File: aks.c

package info (click to toggle)
libmath-prime-util-gmp-perl 0.41-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 1,232 kB
  • ctags: 821
  • sloc: ansic: 13,320; perl: 3,471; sh: 159; makefile: 3
file content (444 lines) | stat: -rw-r--r-- 13,362 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#include <math.h>
#include <gmp.h>
#include "ptypes.h"

/*****************************************************************************
 *
 *            The AKS polynomial-time deterministic primality test.
 *
 * Multiple variants are implemented.  The original algorithm as shown in
 * articles such as Rotella (2005) is not here as it is much slower than
 * the essentially identical algorithm in the updated (V6) AKS paper.  The
 * updated paper uses improved theorems based on Lenstra et al. which allows
 * loweing some limits used in the algorithm.
 *
 * All versions have a relatively similar O(log^{6.x}(n)) asymptotic growth,
 * which is what we expect from AKS.
 *
 * A version with improvements from Voloch and Bornemann is included, and
 * is similar to Bornemann's 2002 Pari/GP implementation.  It is *much* faster
 * than the V6 algorithm, and to the best of my knowledge is the fastest
 * publicly available AKS implementation in early 2016.
 *
 * The Bernstein 4.1 algorithm implements theorem 4.1 from Bernstein's 2003
 * paper, which has the Voloch improvements as well as many more.  It is
 * another 10-20x faster than the Bornemann version, hence is substantially
 * faster than any other known implementation in mid 2016.
 *
 * Copyright (2012-2016) Dana Jacobsen.
 *
 *****************************************************************************/


/* In approximate order of performance. */
#define AKS_VARIANT_V6        1    /* The V6 paper with Lenstra impr */
#define AKS_VARIANT_BERN21    2    /* AKS-Bernstein-Morain theorem 2.1 */
#define AKS_VARIANT_BERN22    3    /* AKS-Bernstein-Morain theorem 2.2 */
#define AKS_VARIANT_BERN23    4    /* AKS-Bernstein-Morain theorem 2.3 */
#define AKS_VARIANT_BORNEMANN 5    /* Based on Folkmar Bornemann's impl */
#define AKS_VARIANT_BERN41    6    /* Bernstein 2003, theorem 4.1 */

#define AKS_VARIANT  AKS_VARIANT_BERN41


#include "aks.h"
#include "prime_iterator.h"
#include "factor.h"

#if AKS_VARIANT == AKS_VARIANT_BORNEMANN
#define FUNC_mpz_logn 1
#endif
#define FUNC_mpz_log2 1
#include "utility.h"


static int test_anr(UV a, mpz_t n, UV r, mpz_t* px, mpz_t* py)
{
  int retval = 1;
  UV i, n_mod_r;
  mpz_t t;

  for (i = 0; i < r; i++)
    mpz_set_ui(px[i], 0);

  a %= r;
  mpz_set_ui(px[0], a);
  mpz_set_ui(px[1], 1);

  poly_mod_pow(py, px, n, r, n);

  mpz_init(t);
  n_mod_r = mpz_mod_ui(t, n, r);
  if (n_mod_r >= r)  croak("n mod r >= r ?!");
  mpz_sub_ui(t, py[n_mod_r], 1);
  mpz_mod(py[n_mod_r], t, n);
  mpz_sub_ui(t, py[0], a);
  mpz_mod(py[0], t, n);
  mpz_clear(t);

  for (i = 0; i < r; i++)
    if (mpz_sgn(py[i]))
      retval = 0;
  return retval;
}

#if AKS_VARIANT != AKS_VARIANT_V6
static int is_primitive_root_uiprime(mpz_t n, UV r)
{
  int res;
  mpz_t zr;
  mpz_init_set_ui(zr, r);
  res = is_primitive_root(n, zr, 1);
  mpz_clear(zr);
  return res;
}
#endif
#if AKS_VARIANT == AKS_VARIANT_BERN21
static UV largest_factor(UV n) {
  UV p = 2;
  PRIME_ITERATOR(iter);
  while (n >= p*p && !prime_iterator_isprime(&iter, n)) {
    while ( (n % p) == 0  &&  n >= p*p ) { n /= p; }
    p = prime_iterator_next(&iter);
  }
  prime_iterator_destroy(&iter);
  return n;
}
#endif
#if AKS_VARIANT == AKS_VARIANT_BERN41
int bern41_acceptable(mpz_t n, UV r, UV s, mpz_t t1, mpz_t t2)
{
  double scmp = ceil(sqrt( (r-1)/3.0 )) * mpz_log2(n);
  UV d = (UV) (0.5 * (r-1));
  UV i = (UV) (0.475 * (r-1));
  UV j = i;
  /* Ensure conditions are correct */
  if (d > r-2)     d = r-2;
  if (i > d)       i = d;
  if (j > (r-2-d)) j = r-2-d;

  mpz_bin_uiui(t2, 2*s, i);
  mpz_bin_uiui(t1, d, i);       mpz_mul(t2, t2, t1);
  mpz_bin_uiui(t1, 2*s-i, j);   mpz_mul(t2, t2, t1);
  mpz_bin_uiui(t1, r-2-d, j);   mpz_mul(t2, t2, t1);
  return (mpz_log2(t2) >= scmp);
}
#endif



int is_aks_prime(mpz_t n)
{
  mpz_t *px, *py;
  int retval;
  UV i, s, r, a;
  UV starta = 1;
  int _verbose = get_verbose_level();

  if (mpz_cmp_ui(n, 4) < 0)
    return (mpz_cmp_ui(n, 1) <= 0) ? 0 : 1;

  /* Just for performance: check small divisors: 2*3*5*7*11*13*17*19*23 */
  if (mpz_gcd_ui(0, n, 223092870UL) != 1 && mpz_cmp_ui(n, 23) > 0)
    return 0;

  if (mpz_perfect_power_p(n))
    return 0;

#if AKS_VARIANT == AKS_VARIANT_V6    /* From the V6 AKS paper */
  {
    mpz_t sqrtn, t;
    double log2n;
    UV limit, startr;
    PRIME_ITERATOR(iter);

    mpz_init(sqrtn);
    mpz_sqrt(sqrtn, n);

    log2n = mpz_log2(n);
    limit = (UV) floor( log2n * log2n );

    if (_verbose>1) gmp_printf("# AKS checking order_r(%Zd) to %"UVuf"\n", n, (unsigned long) limit);

    /* Using a native r limits us to ~2000 digits in the worst case (r ~ log^5n)
     * but would typically work for 100,000+ digits (r ~ log^3n).  This code is
     * far too slow to matter either way.  Composite r is ok here, but it will
     * always end up prime, so save time and just check primes. */
    retval = 0;
    /* Start order search at a good spot.  Idea from Nemana and Venkaiah. */
    startr = (mpz_sizeinbase(n,2)-1) * (mpz_sizeinbase(n,2)-1);
    startr = (startr < 1002) ? 2 : startr - 100;
    for (r = 2; /* */; r = prime_iterator_next(&iter)) {
      if (mpz_divisible_ui_p(n, r) ) /* r divides n.  composite. */
        { retval = 0; break; }
      if (mpz_cmp_ui(sqrtn, r) <= 0) /* no r <= sqrtn divides n.  prime. */
        { retval = 1; break; }
      if (r < startr) continue;
      if (mpz_order_ui(r, n, limit) > limit)
        { retval = 2; break; }
    }
    prime_iterator_destroy(&iter);
    mpz_clear(sqrtn);
    if (retval != 2) return retval;

    /* Since r is prime, phi(r) = r-1. */
    s = (UV) floor( sqrt(r-1) * log2n );
  }
#elif AKS_VARIANT == AKS_VARIANT_BORNEMANN /* Bernstein + Voloch */
  {
    UV slim;
    double c2, x;
    /* small t = few iters of big poly.  big t = many iters of small poly */
    double const t = (mpz_sizeinbase(n, 2) <= 64) ? 32 : 40;
    double const t1 = (1.0/((t+1)*log(t+1)-t*log(t)));
    double const dlogn = mpz_logn(n);
    mpz_t tmp;
    PRIME_ITERATOR(iter);

    mpz_init(tmp);
    prime_iterator_setprime(&iter, (UV) (t1*t1 * dlogn*dlogn) );
    r = prime_iterator_next(&iter);
    while (!is_primitive_root_uiprime(n,r))
      r = prime_iterator_next(&iter);
    prime_iterator_destroy(&iter);

    slim = (UV) (2*t*(r-1));
    c2 = dlogn * floor(sqrt(r));
    { /* Binary search for first s in [1,slim] where x >= 0 */
      UV bi = 1;
      UV bj = slim;
      while (bi < bj) {
        s = bi + (bj-bi)/2;
        mpz_bin_uiui(tmp, r+s-1, s);
        x = mpz_logn(tmp) / c2 - 1.0;
        if (x < 0)  bi = s+1;
        else        bj = s;
      }
      s = bi-1;
    }
    s = (s+3) >> 1;
    /* Bornemann checks factors up to (s-1)^2, we check to max(r,s) */
    /* slim = (s-1)*(s-1); */
    slim = (r > s) ? r : s;
    if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim);
    if (_GMP_trial_factor(n, 2, slim) > 1)
      { mpz_clear(tmp); return 0; }
    mpz_sqrt(tmp, n);
    if (mpz_cmp_ui(tmp, slim) <= 0)
      { mpz_clear(tmp); return 1; }
    mpz_clear(tmp);
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN21
  { /* Bernstein 2003, theorem 2.1 (simplified) */
    UV q;
    double slim, scmp, x;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    r = s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r = prime_iterator_next(&iter);
      q = largest_factor(r-1);
      mpz_set_ui(t, r);
      mpz_powm_ui(t, n, (r-1)/q, t);
      if (mpz_cmp_ui(t, 1) <= 0) continue;
      scmp = 2 * floor(sqrt(r)) * mpz_log2(n);

      slim = 20 * (r-1);

      /* Check viability */
      mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        if (mpz_log2(t) > scmp) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN22
  { /* Bernstein 2003, theorem 2.2 (simplified) */
    UV q;
    double slim, scmp, x;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    r = s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r = prime_iterator_next(&iter);
      if (!is_primitive_root_uiprime(n,r)) continue;
      q = r-1;   /* Since r is prime, phi(r) = r-1 */
      scmp = 2 * floor(sqrt(r-1)) * mpz_log2(n);

      slim = 20 * (r-1);

      /* Check viability */
      mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        if (mpz_log2(t) > scmp) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN23
  { /* Bernstein 2003, theorem 2.3 (simplified) */
    UV q, d, limit;
    double slim, scmp, sbin, x, log2n;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    log2n = mpz_log2(n);
    limit = (UV) floor( log2n * log2n );
    r = 2;
    s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r++;
      UV gcd = mpz_gcd_ui(NULL, n, r);
      if (gcd != 1) { mpz_clear(t); mpz_clear(t2); return 0; }
      UV v = mpz_order_ui(r, n, limit);
      if (v >= limit) continue;

      mpz_set_ui(t2, r);
      totient(t, t2);
      q = mpz_get_ui(t);
      UV phiv = q/v;
      /* printf("phi(%lu)/v = %lu/%lu = %lu\n", r, q, v, phiv); */

      /* This is extremely inefficient. */

      /* Choose an s value we'd be happy with */
      slim = 20 * (r-1);

      /* Quick check to see if it could work with s=slim, d=1 */
      mpz_bin_uiui(t, q+slim-1, slim);
      sbin = mpz_log2(t);
      if (sbin < 2*floor(sqrt(q))*log2n)
        continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        sbin = mpz_log2(t);
        if (sbin < 2*floor(sqrt(q))*log2n) continue;   /* d=1 */
        /* Check each number dividing phi(r)/v */
        for (d = 2; d < phiv; d++) {
          if ((phiv % d) != 0) continue;
          scmp = 2 * d * floor(sqrt(q/d)) * log2n;
          if (sbin < scmp) break;
        }
        /* if we did not exit early, this s worked for each d.  This s wins. */
        if (d >= phiv) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN41
  {
    double const log2n = mpz_log2(n);
    /* Tuning: Initial 'r' selection */
    double const r0 = 0.008 * log2n * log2n;
    /* Tuning: Try a larger 'r' if 's' looks very large */
    UV const rmult = 8;
    UV slim;
    mpz_t tmp, tmp2;
    PRIME_ITERATOR(iter);

    mpz_init(tmp);  mpz_init(tmp2);
    /* r has to be at least 3. */
    prime_iterator_setprime(&iter, (r0 < 2) ? 2 : (UV) r0);
    r = prime_iterator_next(&iter);

    /* r must be a primitive root.  For performance, skip if s looks too big. */
    while ( !is_primitive_root_uiprime(n, r) ||
            !bern41_acceptable(n, r, rmult*(r-1), tmp, tmp2) )
      r = prime_iterator_next(&iter);
    prime_iterator_destroy(&iter);

    { /* Binary search for first s in [1,lim] where conditions met */
      UV bi = 1;
      UV bj = rmult * (r-1);
      while (bi < bj) {
        s = bi + (bj-bi)/2;
        if (!bern41_acceptable(n,r,s,tmp,tmp2))  bi = s+1;
        else                                     bj = s;
      }
      s = bj;
      /* Our S goes from 2 to s+1. */
      starta = 2;
      s = s+1;
    }
    /* printf("chose r=%lu s=%lu d = %lu i = %lu j = %lu\n", r, s, d, i, j); */

    /* Check divisibility to s(s-1) to cover both gcd conditions */
    slim = s * (s-1);
    if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim);
    if (_GMP_trial_factor(n, 2, slim) > 1)
      { mpz_clear(tmp); mpz_clear(tmp2); return 0; }
    /* If we checked divisibility to sqrt(n), then it is prime. */
    mpz_sqrt(tmp, n);
    if (mpz_cmp_ui(tmp, slim) <= 0)
      { mpz_clear(tmp); mpz_clear(tmp2); return 1; }

    /* Check b^(n-1) = 1 mod n for b in [2..s] */
    mpz_sub_ui(tmp2, n, 1);
    for (i = 2; i <= s; i++) {
      mpz_set_ui(tmp, i);
      mpz_powm(tmp, tmp, tmp2, n);
      if (mpz_cmp_ui(tmp, 1) != 0)
        { mpz_clear(tmp); mpz_clear(tmp2); return 0; }
    }

    mpz_clear(tmp);  mpz_clear(tmp2);
  }

#endif

  if (_verbose) gmp_printf("# AKS %Zd.  r = %"UVuf" s = %"UVuf"\n", n, (unsigned long) r, (unsigned long) s);

  /* Create the three polynomials we will use */
  New(0, px, r, mpz_t);
  New(0, py, r, mpz_t);
  if ( !px || !py )
    croak("allocation failure\n");
  for (i = 0; i < r; i++) {
    mpz_init(px[i]);
    mpz_init(py[i]);
  }

  retval = 1;
  for (a = starta; a <= s; a++) {
    retval = test_anr(a, n, r, px, py);
    if (!retval) break;
    if (_verbose>1) { printf("."); fflush(stdout); }
  }
  if (_verbose>1) { printf("\n"); fflush(stdout); };

  /* Free the polynomials */
  for (i = 0; i < r; i++) {
    mpz_clear(px[i]);
    mpz_clear(py[i]);
  }
  Safefree(px);
  Safefree(py);

  return retval;
}