTS; j++) {
knmodp = (modp * multipliers[j]) % prime;
if (knmodp == 0) {
scores[j] -= contrib;
} else {
mpz_set_ui(temp, knmodp);
if (mpz_kronecker_ui(temp, prime) == 1)
scores[j] -= 2*contrib;
}
}
}
prime_iterator_destroy(&iter);
}
mpz_clear(temp);
best_score = 1000.0;
best_mult = 1;
for (i = 0; i < NUMMULTS; i++) {
float score = scores[i];
if (score < best_score) {
best_score = score;
best_mult = multipliers[i];
}
}
/* gmp_printf("%Zd mult %lu\n", n, best_mult); */
return best_mult;
}
/*========================================================================
Initialize Quadratic Sieve:
Function: Initialises the global gmp variables.
========================================================================*/
static void initFactorBase(void)
{
factorBase = 0;
primeSizes = 0;
}
static void clearFactorBase(void)
{
if (factorBase) { Safefree(factorBase); factorBase = 0; }
if (primeSizes) { Safefree(primeSizes); primeSizes = 0; }
}
/*========================================================================
Compute Factor Base:
Function: Computes primes p up to B for which n is a square mod p,
allocates memory and stores them in an array pointed to by factorBase.
Additionally allocates and computes the primeSizes array.
Returns: number of primes actually in the factor base
========================================================================*/
static void computeFactorBase(mpz_t n, unsigned long B,unsigned long multiplier)
{
UV p;
UV primesinbase = 0;
PRIME_ITERATOR(iter);
if (factorBase) { Safefree(factorBase); factorBase = 0; }
New(0, factorBase, B, unsigned int);
factorBase[primesinbase++] = multiplier;
if (multiplier != 2)
factorBase[primesinbase++] = 2;
prime_iterator_setprime(&iter, 3);
for (p = 3; primesinbase < B; p = prime_iterator_next(&iter)) {
if (mpz_kronecker_ui(n, p) == 1)
factorBase[primesinbase++] = p;
}
prime_iterator_destroy(&iter);
#ifdef LARGESTP
gmp_printf("Largest prime less than %Zd\n",p);
#endif
/* Allocate and compute the number of bits required to store each prime */
New(0, primeSizes, B, unsigned char);
for (p = 0; p < B; p++)
primeSizes[p] =
(unsigned char) floor( log(factorBase[p]) / log(2.0) - SIZE_FUDGE + 0.5 );
}
/*===========================================================================
Tonelli-Shanks:
Function: Performs Tonelli-Shanks on n mod every prime in the factor base
===========================================================================*/
static void tonelliShanks(unsigned long numPrimes, mpz_t n, mpz_t * sqrts)
{
unsigned long i;
mpz_t fbprime, t1, t2, t3, t4;
mpz_init(fbprime);
mpz_init(t1); mpz_init(t2); mpz_init(t3); mpz_init(t4);
mpz_set_ui(sqrts[0], 0);
for (i = 1; i < numPrimes; i++) {
mpz_set_ui(fbprime, factorBase[i]);
sqrtmod(sqrts[i], n, fbprime, t1, t2, t3, t4);
}
mpz_clear(t1); mpz_clear(t2); mpz_clear(t3); mpz_clear(t4);
mpz_clear(fbprime);
}
/*==========================================================================
evaluateSieve:
Function: searches sieve for relations and sticks them into a matrix, then
sticks their X and Y values into two arrays XArr and YArr
===========================================================================*/
static void evaluateSieve(
unsigned long numPrimes,
unsigned long Mdiv2,
unsigned long * relations,
unsigned long ctimesreps,
unsigned long M,
unsigned char * sieve,
mpz_t A,
mpz_t B,
mpz_t C,
unsigned long * soln1,
unsigned long * soln2,
unsigned char * flags,
matrix_t m,
mpz_t * XArr,
unsigned long * aind,
int min,
int s,
int * exponents,
unsigned long * npartials,
unsigned long * nrelsfound,
unsigned long * nrelssought,
mpz_t temp,
mpz_t temp2,
mpz_t temp3,
mpz_t res)
{
long i,j,ii;
unsigned int k;
unsigned int exponent, vv;
unsigned char extra;
unsigned int modp;
unsigned long * sieve2;
unsigned char bits;
int numfactors;
unsigned long relsFound = *nrelsfound;
unsigned long relSought = *nrelssought;
mpz_set_ui(temp, 0);
mpz_set_ui(temp2, 0);
mpz_set_ui(temp3, 0);
mpz_set_ui(res, 0);
i = 0;
j = 0;
sieve2 = (unsigned long *) sieve;
#ifdef POLS
gmp_printf("%Zdx^2%+Zdx\n%+Zd\n",A,B,C);
#endif
while ( (unsigned long)j < M/sizeof(unsigned long))
{
do
{
while (!(sieve2[j] & SIEVEMASK)) j++;
i = j * sizeof(unsigned long);
j++;
while (((unsigned long)i < j*sizeof(unsigned long)) && (sieve[i] < threshold)) i++;
} while (sieve[i] < threshold);
if (((unsigned long)i<M) && (relsFound < relSought))
{
mpz_set_ui(temp,i+ctimesreps);
mpz_sub_ui(temp, temp, Mdiv2); /* X */
mpz_set(temp3, B); /* B */
mpz_addmul(temp3, A, temp); /* AX+B */
mpz_add(temp2, temp3, B); /* AX+2B */
mpz_mul(temp2, temp2, temp); /* AX^2+2BX */
mpz_add(res, temp2, C); /* AX^2+2BX+C */
bits = mpz_sizeinbase(res,2) - errorbits;
numfactors=0;
extra = 0;
memset(exponents, 0, firstprime * sizeof(int));
if (factorBase[0] != 1 && mpz_divisible_ui_p(res, factorBase[0]))
{
extra += primeSizes[0];
if (factorBase[0] == 2) {
exponent = mpz_scan1(res, 0);
mpz_tdiv_q_2exp(res, res, exponent);
} else {
mpz_set_ui(temp,factorBase[0]);
exponent = mpz_remove(res,res,temp);
}
exponents[0] = exponent;
}
exponents[1] = 0;
if (mpz_divisible_ui_p(res, factorBase[1]))
{
extra += primeSizes[1];
if (factorBase[1] == 2) {
exponent = mpz_scan1(res, 0);
mpz_tdiv_q_2exp(res, res, exponent);
} else {
mpz_set_ui(temp,factorBase[1]);
exponent = mpz_remove(res,res,temp);
}
exponents[1] = exponent;
}
for (k = 2; k < firstprime; k++)
{
modp=(i+ctimesreps)%factorBase[k];
exponents[k] = 0;
if (soln2[k] != (unsigned long)-1)
{
if ((modp==soln1[k]) || (modp==soln2[k]))
{
extra+=primeSizes[k];
mpz_set_ui(temp,factorBase[k]);
exponent = mpz_remove(res,res,temp);
CHECK_EXPONENT(exponent, k);
PRINT_FB(exponent, k);
exponents[k] = exponent;
}
} else if (mpz_divisible_ui_p(res, factorBase[k]))
{
extra += primeSizes[k];
mpz_set_ui(temp,factorBase[k]);
exponent = mpz_remove(res,res,temp);
PRINT_FB(exponent, k);
exponents[k] = exponent;
}
}
sieve[i]+=extra;
if (sieve[i] >= bits)
{
vv=((unsigned char)1<<(i&7));
for (k = firstprime; (k<secondprime)&&(extra<sieve[i]); k++)
{
modp=(i+ctimesreps)%factorBase[k];
if (soln2[k] != (unsigned long)-1)
{
if ((modp==soln1[k]) || (modp==soln2[k]))
{
extra+=primeSizes[k];
mpz_set_ui(temp,factorBase[k]);
exponent = mpz_remove(res,res,temp);
CHECK_EXPONENT(exponent, k);
PRINT_FB(exponent, k);
if (exponent)
for (ii = 0; ii < (long)exponent; ii++)
set_relation(relations, relsFound, ++numfactors, k);
if (exponent & 1)
insertEntry(m,relsFound,k);
}
} else if (mpz_divisible_ui_p(res, factorBase[k]))
{
extra += primeSizes[k];
mpz_set_ui(temp,factorBase[k]);
exponent = mpz_remove(res,res,temp);
PRINT_FB(exponent, k);
for (ii = 0; ii < (long)exponent; ii++)
set_relation(relations, relsFound, ++numfactors, k);
if (exponent & 1)
insertEntry(m,relsFound,k);
}
}
for (k = secondprime; (k<numPrimes)&&(extra<sieve[i]); k++)
{
if (flags[k]&vv)
{
modp=(i+ctimesreps)%factorBase[k];
if ((modp==soln1[k]) || (modp==soln2[k]))
{
extra+=primeSizes[k];
mpz_set_ui(temp,factorBase[k]);
exponent = mpz_remove(res,res,temp);
CHECK_EXPONENT(exponent, k);
PRINT_FB(exponent, k);
if (exponent)
for (ii = 0; ii < (long)exponent; ii++)
set_relation(relations, relsFound, ++numfactors, k);
if (exponent & 1)
insertEntry(m,relsFound,k);
}
}
}
for (ii =0; ii<s; ii++)
{
xorEntry(m,relsFound,aind[ii]+min);
set_relation(relations, relsFound, ++numfactors, aind[ii]+min);
}
if (mpz_cmp_ui(res,1000)>0)
{
if (mpz_cmp_ui(res,largeprime)<0)
{
(*npartials)++;
}
clearRow(m,numPrimes,relsFound);
#ifdef RELPRINT
gmp_printf(" %Zd\n",res);
#endif
} else
{
mpz_neg(res,res);
if (mpz_cmp_ui(res,1000)>0)
{
if (mpz_cmp_ui(res,largeprime)<0)
{
(*npartials)++;
}
clearRow(m,numPrimes,relsFound);
#ifdef RELPRINT
gmp_printf(" %Zd\n",res);
#endif
} else
{
#ifdef RELPRINT
printf("....R\n");
#endif
for (ii = 0; ii < (long)firstprime; ii++)
{
int jj;
for (jj = 0; jj < exponents[ii]; jj++)
set_relation(relations, relsFound, ++numfactors, ii);
if (exponents[ii] & 1)
insertEntry(m,relsFound,ii);
}
set_relation(relations, relsFound, 0, numfactors);
mpz_init_set(XArr[relsFound], temp3); /* (AX+B) */
relsFound++;
#ifdef COUNT
if (relsFound%20==0) fprintf(stderr,"%lu relations, %lu partials.\n", relsFound, *npartials);
#endif
}
}
} else
{
clearRow(m,numPrimes,relsFound);
#ifdef RELPRINT
printf("\r \r");
#endif
}
i++;
} else if (relsFound >= relSought) i++;
}
/* Update caller */
*nrelsfound = relsFound;
*nrelssought = relSought;
}
static void update_solns(unsigned long first, unsigned long limit, unsigned long * soln1, unsigned long * soln2, int polyadd, const unsigned long * polycorr)
{
unsigned int prime;
unsigned long p, correction;
for (prime = first; prime < limit; prime++) {
if (soln2[prime] == (unsigned long) -1) continue;
p = factorBase[prime];
correction = (polyadd) ? p - polycorr[prime] : polycorr[prime];
soln1[prime] += correction;
while (soln1[prime] >= p) soln1[prime] -= p;
soln2[prime] += correction;
while (soln2[prime] >= p) soln2[prime] -= p;
}
}
static void set_offsets(unsigned char * const sieve, const unsigned long * const soln1, const unsigned long * const soln2, unsigned char * * offsets1, unsigned char * * offsets2)
{
unsigned int prime;
for (prime = firstprime; prime < secondprime; prime++) {
if (soln2[prime] == (unsigned long) -1) {
offsets1[prime] = 0;
offsets2[prime] = 0;
} else {
offsets1[prime] = sieve+soln1[prime];
offsets2[prime] = sieve+soln2[prime];
}
}
}
/*=============================================================================
Sieve:
Function: Allocates space for a sieve of M integers and sieves the interval
starting at start
=============================================================================*/
static void sieveInterval(unsigned long M, unsigned char * sieve, int more, unsigned char * * offsets1, unsigned char * * offsets2)
{
unsigned int prime, p;
unsigned char size;
unsigned char * pos1;
unsigned char * pos2;
unsigned char * end = sieve + M;
unsigned char * bound;
ptrdiff_t diff;
for (prime = firstprime; prime < secondprime; prime++)
{
if (offsets1[prime] == 0) continue;
p = factorBase[prime];
size = primeSizes[prime];
pos1 = offsets1[prime];
pos2 = offsets2[prime];
diff = pos2 - pos1;
/* if pos1 < bound, then both *pos1 and *pos2 can be written to. */
bound = (diff >= 0) ? end-diff : end;
/* Write both values, unrolled 4 times. */
bound -= (4-1)*p;
while (pos1 < bound) {
pos1[0 ] += size; pos1[ diff] += size;
pos1[1*p] += size; pos1[1*p+diff] += size;
pos1[2*p] += size; pos1[2*p+diff] += size;
pos1[3*p] += size; pos1[3*p+diff] += size;
pos1 += 4*p;
}
bound += (4-1)*p;
/* Write both values */
while (pos1 < bound) {
pos1[0] += size; pos1[diff] += size; pos1 += p;
}
pos2 = pos1 + diff; /* Restore pos2 */
/* Finish writing to pos1 and pos2 */
while (pos1 < end) {
*pos1 += size; pos1 += p;
}
while (pos2 < end) {
*pos2 += size; pos2 += p;
}
if (more) {
offsets1[prime] = pos1;
offsets2[prime] = pos2;
}
}
}
/*===========================================================================
Sieve 2:
Function: Second sieve for larger primes
=========================================================================== */
static void sieve2(unsigned long M, unsigned long numPrimes, unsigned char * sieve, const unsigned long * soln1, const unsigned long * soln2, unsigned char * flags)
{
unsigned int prime;
unsigned char *end = sieve + M;
memset(flags, 0, numPrimes*sizeof(unsigned char));
for (prime = secondprime; prime < numPrimes; prime++)
{
unsigned int p = factorBase[prime];
unsigned char size = primeSizes[prime];
unsigned char* pos1 = sieve + soln1[prime];
unsigned char* pos2 = sieve + soln2[prime];
if (soln2[prime] == (unsigned long)-1 ) continue;
while (end - pos1 > 0)
{
flags[prime] |= ((unsigned char)1<<((pos1-sieve)&7));
*pos1 += size; pos1 += p;
}
while (end - pos2 > 0)
{
flags[prime] |= ((unsigned char)1<<((pos2-sieve)&7));
*pos2 += size; pos2 += p;
}
}
}
/*============================================================================
random:
Function: Generates a pseudo-random integer between 0 and n-1 inclusive
============================================================================*/
static unsigned long randval = 2994439072U;
static unsigned long silly_random(unsigned long upto)
{
randval = ((unsigned long)randval*1025416097U+286824428U)%(unsigned long)4294967291U;
return randval%upto;
}
/*============================================================================
danaj: added these routines to reduce the set of factors to co-primes.
It's not the most efficient solution, but it's trivial in time compared
to the loop it's in, much less the rest of the QS. It gives us a nice
set of factors back, which is much more useful than the essentially
random combinations we discover.
============================================================================*/
/* Verify that the factor reduction hasn't broken anything */
static void verify_factor_array(mpz_t n, mpz_t* farray, int nfacs)
{
int i, j;
mpz_t t;
mpz_init_set_ui(t, 1);
/* Assert we don't have duplicates */
for (i = 0; i < nfacs; i++) {
for (j = i+1; j < nfacs; j++) {
if (mpz_cmp(farray[i],farray[j]) == 0) { gmp_printf("duplicate: F[%d] = F[%d] = %Zd\n", i, j, farray[i]); croak("assert"); }
}
}
/* Assert that all factors multiply to n */
for (i = 0; i < nfacs; i++)
mpz_mul(t, t, farray[i]);
if (mpz_cmp(t, n) != 0) { gmp_printf("farray doesn't multiply: n=%Zd t=%Zd\n", n, t); croak("assert"); }
/* Assert that gcd of each non-identical factor is 1 */
for (i = 0; i < nfacs; i++) {
for (j = i+1; j < nfacs; j++) {
if (mpz_cmp(farray[i],farray[j]) != 0) {
mpz_gcd(t, farray[i], farray[j]);
if (mpz_cmp_ui(t, 1) != 0) { gmp_printf("gcd: farray[%d] = %Zd farray[%d] = %Zd\n", i, farray[i], j, farray[j]); croak("assert"); }
}
}
}
mpz_clear(t);
}
static int allprime_factor_array(mpz_t* farray, int nfacs)
{
int i;
for (i = 0; i < nfacs; i++) {
if (!mpz_probab_prime_p(farray[i], 5)) /* Be lazy */
return 0;
}
return 1;
}
static int insert_factor(mpz_t n, mpz_t* farray, int nfacs, mpz_t f)
{
int i, j;
mpz_t t, t2;
if (mpz_cmp_ui(f, 1) <= 0)
return nfacs;
/* skip duplicates */
for (i = 0; i < nfacs; i++)
if (mpz_cmp(farray[i], f) == 0)
break;
if (i != nfacs) { return nfacs; }
/* Look for common factors in all the existing set */
/* for (i = 0; i < nfacs; i++) gmp_printf(" F[%d] = %Zd\n", i, farray[i]); */
mpz_init(t); mpz_init(t2);
for (i = 0; i < nfacs; i++) {
mpz_gcd(t, farray[i], f);
if (mpz_cmp_ui(t, 1) == 0) /* t=1: F and f unchanged */
continue;
mpz_divexact(t2, farray[i], t); /* t2 = F/t */
mpz_divexact(f, f, t); /* f = f/t */
/* Remove the old farray[i] */
for (j = i+1; j < nfacs; j++)
mpz_set(farray[j-1], farray[j]);
mpz_set_ui(farray[nfacs--], 0);
/* Insert F/t, t, f/t */
nfacs = insert_factor(n, farray, nfacs, t2);
nfacs = insert_factor(n, farray, nfacs, t);
nfacs = insert_factor(n, farray, nfacs, f);
i=0;
break;
}
/* If nothing common, insert it. */
if (i == nfacs)
mpz_set(farray[nfacs++], f);
mpz_clear(t); mpz_clear(t2);
return nfacs;
}
/*============================================================================
mainRoutine:
Function: Generates the polynomials, initialises and calls the sieve,
implementing cache blocking (breaking the sieve interval into
small blocks for the small primes.
============================================================================*/
static int mainRoutine(
unsigned long numPrimes,
unsigned long Mdiv2,
unsigned long relSought,
mpz_t n,
mpz_t* farray,
unsigned long multiplier)
{
mpz_t A, B, C, D, Bdivp2, q, r, nsqrtdiv, temp, temp2, temp3, temp4;
int i, j, l, s, fact, span, min, nfactors, verbose;
unsigned long u1, p, reps, numRelations, M;
unsigned long curves = 0;
unsigned long npartials = 0;
unsigned long relsFound = 0;
unsigned long * relations;
unsigned short * primecount;
unsigned char * sieve;
int * exponents;
unsigned long * aind;
unsigned long * amodp;
unsigned long * Ainv;
unsigned long * soln1;
unsigned long * soln2;
unsigned char * flags;
unsigned long ** Ainv2B;
unsigned char ** offsets;
unsigned char ** offsets2;
mpz_t * XArr;
mpz_t * Bterms;
mpz_t * sqrts;
matrix_t m;
verbose = get_verbose_level();
s = mpz_sizeinbase(n,2)/28+1;
New( 0, exponents, firstprime, int );
Newz( 0, aind, s, unsigned long );
Newz( 0, amodp, s, unsigned long );
Newz( 0, Ainv, numPrimes, unsigned long );
Newz( 0, soln1, numPrimes, unsigned long );
Newz( 0, soln2, numPrimes, unsigned long );
Newz( 0, Ainv2B, s, unsigned long*);
Newz( 0, XArr, relSought, mpz_t );
New( 0, Bterms, s, mpz_t );
if (exponents == 0 || aind == 0 || amodp == 0 || Ainv == 0 ||
soln1 == 0 || soln2 == 0 || Ainv2B == 0 || Bterms == 0 ||
XArr == 0)
croak("SIMPQS: Unable to allocate memory!\n");
flags = 0;
if (secondprime < numPrimes) {
New(0, flags, numPrimes, unsigned char);
if (flags == 0) croak("SIMPQS: Unable to allocate memory!\n");
}
for (i=0; i<s; i++)
{
New(0, Ainv2B[i], numPrimes, unsigned long);
if (Ainv2B[i] == 0) croak("SIMPQS: Unable to allocate memory!\n");
mpz_init(Bterms[i]);
}
m = constructMat(numPrimes, relSought);
/* One extra word for sentinel */
Newz(0, sieve, Mdiv2*2 + sizeof(unsigned long), unsigned char);
New( 0, offsets, secondprime, unsigned char*);
New( 0, offsets2, secondprime, unsigned char*);
Newz(0, relations, relSought * RELATIONS_PER_PRIME, unsigned long);
if (sieve == 0 || offsets == 0 || offsets2 == 0 || relations == 0)
croak("SIMPQS: Unable to allocate memory!\n");
mpz_init(A); mpz_init(B); mpz_init(C); mpz_init(D);
mpz_init(Bdivp2); mpz_init(q); mpz_init(r); mpz_init(nsqrtdiv);
mpz_init(temp); mpz_init(temp2); mpz_init(temp3); mpz_init(temp4);
/* Compute sqrt(n) mod factorbase[i] */
New(0, sqrts, numPrimes, mpz_t);
if (sqrts == 0) croak("SIMPQS: Unable to allocate memory!\n");
for (p = 0; p < numPrimes; p++)
mpz_init(sqrts[p]);
tonelliShanks(numPrimes, n, sqrts);
/* Compute min A_prime and A_span */
mpz_mul_ui(temp,n,2);
mpz_sqrt(temp,temp);
mpz_div_ui(nsqrtdiv,temp,Mdiv2);
mpz_root(temp,nsqrtdiv,s);
for (fact = 0; mpz_cmp_ui(temp,factorBase[fact])>=0; fact++);
span = numPrimes/s/s/2;
min=fact-span/2;
while ( min > 0 && (fact*fact)/min - min < span )
min--;
#ifdef ADETAILS
printf("s = %d, fact = %d, min = %d, span = %d\n",s,fact,min,span);
#endif
/* Compute first polynomial and adjustments */
while (relsFound < relSought)
{
int polyindex;
mpz_set_ui(A,1);
for (i = 0; i < s-1; )
{
unsigned long ran = span/2+silly_random(span/2);
j=-1L;
while (j!=i)
{
ran++;
for (j=0;((j<i)&&(aind[j]!=ran));j++);
}
aind[i] = ran;
mpz_mul_ui(A,A,factorBase[ran+min]);
i++;
if (i < s-1)
{
j=-1L;
ran = ((min+span/2)*(min+span/2))/(ran+min) - silly_random(10)-min;
while (j!=i)
{
ran++;
for (j=0;((j<i)&&(aind[j]!=ran));j++);
}
aind[i] = ran;
mpz_mul_ui(A,A,factorBase[ran+min]);
i++;
}
}
mpz_div(temp,nsqrtdiv,A);
for (fact = 1; mpz_cmp_ui(temp,factorBase[fact])>=0; fact++);
fact-=min;
do
{
for (j=0;((j<i)&&(aind[j]!=(unsigned long)fact));j++);
fact++;
} while (j!=i);
fact--;
aind[i] = fact;
mpz_mul_ui(A,A,factorBase[fact+min]);
for (i=0; i<s; i++)
{
p = factorBase[aind[i]+min];
mpz_div_ui(temp,A,p);
amodp[i] = mpz_fdiv_r_ui(temp,temp,p);
mpz_set_ui(temp,modinverse(mpz_get_ui(temp),p));
mpz_mul(temp, temp, sqrts[aind[i]+min]);
mpz_fdiv_r_ui(temp, temp, p);
if (mpz_cmp_ui(temp,p/2)>0)
{
mpz_sub_ui(temp,temp,p);
mpz_neg(temp,temp);
}
mpz_mul(temp,temp,A);
mpz_div_ui(Bterms[i],temp,p);
}
mpz_set(B,Bterms[0]);
for (i = 1; i < s; i++)
{
mpz_add(B,B,Bterms[i]);
}
for (i = 0; i < (int)numPrimes; i++)
{
p = factorBase[i];
Ainv[i] = modinverse(mpz_fdiv_r_ui(temp,A,p),p);
for (j=0; j<s; j++)
{
mpz_fdiv_r_ui(temp,Bterms[j],p);
mpz_mul_ui(temp,temp,2*Ainv[i]);
Ainv2B[j][i] = mpz_fdiv_r_ui(temp,temp,p);
}
mpz_fdiv_r_ui(temp,B,p);
mpz_sub(temp,sqrts[i],temp);
mpz_add_ui(temp,temp,p);
mpz_mul_ui(temp,temp,Ainv[i]);
mpz_add_ui(temp,temp,Mdiv2);
soln1[i] = mpz_fdiv_r_ui(temp,temp,p);
mpz_sub_ui(temp,sqrts[i],p);
mpz_neg(temp,temp);
mpz_mul_ui(temp,temp,2*Ainv[i]);
soln2[i] = mpz_fdiv_r_ui(temp,temp,p)+soln1[i];
}
for (polyindex=1; polyindex<(1<<(s-1))-1; polyindex++)
{
int polyadd;
unsigned long * polycorr;
for (j=0; j<s; j++)
{
if (((polyindex>>j)&1)!=0) break;
}
if ((polyadd = (((polyindex>>j)&2)!=0)))
{
mpz_add(B,B,Bterms[j]);
mpz_add(B,B,Bterms[j]);
} else
{
mpz_sub(B,B,Bterms[j]);
mpz_sub(B,B,Bterms[j]);
}
polycorr = Ainv2B[j];
for (j=0; j<s; j++)
{
int findex = aind[j]+min;
p = factorBase[findex];
mpz_fdiv_r_ui(D,n,p*p);
mpz_fdiv_r_ui(Bdivp2,B,p*p);
mpz_mul_ui(temp,Bdivp2,amodp[j]);
mpz_fdiv_r_ui(temp,temp,p);
u1 = modinverse(mpz_fdiv_r_ui(temp,temp,p),p);
mpz_mul(temp,Bdivp2,Bdivp2);
mpz_sub(temp,temp,D);
mpz_neg(temp,temp);
mpz_div_ui(temp,temp,p);
mpz_mul_ui(temp,temp,u1);
mpz_add_ui(temp,temp,Mdiv2);
mpz_add_ui(temp,temp,p);
soln1[findex]=mpz_fdiv_r_ui(temp,temp,p);
soln2[findex] = (unsigned long) -1;
}
/* Count the number of polynomial curves used so far and compute
* the C coefficient of our polynomial */
curves++;
mpz_mul(C,B,B);
mpz_sub(C,C,n);
mpz_divexact(C,C,A);
/* Do the sieving and relation collection */
mpz_set_ui(temp,Mdiv2*2);
mpz_fdiv_qr_ui(q,r,temp,CACHEBLOCKSIZE);
M = mpz_get_ui(temp);
/* set the solns1 and solns2 arrays */
update_solns(1, numPrimes, soln1, soln2, polyadd, polycorr);
/* Clear sieve and insert sentinel at end (used in evaluateSieve) */
memset(sieve, 0, M*sizeof(unsigned char));
sieve[M] = 255;
/* Sieve [secondprime , numPrimes) */
if (secondprime < numPrimes)
sieve2(M, numPrimes, sieve, soln1, soln2, flags);
/* Set the offsets and offsets2 arrays used for small sieve */
set_offsets(sieve, soln1, soln2, offsets, offsets2);
/* Sieve [firstprime , secondprime) */
sieveInterval(CACHEBLOCKSIZE,sieve,1,offsets,offsets2);
if (mpz_cmp_ui(q,1)>0)
{
unsigned long maxreps = mpz_get_ui(q)-1;
for (reps = 1; reps < maxreps; reps++)
{
sieveInterval(CACHEBLOCKSIZE,sieve+CACHEBLOCKSIZE*reps,1,offsets,offsets2);
}
if (mpz_cmp_ui(r,0)==0)
{
sieveInterval(CACHEBLOCKSIZE,sieve+CACHEBLOCKSIZE*reps,0,offsets,offsets2);
} else
{
sieveInterval(CACHEBLOCKSIZE,sieve+CACHEBLOCKSIZE*reps,1,offsets,offsets2);
reps++;
sieveInterval(mpz_get_ui(r),sieve+CACHEBLOCKSIZE*reps,0,offsets,offsets2);
}
}
evaluateSieve(
numPrimes, Mdiv2,
relations, 0, M, sieve, A, B, C,
soln1, soln2, flags, m, XArr, aind,
min, s, exponents,
&npartials, &relsFound, &relSought,
temp, temp2, temp3, temp4
);
}
#ifdef COUNT
if (curves%20==0) printf("%ld curves.\n",(long)curves);
#endif
}
#ifdef CURPARTS
printf("%lu curves, %lu partials.\n", curves, npartials);
#endif
#ifdef REPORT
printf("Done with sieving!\n");
#endif
if (verbose>3) printf("# qs done sieving\n");
/* Free everything we don't need for the linear algebra */
for (p = 0; p < numPrimes; p++)
mpz_clear(sqrts[p]);
Safefree(sqrts);
for (i = 0; i < s; i++) {
Safefree(Ainv2B[i]);
mpz_clear(Bterms[i]);
}
Safefree(exponents);
Safefree(aind);
Safefree(amodp);
Safefree(Ainv);
Safefree(soln1);
Safefree(soln2);
Safefree(Ainv2B);
Safefree(Bterms);
if (flags) Safefree(flags);
Safefree(sieve); sieve = 0;
Safefree(offsets); offsets = 0;
Safefree(offsets2); offsets2 = 0;
mpz_clear(A); mpz_clear(B); mpz_clear(C); mpz_clear(D);
mpz_clear(q); mpz_clear(r);
mpz_clear(Bdivp2); mpz_clear(nsqrtdiv);
/* Do the matrix algebra step */
numRelations = gaussReduce(m, numPrimes, relSought);
#ifdef REPORT
printf("%ld relations in kernel.\n", numRelations);
#endif
if (verbose>3) printf("# qs found %lu relations in kernel\n", numRelations);
/* We want factors of n, not kn, so divide out by the multiplier */
mpz_div_ui(n,n,multiplier);
/* Now do the "sqrt" and GCD steps hopefully obtaining factors of n */
mpz_set(farray[0], n);
nfactors = 1; /* We have one result -- n */
New( 0, primecount, numPrimes, unsigned short);
if (primecount == 0) croak("SIMPQS: Unable to allocate memory!\n");
for (l = (int)relSought-64; l < (int)relSought; l++)
{
unsigned int mat2offset = rightMatrixOffset(numPrimes);
mpz_set_ui(temp,1);
mpz_set_ui(temp2,1);
memset(primecount,0,numPrimes*sizeof(unsigned short));
for (i = 0; i< (int)numPrimes; i++)
{
if (getEntry(m,l,mat2offset+i))
{
int nrelations = get_relation(relations, i, 0);
if (nrelations >= RELATIONS_PER_PRIME)
nrelations = RELATIONS_PER_PRIME-1;
mpz_mul(temp2,temp2,XArr[i]);
for (j = 1; j <= nrelations; j++)
primecount[ get_relation(relations, i, j) ]++;
}
if (i%16==0) mpz_mod(temp2,temp2,n);
}
for (j = 0; j < (int)numPrimes; j++)
{
mpz_set_ui(temp3,factorBase[j]);
mpz_pow_ui(temp3,temp3,primecount[j]/2);
mpz_mul(temp,temp,temp3);
if (j%16==0) mpz_mod(temp,temp,n);
}
mpz_sub(temp,temp2,temp);
mpz_gcd(temp,temp,n);
/* Only non-trivial factors */
if (mpz_cmp_ui(temp,1) && mpz_cmp(temp,n) && mpz_divisible_p(n,temp) ) {
if (verbose>4) gmp_printf("# qs factor %Zd\n", temp);
nfactors = insert_factor(n, farray, nfactors, temp);
verify_factor_array(n, farray, nfactors);
if (allprime_factor_array(farray, nfactors))
break;
}
}
/* Free everything remaining */
Safefree(primecount);
destroyMat(m, relSought);
Safefree(relations);
for (i = 0; i < (int)relSought; i++) {
mpz_clear(XArr[i]);
}
Safefree(XArr);
mpz_clear(temp); mpz_clear(temp2); mpz_clear(temp3); mpz_clear(temp4);
return nfactors;
}
int _GMP_simpqs(mpz_t n, mpz_t* farray)
{
unsigned long numPrimes, Mdiv2, multiplier, decdigits, relSought;
int result = 0;
int verbose = get_verbose_level();
mpz_set(farray[0], n);
decdigits = mpz_sizeinbase(n,10); /* often 1 too big */
if (decdigits < MINDIG)
return 0;
if (verbose>2) gmp_printf("# qs trying %Zd (%lu digits)\n", n, decdigits);
#ifdef REPORT
gmp_printf("%Zd (%ld decimal digits)\n", n, decdigits);
#endif
/* It's important to remove small factors. */
{
UV p;
PRIME_ITERATOR(iter);
for (p = 2; p < 1000; p = prime_iterator_next(&iter)) {
if (mpz_cmp_ui(n, p*p) < 0) break;
while (mpz_divisible_ui_p(n, p)) {
mpz_set_ui(farray[result++], p);
mpz_divexact_ui(n, n, p);
}
}
decdigits = mpz_sizeinbase(n,10);
if (decdigits < MINDIG)
return result;
mpz_set(farray[result], n);
}
/* Get a preliminary number of primes, pick a multiplier, apply it */
numPrimes = (decdigits <= 91) ? primesNo[decdigits-MINDIG] : 64000;
multiplier = knuthSchroeppel(n, numPrimes);
mpz_mul_ui(n, n, multiplier);
decdigits = mpz_sizeinbase(n, 10);
if (decdigits<=91) {
numPrimes=primesNo[decdigits-MINDIG];
Mdiv2 = sieveSize[decdigits-MINDIG]/SIEVEDIV;
if (Mdiv2*2 < CACHEBLOCKSIZE) Mdiv2 = CACHEBLOCKSIZE/2;
largeprime = 1000 * largeprimes[decdigits-MINDIG];
secondprime = (numPrimes < SECONDPRIME) ? numPrimes : SECONDPRIME;
firstprime = firstPrimes[decdigits-MINDIG];
errorbits = errorAmounts[decdigits-MINDIG];
threshold = thresholds[decdigits-MINDIG];
} else {
numPrimes = 64000;
Mdiv2 = 192000/SIEVEDIV;
largeprime = numPrimes*10*decdigits;
secondprime = SECONDPRIME;
firstprime = 30;
errorbits = decdigits/4 + 2;
threshold = 43+(7*decdigits)/10;
}
#ifdef REPORT
printf("Using multiplier: %lu\n",multiplier);
printf("%lu primes in factor base.\n",numPrimes);
printf("Sieving interval M = %lu\n",Mdiv2*2);
printf("Large prime cutoff = factorBase[%u]\n",largeprime);
#endif
if (verbose>2) gmp_printf("# qs mult %lu, digits %lu, sieving %lu, primes %lu\n", multiplier, decdigits, Mdiv2*2, numPrimes);
/* We probably need fewer than this */
relSought = numPrimes;
initFactorBase();
computeFactorBase(n, numPrimes, multiplier);
result += mainRoutine(numPrimes, Mdiv2, relSought, n, farray+result, multiplier);
clearFactorBase();
if (verbose>2) {
int i;
gmp_printf("# qs:");
for (i = 0; i < result; i++)
gmp_printf(" %Zd", farray[i]);
gmp_printf("%s\n", (result) ? "" : " no factors");
}
/* if (!result) gmp_printf("QS Fail: %Zd (%ld digits)\n", n, decdigits); */
return result;
}
#ifdef STANDALONE_SIMPQS
/*===========================================================================
Main Program:
Function: Factors a user specified number using a quadratic sieve
===========================================================================*/
int main(int argc, char **argv)
{
int i, nfactors;
mpz_t n;
mpz_t* farray;
mpz_init(n);
New(0, farray, 64, mpz_t);
for (i = 0; i < 64; i++)
mpz_init_set_ui(farray[i], 0);
printf("Input number to factor [ >=%d decimal digits]: ", MINDIG);
gmp_scanf("%Zd",n);getchar();
if (mpz_sizeinbase(n,10) < MINDIG)
croak("SIMPQS: Error in input or number has too few digits.\n");
nfactors = _GMP_simpqs(n, farray);
for (i = 0; i < nfactors; i++)
gmp_printf(" %Zd\n", farray[i]);
for (i = 0; i < 64; i++)
mpz_clear(farray[i]);
Safefree(farray);
return 0;
}
#endif
|