1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
/*
* Utility functions, such as sqrt mod p, polynomial manipulation, etc.
*/
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <gmp.h>
#include "ptypes.h"
/* includes mpz_mulmod(r, a, b, n, temp) */
#include "utility.h"
static int _verbose = 0;
int get_verbose_level(void) { return _verbose; }
void set_verbose_level(int level) { _verbose = level; }
static gmp_randstate_t _randstate;
gmp_randstate_t* get_randstate(void) { return &_randstate; }
void init_randstate(unsigned long seed) {
gmp_randinit_mt(_randstate);
gmp_randseed_ui(_randstate, seed);
}
void clear_randstate(void) { gmp_randclear(_randstate); }
int mpz_divmod(mpz_t r, mpz_t a, mpz_t b, mpz_t n, mpz_t t)
{
int invertible;
invertible = mpz_invert(t, b, n);
if (!invertible)
return 0;
mpz_mulmod(r, t, a, n, t); /* mpz_mul(t,t,a); mpz_mod(r,t,n); */
return 1;
}
/* Returns 1 if x^2 = a mod p, otherwise set x to 0 and return 0. */
static int verify_sqrt(mpz_t x, mpz_t a, mpz_t p, mpz_t t, mpz_t t2) {
mpz_mulmod(t, x, x, p, t2);
mpz_mod(t2, a, p);
if (mpz_cmp(t, t2) == 0) return 1;
mpz_set_ui(x, 0);
return 0;
}
/* set x to sqrt(a) mod p. Returns 0 if a is not a square root mod p */
/* See Cohen section 1.5.
* See http://www.math.vt.edu/people/brown/doc/sqrts.pdf
*/
int sqrtmod(mpz_t x, mpz_t a, mpz_t p,
mpz_t t, mpz_t q, mpz_t b, mpz_t z) /* 4 temp variables */
{
int r, e, m;
/* Easy cases from page 31 (or Menezes 3.36, 3.37) */
if (mpz_congruent_ui_p(p, 3, 4)) {
mpz_add_ui(t, p, 1);
mpz_tdiv_q_2exp(t, t, 2);
mpz_powm(x, a, t, p);
return verify_sqrt(x, a, p, t, q);
}
if (mpz_congruent_ui_p(p, 5, 8)) {
mpz_sub_ui(t, p, 1);
mpz_tdiv_q_2exp(t, t, 2);
mpz_powm(q, a, t, p);
if (mpz_cmp_si(q, 1) == 0) { /* s = a^((p+3)/8) mod p */
mpz_add_ui(t, p, 3);
mpz_tdiv_q_2exp(t, t, 3);
mpz_powm(x, a, t, p);
} else { /* s = 2a * (4a)^((p-5)/8) mod p */
mpz_sub_ui(t, p, 5);
mpz_tdiv_q_2exp(t, t, 3);
mpz_mul_ui(q, a, 4);
mpz_powm(x, q, t, p);
mpz_mul_ui(x, x, 2);
mpz_mulmod(x, x, a, p, x);
}
return verify_sqrt(x, a, p, t, q);
}
if (mpz_kronecker(a, p) != 1) {
/* Possible no solution exists. Check Euler criterion. */
mpz_sub_ui(t, p, 1);
mpz_tdiv_q_2exp(t, t, 1);
mpz_powm(x, a, t, p);
if (mpz_cmp_si(x, 1) != 0) {
mpz_set_ui(x, 0);
return 0;
}
}
mpz_sub_ui(q, p, 1);
e = mpz_scan1(q, 0); /* Remove 2^e from q */
mpz_tdiv_q_2exp(q, q, e);
mpz_set_ui(t, 2);
while (mpz_legendre(t, p) != -1) /* choose t "at random" */
mpz_add_ui(t, t, 1);
mpz_powm(z, t, q, p); /* Step 1 complete */
r = e;
mpz_powm(b, a, q, p);
mpz_add_ui(q, q, 1);
mpz_divexact_ui(q, q, 2);
mpz_powm(x, a, q, p); /* Done with q, will use it for y now */
while (mpz_cmp_ui(b, 1)) {
/* calculate how many times b^2 mod p == 1 */
mpz_set(t, b);
m = 0;
do {
mpz_powm_ui(t, t, 2, p);
m++;
} while (m < r && mpz_cmp_ui(t, 1));
if (m == r) break;
mpz_ui_pow_ui(t, 2, r-m-1);
mpz_powm(t, z, t, p);
mpz_mulmod(x, x, t, p, x);
mpz_powm_ui(z, t, 2, p);
mpz_mulmod(b, b, z, p, b);
r = m;
}
return verify_sqrt(x, a, p, t, q);
}
/* Smith-Cornacchia: Solve x,y for x^2 + |D|y^2 = p given prime p */
/* See Cohen 1.5.2 */
int cornacchia(mpz_t x, mpz_t y, mpz_t D, mpz_t p)
{
int result = 0;
mpz_t a, b, c, d;
if (mpz_jacobi(D, p) < 0) /* No solution */
return 0;
mpz_init(a); mpz_init(b); mpz_init(c); mpz_init(d);
sqrtmod(x, D, p, a, b, c, d);
mpz_set(a, p);
mpz_set(b, x);
mpz_sqrt(c, p);
while (mpz_cmp(b,c) > 0) {
mpz_set(d, a);
mpz_set(a, b);
mpz_mod(b, d, b);
}
mpz_mul(a, b, b);
mpz_sub(a, p, a); /* a = p - b^2 */
mpz_abs(d, D); /* d = |D| */
if (mpz_divisible_p(a, d)) {
mpz_divexact(c, a, d);
if (mpz_perfect_square_p(c)) {
mpz_set(x, b);
mpz_sqrt(y, c);
result = 1;
}
}
mpz_clear(a); mpz_clear(b); mpz_clear(c); mpz_clear(d);
return result;
}
/* Modified Cornacchia, Solve x,y for x^2 + |D|y^2 = 4p given prime p */
/* See Cohen 1.5.3 */
int modified_cornacchia(mpz_t x, mpz_t y, mpz_t D, mpz_t p)
{
int result = 0;
mpz_t a, b, c, d;
if (mpz_cmp_ui(p, 2) == 0) {
mpz_add_ui(x, D, 8);
if (mpz_perfect_square_p(x)) {
mpz_sqrt(x, x);
mpz_set_ui(y, 1);
result = 1;
}
return result;
}
if (mpz_jacobi(D, p) == -1) /* No solution */
return 0;
mpz_init(a); mpz_init(b); mpz_init(c); mpz_init(d);
sqrtmod(x, D, p, a, b, c, d);
if ( (mpz_even_p(D) && mpz_odd_p(x)) || (mpz_odd_p(D) && mpz_even_p(x)) )
mpz_sub(x, p, x);
mpz_mul_ui(a, p, 2);
mpz_set(b, x);
mpz_sqrt(c, p);
mpz_mul_ui(c, c, 2);
/* Euclidean algorithm */
while (mpz_cmp(b, c) > 0) {
mpz_set(d, a);
mpz_set(a, b);
mpz_mod(b, d, b);
}
mpz_mul_ui(c, p, 4);
mpz_mul(a, b, b);
mpz_sub(a, c, a); /* a = 4p - b^2 */
mpz_abs(d, D); /* d = |D| */
if (mpz_divisible_p(a, d)) {
mpz_divexact(c, a, d);
if (mpz_perfect_square_p(c)) {
mpz_set(x, b);
mpz_sqrt(y, c);
result = 1;
}
}
mpz_clear(a); mpz_clear(b); mpz_clear(c); mpz_clear(d);
return result;
}
/* Modular inversion: invert a mod p.
* This implementation from William Hart, using extended gcd.
*/
unsigned long modinverse(unsigned long a, unsigned long p)
{
long u1 = 1;
long u3 = a;
long v1 = 0;
long v3 = p;
long t1 = 0;
long t3 = 0;
long quot;
while (v3) {
quot = u3 - v3;
if (u3 < (v3<<2)) {
if (quot < v3) {
if (quot < 0) {
t1 = u1; u1 = v1; v1 = t1;
t3 = u3; u3 = v3; v3 = t3;
} else {
t1 = u1 - v1; u1 = v1; v1 = t1;
t3 = u3 - v3; u3 = v3; v3 = t3;
}
} else if (quot < (v3<<1)) {
t1 = u1 - (v1<<1); u1 = v1; v1 = t1;
t3 = u3 - (v3<<1); u3 = v3; v3 = t3;
} else {
t1 = u1 - v1*3; u1 = v1; v1 = t1;
t3 = u3 - v3*3; u3 = v3; v3 = t3;
}
} else {
quot = u3 / v3;
t1 = u1 - v1*quot; u1 = v1; v1 = t1;
t3 = u3 - v3*quot; u3 = v3; v3 = t3;
}
}
if (u1 < 0) u1 += p;
return u1;
}
UV mpz_order_ui(UV r, mpz_t n, UV limit) {
UV j;
mpz_t t;
/* If n < limit, set limit to n */
if (mpz_cmp_ui(n, limit) < 0)
limit = mpz_get_ui(n);
mpz_init_set_ui(t, 1);
for (j = 1; j <= limit; j++) {
mpz_mul(t, t, n);
mpz_mod_ui(t, t, r);
if (!mpz_cmp_ui(t, 1))
break;
}
mpz_clear(t);
return j;
}
void mpz_arctan(mpz_t r, unsigned long base, mpz_t pow, mpz_t t1, mpz_t t2)
{
unsigned long i = 1;
mpz_tdiv_q_ui(r, pow, base);
mpz_set(t1, r);
do {
mpz_ui_pow_ui(t2, base, 2);
mpz_tdiv_q(t1, t1, t2);
mpz_tdiv_q_ui(t2, t1, 2*i+1);
if (i++ & 1) mpz_sub(r, r, t2); else mpz_add(r, r, t2);
} while (mpz_sgn(t2));
}
void mpz_product(mpz_t* A, UV a, UV b) {
if (b <= a) {
/* nothing */
} else if (b == a+1) {
mpz_mul(A[a], A[a], A[b]);
} else if (b == a+2) {
mpz_mul(A[a+1], A[a+1], A[a+2]);
mpz_mul(A[a], A[a], A[a+1]);
} else {
UV c = a + (b-a+1)/2;
mpz_product(A, a, c-1);
mpz_product(A, c, b);
mpz_mul(A[a], A[a], A[c]);
}
}
#if 0
/* Simple polynomial multiplication */
void poly_mod_mul(mpz_t* px, mpz_t* py, mpz_t* ptmp, UV r, mpz_t mod)
{
UV i, j, prindex;
for (i = 0; i < r; i++)
mpz_set_ui(ptmp[i], 0);
for (i = 0; i < r; i++) {
if (!mpz_sgn(px[i])) continue;
for (j = 0; j < r; j++) {
if (!mpz_sgn(py[j])) continue;
prindex = (i+j) % r;
mpz_addmul( ptmp[prindex], px[i], py[j] );
}
}
/* Put ptmp into px and mod n */
for (i = 0; i < r; i++)
mpz_mod(px[i], ptmp[i], mod);
}
void poly_mod_sqr(mpz_t* px, mpz_t* ptmp, UV r, mpz_t mod)
{
UV i, d, s;
UV degree = r-1;
for (i = 0; i < r; i++)
mpz_set_ui(ptmp[i], 0);
for (d = 0; d <= 2*degree; d++) {
UV prindex = d % r;
for (s = (d <= degree) ? 0 : d-degree; s <= (d/2); s++) {
if (s*2 == d) {
mpz_addmul( ptmp[prindex], px[s], px[s] );
} else {
mpz_addmul( ptmp[prindex], px[s], px[d-s] );
mpz_addmul( ptmp[prindex], px[s], px[d-s] );
}
}
}
/* Put ptmp into px and mod n */
for (i = 0; i < r; i++)
mpz_mod(px[i], ptmp[i], mod);
}
#endif
#if 0
/* Binary segmentation, using simple shift+add method for processing p.
* Faster than twiddling bits, but not nearly as fast as import/export.
*/
void poly_mod_mul(mpz_t* px, mpz_t* py, UV r, mpz_t mod, mpz_t p, mpz_t p2, mpz_t t)
{
UV i, d, bits;
UV degree = r-1;
mpz_mul(t, mod, mod);
mpz_mul_ui(t, t, r);
bits = mpz_sizeinbase(t, 2);
mpz_set_ui(p, 0);
for (i = 0; i < r; i++) {
mpz_mul_2exp(p, p, bits);
mpz_add(p, p, px[r-i-1]);
}
if (px == py) {
mpz_mul(p, p, p);
} else {
mpz_set_ui(p2, 0);
for (i = 0; i < r; i++) {
mpz_mul_2exp(p2, p2, bits);
mpz_add(p2, p2, py[r-i-1]);
}
mpz_mul(p, p, p2);
}
for (d = 0; d <= 2*degree; d++) {
mpz_tdiv_r_2exp(t, p, bits);
mpz_tdiv_q_2exp(p, p, bits);
if (d < r)
mpz_set(px[d], t);
else
mpz_add(px[d-r], px[d-r], t);
}
for (i = 0; i < r; i++)
mpz_mod(px[i], px[i], mod);
}
#endif
/* Binary segmentation, using import/export method for processing p.
* Thanks to Dan Bernstein's 2007 Quartic paper.
*/
void poly_mod_mul(mpz_t* px, mpz_t* py, UV r, mpz_t mod, mpz_t p, mpz_t p2, mpz_t t)
{
UV i, bytes;
char* s;
mpz_mul(t, mod, mod);
mpz_mul_ui(t, t, r);
bytes = mpz_sizeinbase(t, 256);
mpz_set_ui(p, 0);
mpz_set_ui(p2, 0);
/* 1. Create big integers from px and py with padding. */
{
Newz(0, s, r*bytes, char);
for (i = 0; i < r; i++)
mpz_export(s + i*bytes, NULL, -1, 1, 0, 0, px[i]);
mpz_import(p, r*bytes, -1, 1, 0, 0, s);
Safefree(s);
}
if (px != py) {
Newz(0, s, r*bytes, char);
for (i = 0; i < r; i++)
mpz_export(s + i*bytes, NULL, -1, 1, 0, 0, py[i]);
mpz_import(p2, r*bytes, -1, 1, 0, 0, s);
Safefree(s);
}
/* 2. Multiply using the awesomeness that is GMP. */
mpz_mul( p, p, (px == py) ? p : p2 );
/* 3. Pull out the parts of the result, add+mod, and put in px. */
{
Newz(0, s, 2*r*bytes, char);
/* fill s with data from p */
mpz_export(s, NULL, -1, 1, 0, 0, p);
for (i = 0; i < r; i++) {
/* Set px[i] to the top part, t to the bottom. */
mpz_import(px[i], bytes, -1, 1, 0, 0, s + (i+r)*bytes);
mpz_import(t, bytes, -1, 1, 0, 0, s + i*bytes);
/* Add and mod */
mpz_add(px[i], px[i], t);
mpz_mod(px[i], px[i], mod);
}
Safefree(s);
}
}
void poly_mod_pow(mpz_t *pres, mpz_t *pn, mpz_t power, UV r, mpz_t mod)
{
UV i;
mpz_t mpow, t1, t2, t3;
for (i = 0; i < r; i++)
mpz_set_ui(pres[i], 0);
mpz_set_ui(pres[0], 1);
mpz_init_set(mpow, power);
mpz_init(t1); mpz_init(t2); mpz_init(t3);
while (mpz_cmp_ui(mpow, 0) > 0) {
if (mpz_odd_p(mpow)) poly_mod_mul(pres, pn, r, mod, t1, t2, t3);
mpz_tdiv_q_2exp(mpow, mpow, 1);
if (mpz_cmp_ui(mpow, 0) > 0) poly_mod_mul(pn, pn, r, mod, t1, t2, t3);
}
mpz_clear(t1); mpz_clear(t2); mpz_clear(t3);
mpz_clear(mpow);
}
void poly_mod(mpz_t *pres, mpz_t *pn, UV *dn, mpz_t mod)
{
UV i;
for (i = 0; i < *dn; i++) {
mpz_mod(pres[i], pn[i], mod);
}
while (*dn > 0 && mpz_sgn(pres[*dn-1]) == 0)
*dn -= 1;
}
void polyz_mod(mpz_t *pres, mpz_t *pn, long *dn, mpz_t mod)
{
long i;
for (i = 0; i <= *dn; i++) {
mpz_mod(pres[i], pn[i], mod);
}
while (*dn > 0 && mpz_sgn(pres[*dn]) == 0)
*dn -= 1;
}
void polyz_set(mpz_t* pr, long* dr, mpz_t* ps, long ds)
{
*dr = ds;
do {
mpz_set(pr[ds], ps[ds]);
} while (ds-- > 0);
}
void polyz_print(const char* header, mpz_t* pn, long dn)
{
gmp_printf("%s", header);
do { gmp_printf("%Zd ", pn[dn]); } while (dn-- > 0);
gmp_printf("\n");
}
/* Multiply polys px and py to create new poly pr, all modulo 'mod' */
#if 0
void polyz_mulmod(mpz_t* pr, mpz_t* px, mpz_t *py, long *dr, long dx, long dy, mpz_t mod)
{
long i, j;
*dr = dx + dy;
for (i = 0; i <= *dr; i++)
mpz_set_ui(pr[i], 0);
for (i = 0; i <= dx; i++) {
if (!mpz_sgn(px[i])) continue;
for (j = 0; j <= dy; j++) {
if (!mpz_sgn(py[j])) continue;
mpz_addmul( pr[i+j], px[i], py[j] );
}
}
for (i = 0; i <= *dr; i++)
mpz_mod(pr[i], pr[i], mod);
while (*dr > 0 && mpz_sgn(pr[*dr]) == 0) dr[0]--;
}
#endif
#if 1
void polyz_mulmod(mpz_t* pr, mpz_t* px, mpz_t *py, long *dr, long dx, long dy, mpz_t mod)
{
UV i, bits, r;
mpz_t p, p2, t;
mpz_init(p); mpz_init(t);
*dr = dx+dy;
r = *dr+1;
mpz_mul(t, mod, mod);
mpz_mul_ui(t, t, r);
bits = mpz_sizeinbase(t, 2);
mpz_set_ui(p, 0);
/* Create big integers p and p2 from px and py, with padding */
{
for (i = 0; i <= (UV)dx; i++) {
mpz_mul_2exp(p, p, bits);
mpz_add(p, p, px[dx-i]);
}
}
if (px == py) {
mpz_pow_ui(p, p, 2);
} else {
mpz_init_set_ui(p2, 0);
for (i = 0; i <= (UV)dy; i++) {
mpz_mul_2exp(p2, p2, bits);
mpz_add(p2, p2, py[dy-i]);
}
mpz_mul(p, p, p2);
mpz_clear(p2);
}
/* Pull out parts of result p to pr */
for (i = 0; i < r; i++) {
mpz_tdiv_r_2exp(t, p, bits);
mpz_tdiv_q_2exp(p, p, bits);
mpz_mod(pr[i], t, mod);
}
mpz_clear(p); mpz_clear(t);
}
#endif
#if 0
void polyz_mulmod(mpz_t* pr, mpz_t* px, mpz_t *py, long *dr, long dx, long dy, mpz_t mod)
{
UV i, bytes, r;
char* s;
mpz_t p, p2, t;
mpz_init(p); mpz_init(p2); mpz_init(t);
*dr = dx+dy;
r = *dr+1;
mpz_mul(t, mod, mod);
mpz_mul_ui(t, t, r);
bytes = mpz_sizeinbase(t, 256);
mpz_set_ui(p, 0);
mpz_set_ui(p2, 0);
/* Create big integers p and p2 from px and py, with padding */
{
Newz(0, s, (dx+1)*bytes, char);
for (i = 0; i <= dx; i++)
mpz_export(s + i*bytes, NULL, -1, 1, 0, 0, px[i]);
mpz_import(p, (dx+1)*bytes, -1, 1, 0, 0, s);
Safefree(s);
}
if (px != py) {
Newz(0, s, (dy+1)*bytes, char);
for (i = 0; i <= dy; i++)
mpz_export(s + i*bytes, NULL, -1, 1, 0, 0, py[i]);
mpz_import(p2, (dy+1)*bytes, -1, 1, 0, 0, s);
Safefree(s);
}
/* Multiply! */
mpz_mul( p ,p, (px == py) ? p : p2 );
/* Pull out parts of result p to pr */
{
Newz(0, s, r*bytes, char);
/* fill s with data from p */
mpz_export(s, NULL, -1, 1, 0, 0, p);
for (i = 0; i < r; i++) {
mpz_import(t, bytes, -1, 1, 0, 0, s + i*bytes);
mpz_mod(pr[i], t, mod);
}
Safefree(s);
}
mpz_clear(p); mpz_clear(p2); mpz_clear(t);
}
#endif
/* Polynomial division modulo N.
* This is Cohen algorithm 3.1.2 "pseudo-division". */
void polyz_div(mpz_t *pq, mpz_t *pr, mpz_t *pn, mpz_t *pd,
long *dq, long *dr, long dn, long dd, mpz_t NMOD)
{
long i, j;
mpz_t t;
/* Ensure n and d are reduced */
while (dn > 0 && mpz_sgn(pn[dn]) == 0) dn--;
while (dd > 0 && mpz_sgn(pd[dd]) == 0) dd--;
if (dd == 0 && mpz_sgn(pd[0]) == 0)
croak("polyz_divmod: divide by zero\n");
/* Q = 0 */
*dq = 0;
mpz_set_ui(pq[0], 0);
/* R = N */
*dr = dn;
for (i = 0; i <= dn; i++)
mpz_set(pr[i], pn[i]); /* pn should already be mod */
if (*dr < dd)
return;
if (dd == 0) {
*dq = 0; *dr = 0;
mpz_tdiv_qr( pq[0], pr[0], pn[0], pd[0] );
return;
}
*dq = dn - dd;
*dr = dd-1;
if (mpz_cmp_ui(pd[dd], 1) == 0) {
for (i = *dq; i >= 0; i--) {
long di = dd + i;
mpz_set(pq[i], pr[di]);
for (j = di-1; j >= i; j--) {
mpz_submul(pr[j], pr[di], pd[j-i]);
mpz_mod(pr[j], pr[j], NMOD);
}
}
} else {
mpz_init(t);
for (i = *dq; i >= 0; i--) {
long di = dd + i;
mpz_powm_ui(t, pd[dd], i, NMOD);
mpz_mul(t, t, pr[di]);
mpz_mod(pq[i], t, NMOD);
for (j = di-1; j >= 0; j--) {
mpz_mul(pr[j], pr[j], pd[dd]); /* j != di so this is safe */
if (j >= i)
mpz_submul(pr[j], pr[di], pd[j-i]);
mpz_mod(pr[j], pr[j], NMOD);
}
}
mpz_clear(t);
}
/* Reduce R and Q. */
while (*dr > 0 && mpz_sgn(pr[*dr]) == 0) dr[0]--;
while (*dq > 0 && mpz_sgn(pq[*dq]) == 0) dq[0]--;
}
/* Raise poly pn to the power, modulo poly pmod and coefficient NMOD. */
void polyz_pow_polymod(mpz_t* pres, mpz_t* pn, mpz_t* pmod,
long *dres, long dn, long dmod,
mpz_t power, mpz_t NMOD)
{
mpz_t mpow;
long dProd, dQ, dX, maxd, i;
mpz_t *pProd, *pQ, *pX;
/* Product = res*x. With a prediv this would be dmod+dmod, but without it
* is max(dmod,dn)+dmod. */
maxd = (dn > dmod) ? dn+dmod : dmod+dmod;
New(0, pProd, maxd+1, mpz_t);
New(0, pQ, maxd+1, mpz_t);
New(0, pX, maxd+1, mpz_t);
for (i = 0; i <= maxd; i++) {
mpz_init(pProd[i]);
mpz_init(pQ[i]);
mpz_init(pX[i]);
}
*dres = 0;
mpz_set_ui(pres[0], 1);
dX = dn;
for (i = 0; i <= dX; i++)
mpz_set(pX[i], pn[i]);
mpz_init_set(mpow, power);
while (mpz_cmp_ui(mpow, 0) > 0) {
if (mpz_odd_p(mpow)) {
polyz_mulmod(pProd, pres, pX, &dProd, *dres, dX, NMOD);
polyz_div(pQ, pres, pProd, pmod, &dQ, dres, dProd, dmod, NMOD);
}
mpz_tdiv_q_2exp(mpow, mpow, 1);
if (mpz_cmp_ui(mpow, 0) > 0) {
polyz_mulmod(pProd, pX, pX, &dProd, dX, dX, NMOD);
polyz_div(pQ, pX, pProd, pmod, &dQ, &dX, dProd, dmod, NMOD);
}
}
mpz_clear(mpow);
for (i = 0; i <= maxd; i++) {
mpz_clear(pProd[i]);
mpz_clear(pQ[i]);
mpz_clear(pX[i]);
}
Safefree(pProd);
Safefree(pQ);
Safefree(pX);
}
void polyz_gcd(mpz_t* pres, mpz_t* pa, mpz_t* pb, long* dres, long da, long db, mpz_t MODN)
{
long i;
long dr1, dq, dr, maxd;
mpz_t *pr1, *pq, *pr;
/* Early reduction so we're not wasteful with messy input. */
while (da > 0 && mpz_sgn(pa[da]) == 0) da--;
while (db > 0 && mpz_sgn(pb[db]) == 0) db--;
/* Swap a/b so degree a >= degree b */
if (db > da) {
mpz_t* mtmp;
long ltmp;
mtmp = pa; pa = pb; pb = mtmp;
ltmp = da; da = db; db = ltmp;
}
/* TODO: Should set c=pa[da], then after Euclid loop, res = c^-1 * res */
/* Allocate temporary polys */
maxd = da;
New(0, pr1, maxd+1, mpz_t);
New(0, pq, maxd+1, mpz_t);
New(0, pr, maxd+1, mpz_t);
for (i = 0; i <= maxd; i++) {
mpz_init(pr1[i]);
mpz_init(pq[i]);
mpz_init(pr[i]);
}
/* R0 = a (we use pres) */
*dres = da;
for (i = 0; i <= da; i++)
mpz_mod(pres[i], pa[i], MODN);
while (*dres > 0 && mpz_sgn(pres[*dres]) == 0) dres[0]--;
/* R1 = b */
dr1 = db;
for (i = 0; i <= db; i++)
mpz_mod(pr1[i], pb[i], MODN);
while (dr1 > 0 && mpz_sgn(pr1[dr1]) == 0) dr1--;
while (dr1 > 0 || mpz_sgn(pr1[dr1]) != 0) {
polyz_div(pq, pr, pres, pr1, &dq, &dr, *dres, dr1, MODN);
if (dr < 0 || dq < 0 || dr > maxd || dq > maxd)
croak("division error: dq %ld dr %ld maxd %ld\n", dq, dr, maxd);
/* pr0 = pr1. pr1 = pr */
*dres = dr1;
for (i = 0; i <= dr1; i++)
mpz_set(pres[i], pr1[i]); /* pr1 is mod MODN already */
dr1 = dr;
for (i = 0; i <= dr; i++)
mpz_set(pr1[i], pr[i]);
}
/* return pr0 */
while (*dres > 0 && mpz_sgn(pres[*dres]) == 0) dres[0]--;
for (i = 0; i <= maxd; i++) {
mpz_clear(pr1[i]);
mpz_clear(pq[i]);
mpz_clear(pr[i]);
}
Safefree(pr1);
Safefree(pq);
Safefree(pr);
}
void polyz_root_deg1(mpz_t root, mpz_t* pn, mpz_t NMOD)
{
mpz_invert(root, pn[1], NMOD);
mpz_mul(root, root, pn[0]);
mpz_neg(root, root);
mpz_mod(root, root, NMOD);
}
void polyz_root_deg2(mpz_t root1, mpz_t root2, mpz_t* pn, mpz_t NMOD)
{
mpz_t e, d, t, t2, t3, t4;
mpz_init(e); mpz_init(d);
mpz_init(t); mpz_init(t2); mpz_init(t3); mpz_init(t4);
mpz_mul(t, pn[0], pn[2]);
mpz_mul_ui(t, t, 4);
mpz_mul(d, pn[1], pn[1]);
mpz_sub(d, d, t);
sqrtmod(e, d, NMOD, t, t2, t3, t4);
mpz_neg(t4, pn[1]); /* t4 = -a_1 */
mpz_mul_ui(t3, pn[2], 2); /* t3 = 2a_2 */
mpz_add(t, t4, e); /* t = -a_1 + e */
mpz_divmod( root1, t, t3, NMOD, t2); /* (-a_1+e)/2a_2 */
mpz_sub(t, t4, e); /* t = -a_1 - e */
mpz_divmod( root2, t, t3, NMOD, t2); /* (-a_1-e)/2a_2 */
mpz_clear(e); mpz_clear(d);
mpz_clear(t); mpz_clear(t2); mpz_clear(t3); mpz_clear(t4);
}
/* Algorithm 2.3.10 procedure "roots" from Crandall & Pomerance.
* Step 3/4 of Cohen Algorithm 1.6.1.
* Uses some hints from Pate Williams (1997-1998) for the poly math */
static void polyz_roots(mpz_t* roots, long *nroots,
long maxroots, mpz_t* pg, long dg, mpz_t NMOD,
gmp_randstate_t* p_randstate)
{
long i, ntries, maxtries, maxd, dxa, dt, dh, dq, dup;
mpz_t t, power;
mpz_t pxa[2];
mpz_t *pt, *ph, *pq;
if (*nroots >= maxroots || dg <= 0) return;
mpz_init(t);
mpz_init(pxa[0]); mpz_init(pxa[1]);
if (dg <= 2) {
if (dg == 1) polyz_root_deg1( pxa[0], pg, NMOD );
else polyz_root_deg2( pxa[0], pxa[1], pg, NMOD );
for (dt = 0; dt < dg; dt++) {
mpz_set(t, pxa[dt]);
dup = 0; /* don't add duplicate roots */
for (i = 0; i < *nroots; i++)
if (mpz_cmp(t, roots[i]) == 0)
{ dup = 1; break; }
if (!dup)
mpz_set(roots[ (*nroots)++ ], t);
}
mpz_clear(t);
mpz_clear(pxa[0]); mpz_clear(pxa[1]);
return;
}
/* If not a monic polynomial, divide by leading coefficient */
if (mpz_cmp_ui(pg[dg], 1) != 0) {
if (!mpz_invert(t, pg[dg], NMOD)) {
mpz_clear(t);
return;
}
for (i = 0; i <= dg; i++)
mpz_mulmod(pg[i], pg[i], t, NMOD, pg[i]);
}
/* Try hard to find a single root, work less after we got one or two.
* In a generic routine we would want to try hard all the time. */
ntries = 0;
maxtries = (*nroots == 0) ? 200 : (*nroots == 1) ? 50 : 10;
mpz_init(power);
mpz_set_ui(pxa[1], 1);
dxa = 1;
maxd = 2 * dg;
New(0, pt, maxd+1, mpz_t);
New(0, ph, maxd+1, mpz_t);
New(0, pq, maxd+1, mpz_t);
for (i = 0; i <= maxd; i++) {
mpz_init(pt[i]);
mpz_init(ph[i]);
mpz_init(pq[i]);
}
mpz_sub_ui(t, NMOD, 1);
mpz_tdiv_q_2exp(power, t, 1);
/* We'll pick random "a" values from 1 to 1000M */
mpz_set_ui(t, 1000000000UL);
if (mpz_cmp(t, NMOD) > 0) mpz_set(t, NMOD);
while (ntries++ < maxtries) {
/* pxa = X+a for randomly selected a */
if (ntries <= 2) mpz_set_ui(pxa[0], ntries); /* Simple small values */
else mpz_urandomm(pxa[0], *p_randstate, t);
/* Raise pxa to (NMOD-1)/2, all modulo NMOD and g(x) */
polyz_pow_polymod(pt, pxa, pg, &dt, dxa, dg, power, NMOD);
/* Subtract 1 and gcd */
mpz_sub_ui(pt[0], pt[0], 1);
polyz_gcd(ph, pt, pg, &dh, dt, dg, NMOD);
if (dh >= 1 && dh < dg)
break;
}
if (dh >= 1 && dh < dg) {
/* Pick the smaller of the two splits to process first */
if (dh <= 2 || dh <= (dg-dh)) {
polyz_roots(roots, nroots, maxroots, ph, dh, NMOD, p_randstate);
if (*nroots < maxroots) {
/* q = g/h, and recurse */
polyz_div(pq, pt, pg, ph, &dq, &dt, dg, dh, NMOD);
polyz_roots(roots, nroots, maxroots, pq, dq, NMOD, p_randstate);
}
} else {
polyz_div(pq, pt, pg, ph, &dq, &dt, dg, dh, NMOD);
polyz_roots(roots, nroots, maxroots, pq, dq, NMOD, p_randstate);
if (*nroots < maxroots) {
polyz_roots(roots, nroots, maxroots, ph, dh, NMOD, p_randstate);
}
}
}
mpz_clear(t);
mpz_clear(power);
mpz_clear(pxa[0]); mpz_clear(pxa[1]);
for (i = 0; i <= maxd; i++) {
mpz_clear(pt[i]);
mpz_clear(ph[i]);
mpz_clear(pq[i]);
}
Safefree(pt);
Safefree(ph);
Safefree(pq);
}
/* Algorithm 1.6.1 from Cohen, minus step 1. */
void polyz_roots_modp(mpz_t** roots, long *nroots, long maxroots,
mpz_t *pP, long dP, mpz_t NMOD,
gmp_randstate_t* p_randstate)
{
long i;
*nroots = 0;
*roots = 0;
if (dP == 0)
return;
/* Allocate space for the maximum number of roots (plus 1 for safety) */
New(0, *roots, dP+1, mpz_t);
for (i = 0; i <= dP; i++)
mpz_init((*roots)[i]);
if (maxroots > dP || maxroots == 0)
maxroots = dP;
/* Do degree 1 or 2 explicitly */
if (dP == 1) {
polyz_root_deg1( (*roots)[0], pP, NMOD );
*nroots = 1;
return;
}
if (dP == 2) {
polyz_root_deg2( (*roots)[0], (*roots)[1], pP, NMOD );
*nroots = 2;
return;
}
polyz_roots(*roots, nroots, maxroots, pP, dP, NMOD, p_randstate);
/* This could be just really bad luck. Let the caller handle it. */
/* if (*nroots == 0) croak("failed to find roots\n"); */
/* Clear out space for roots we didn't find */
for (i = *nroots; i <= dP; i++)
mpz_clear((*roots)[i]);
}
#include "class_poly_data.h"
int* poly_class_nums(void)
{
int* dlist;
UV i;
int degree_offset[256] = {0};
for (i = 1; i < NUM_CLASS_POLYS; i++)
if (_class_poly_data[i].D < _class_poly_data[i-1].D)
croak("Problem with data file, out of order at D=%d\n", (int)_class_poly_data[i].D);
Newz(0, dlist, NUM_CLASS_POLYS + 1, int);
/* init degree_offset to total number of this degree */
for (i = 0; i < NUM_CLASS_POLYS; i++)
degree_offset[_class_poly_data[i].degree]++;
/* set degree_offset to sum of this and all previous degrees. */
for (i = 1; i < 256; i++)
degree_offset[i] += degree_offset[i-1];
/* Fill in dlist, sorted */
for (i = 0; i < NUM_CLASS_POLYS; i++) {
int position = degree_offset[_class_poly_data[i].degree-1]++;
dlist[position] = i+1;
}
/* Null terminate */
dlist[NUM_CLASS_POLYS] = 0;
return dlist;
}
UV poly_class_poly_num(int i, int *D, mpz_t**T, int* type)
{
UV degree, j;
int ctype;
mpz_t t;
const char* s;
if (i < 1 || i > (int)NUM_CLASS_POLYS) { /* Invalid number */
if (D != 0) *D = 0;
if (T != 0) *T = 0;
return 0;
}
i--; /* i now is the index into our table */
degree = _class_poly_data[i].degree;
ctype = _class_poly_data[i].type;
s = _class_poly_data[i].coefs;
if (D != 0) *D = -_class_poly_data[i].D;
if (type != 0) *type = ctype;
if (T == 0) return degree;
New(0, *T, degree+1, mpz_t);
mpz_init(t);
for (j = 0; j < degree; j++) {
unsigned char signcount = (*s++) & 0xFF;
unsigned char sign = signcount >> 7;
unsigned long count = signcount & 0x7F;
if (count == 127) {
do {
signcount = (*s++) & 0xFF;
count += signcount;
} while (signcount == 127);
}
mpz_set_ui(t, 0);
while (count-- > 0) {
mpz_mul_2exp(t, t, 8);
mpz_add_ui(t, t, (unsigned long) (*s++) & 0xFF);
}
/* Cube the last coefficient of Hilbert polys */
if (j == 0 && ctype == 1) mpz_pow_ui(t, t, 3);
if (sign) mpz_neg(t, t);
mpz_init_set( (*T)[j], t );
}
mpz_clear(t);
mpz_init_set_ui( (*T)[degree], 1 );
return degree;
}
|