1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
[MPU - Primality Certificate]
Version 1.0
# We should allow base 10, base 16, and base 62. Base 10 is the default.
Base 10
# This is the N value we're proving.
Proof for:
N 8087094497428743437627091507362881
# The following types allow a simple chain:
# Pocklington
# BLS3
# BLS15
# ECPP
# Small
# These could result in a tree:
# Lucas
# BLS5
# BLS7
#
# Types ECPP3 and ECPP4 are from Primo, and can be easily translated into
# a type ECPP. We include them here rather than convert because they save
# quite a bit of space and we may want to generate them ourselves someday.
# I remain dubious about including them, so it is possible they will go away
# in the format and we'll just have the converter/verifier do the conversion.
#
# MPU will generate types: BLS3, BLS15, ECPP, BLS5, Small.
# Primo (converted) will generate types: Pocklington, BLS15, ECPP3, ECPP4.
# Lucas is included for completeness.
# I no longer use BLS7 so will not include it.
# BLS## stands for theorem ## in the paper:
# "New Primality Criteria and Factorizations of 2^m +/- 1" by
# Brillhart, Lehmer, and Selfridge, Mathematics of Computation, 1975.
# which includes 21 theorems related to N-1, N+1, and hybrid primality proofs.
# The paper is often referred to as BLS75, and is highly recommended reading.
# I allow N or any Q smaller than 2^64 to implicitly construct a "Small"
# certificate. So once we have a Q of <= 2^64, we can run a deterministic
# test to prove its primality. One of the many BPSW variants works for this,
# or 7 M-R tests with bases 2, 325, 9375, 28178, 450775, 9780504, 1795265022.
# Hence if we have Q values <= 2^64, the verifier needs to do its test, and
# the certificate can leave out an explicit proof for the Q. This is done
# to prevent a few Lucas, BLS5, etc. type tests from creating a swarm of
# "Small" certificates for each little factor.
Type BLS15
N 8087094497428743437627091507362881
Q 175806402118016161687545467551367
LP 1
LQ 22
# Note: Primo type 2 can map to this, though this allows Q to be
# smaller. ( prevR->N, R->Q, S->M, Q->(LP,LQ) )
# Primo condition a is implied by Q odd
# Primo condition c is stricter than required by BLS15.
# Primo conditions e and f relate to the Lucas code
# Primo condition g is not required
# Verify: Q is odd
# Verify: Q > 2
# Verify: Q divides N+1
# Let: M = (N+1)/Q
# Verify: MQ-1 = N # Primo d
# Verify: M > 0 # Primo b
# Verify: 2Q-1 > sqrt(N) # Primo c (less strict)
# Let: D = LP*LP - 4*LQ
# Verify: D != 0
# Verify Jacobi(D,N) = -1 # Primo h
# Verify V_{m/2} mod N != 0 # Primo j
# Verify V_{(N+1)/2} mod N == 0 # Primo i
# Then N is prime if Q is prime.
Type ECPP
N 175806402118016161687545467551367
A 96642115784172626892568853507766
B 111378324928567743759166231879523
M 175806402118016177622955224562171
Q 2297612322987260054928384863
X 3273750212
Y 82061726986387565872737368000504
# Generic ECPP / AKGM block
# A and/or B can be -1, so mod them.
# Let A = A % N
# Let B = B % N
# Verify: N > 0 # Primo b
# Verify: gcd(N, 6) = 1 # Primo a
# Verify: gcd(4*a^3 + 27*b^2, N) = 1 # Primo i
# Verify: Y^2 mod N = X^3 + A*X + B mod N # Primo j
# Verify: M >= N + 1 - 2*sqrt(N) # Primo g
# Verify: M <= N + 1 + 2*sqrt(N) # Primo h
# Verify: Q > (N^(1/4)+1)^2 # Primo f
# Verify: Q < N # Primo e
# Verify: M != Q
# Verify: Q divides M
# Note: EC(A,B,N,X,Y) defines the elliptic curve Y^2 = X^3 + A*X + B, mod N
# with operations defined in affine coordinates.
# Let POINT = (M/Q) * EC(A,B,N,X,Y)
# Verify: POINT is not the identity # Primo k
# Let POINT = Q * POINT (or M * EC(A,B,N,X,Y))
# Verify: POINT is the identity # Primo l
# Then N is prime if Q is prime.
Type BLS3
N 2297612322987260054928384863
Q 16501461106821092981
A 5
# Note: This is similar to Pocklington, but Q can be smaller.
# Verify: Q odd
# Verify: Q > 2
# Verify: Q divides N-1
# Let: M = (N-1)/Q
# Verify: MQ+1 = N
# Verify: M > 0
# Verify: 2Q+1 > sqrt(N)
# Verify A^((N-1)/2) mod N = N-1
# Verify A^(M/2) mod N != N-1
# Then N is prime if Q is prime.
Type BLS5
N 8087094497428743437627091507362881
Q[1] 98277749
Q[2] 3631
A[0] 11
----
# Note: This also covers generalized Pocklington
# Note: We have to have N-1 factored to (N/2)^1/3
# Note: A line starting with - is required at the end.
# Verify: N > 2, N odd
# For each i (0-max):
# Q[0] = 2 # 2 is always a factor of n-1
# A[i] = 2 unless specified
# Verify: Q[i] > 1, Q[i] < N-1
# Verify: A[i] > 1, A[i] < N-1
# Verify: Q[i] divides N-1
# Let: F = N-1 divided by each Q[i] with multiplicity
# (i.e. if Q[i] evenly divides N-1 3 times, then divide it out 3 times)
# Let: R = (N-1)/F
# Verify: F is even
# Verify: gcd(F, R) = 1
# Let: s = integer part of R / 2*F
# Let: r = fractional part of R / 2*F
# Let: P = (F+1) * (2*F*F + (r-1)*F + 1)
# Verify: n < P
# Note: The next condition is trivially met if F >= R,
# as is the case with Pocklington.
# Let: rt = r^2 - 8s
# Verify: s = 0 OR rt not a perfect square [e.g. floor(sqrt(rt))^2 != rt]
# For each i:
# Verify: A[i]^(N-1) mod N = 1
# Verify: gcd(A[i]^((N-1)/Q[i])-1, N) = 1
# Then N is prime if each Q is prime.
Type Lucas
N 10384593717069655257060992658440473
Q[1] 2
Q[2] 3
Q[3] 13
Q[4] 379
Q[5] 87820459687010818424506060639
A 41
# Note: All factors of N-1 are listed
# Verify: A > 1 and A < N
# Verify: N-1 has only factors Q (to some multiplicity).
# Verify: A^(N-1) mod N = 1
# Verify for each Q:
# Q > 0
# Q < N-1
# Q divides N-1
# A^((N-1)/Q) mod N != 1
# Then N is prime if each Q is prime.
Type Pocklington
N 2297612322987260054928384863
Q 16501461106821092981
A 5
# Note: This is Primo type 1 ( prevR->N, R->Q, S->M, B->A )
# verify: Q divides N-1
# let: M = (N-1)/Q
# Verify: M is even # Primo a
# Verify: M > 0 # Primo b
# Verify: M < Q # Primo c
# Verify: MQ+1 = N # Primo d
# Verify: A > 1 # Primo e
# Verify: A^(N-1) mod N = 1 # Primo f
# Verify: gcd(A^M - 1, N) = 1 # Primo g
# Then N is prime if Q is prime.
Type ECPP3
N 33863876771064627047864880693347
S 8929168182
R 3792500721324706215857
A -30
B 56
T 0
# From Primo. Experimental, may go away.
# Verify: |A| <= N/2
# Verify: |B| <= N/2
# Verify: T >= 0
# Verify: T < N
# Let: L = (T^3 + A*T + B) mod N
# Let: A = (A * L^2) mod N
# Let: B = (B * L^3) mod N
# Let: X = (T*L) mod N
# Let: Y = (L^2) mod N
# Let: Q = R
# Let: M = R*S
# Continue as type ECPP.
Type ECPP4
N 346908375519289784739191985209489924762236002832827279935279239073873837063
S 26591618
R 13045779144363828659812726897983038292936490633310834005307717308699
J -4092776160830678382137043215242735918658074999545950247507675196218505248
T 4
# From Primo. Experimental, may go away.
# Verify: |J| <= N/2
# Verify: T >= 0
# Verify: T < N
# Let: A = 3 * J * (1728 - J)
# Let: B = 2 * J * (1728 - J)^2
# Let: L = (T^3 + A*T + B) mod N
# Let: A = (A * L^2) mod N
# Let: B = (B * L^3) mod N
# Let: X = (T*L) mod N
# Let: Y = (L^2) mod N
# Let: Q = R
# Let: M = R*S
# Continue as type ECPP.
Type Small
N 5791
# Verify: N < 2^64
# Verify: N is prime using BPSW or deterministic M-R tests
# Experimental, not used:
#Type BLS7
#N 10384593717069655257060992658440473
#Q[1] 87820459687010818424506060639
#Q[2] 379
#Q[3] 13
#Q[4] 3
#Q[5] 2
#A[1] 2
#A[2] 2
#A[3] 2
#A[4] 19
#A[5] 5
#B 10000
#AR 2
# Verify for each i:
# Q[i] > 1, Q[i] < N
# A[i] > 1, A[i] < N
# Q[i] divides n-1
# Let: F = product of all Qs
# Let: R = N/F
# Verify: F is even
# Verify: gcd(F, R) = 1
# Verify: F has no factors smaller than B (this may be time consuming)
# Let: s = integer part of R / 2*F
# Let: r = fractional part of R / 2*F
# Let: P = (F*B+1) * (2*F*F + (r-B)*F + 1)
# Verify: n < P
# Let: rt = r^2 - 8s
# Verify: s = 0 OR rt not a perfect square [e.g. floor(sqrt(rt))^2 != rt]
# For each i:
# Verify: A[i]^(N-1) mod N = 1
# Verify: gcd(A[i]^((N-1)/Q[i])-1, N) = 1
# Verify: AR^(N-1) mod N = 1
# Verify: gcd(AR^((N-1)/R)-1, N) = 1
# Then N is prime if each Q is prime.
|