1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <gmp.h>
#include "ptypes.h"
#include "random_prime.h"
#include "utility.h"
#include "primality.h"
#include "gmp_main.h"
#include "isaac.h"
#include "prime_iterator.h"
static char pr[31] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127};
void mpz_random_nbit_prime(mpz_t p, UV n)
{
switch (n) {
case 0:
case 1: mpz_set_ui(p, 0); return;
case 2: mpz_set_ui(p, pr[ 0+isaac_rand(2)]); return;
case 3: mpz_set_ui(p, pr[ 2+isaac_rand(2)]); return;
case 4: mpz_set_ui(p, pr[ 4+isaac_rand(2)]); return;
case 5: mpz_set_ui(p, pr[ 6+isaac_rand(5)]); return;
case 6: mpz_set_ui(p, pr[11+isaac_rand(7)]); return;
case 7: mpz_set_ui(p, pr[18+isaac_rand(13)]); return;
default: break;
}
/* For 32-bit inputs, use fast trivial method */
if (n <= 32) {
uint32_t mask = (0xFFFFFFFFU >> (34-n)) << 1, base = mask+3;
do {
mpz_set_ui(p, base | (isaac_rand32() & mask));
} while (!_GMP_is_prob_prime(p));
} else {
#if 0
do { /* Trivial method. */
mpz_isaac_urandomb(p, n);
mpz_setbit(p, n-1);
mpz_setbit(p, 0);
} while (!_GMP_is_prob_prime(p));
#else
mpz_t base; /* Fouque+Tibouchi Alg 1, without modulo checks */
mpz_init(base);
if (n > 33) { mpz_isaac_urandomb(base, n-33); mpz_mul_2exp(base,base,1); }
mpz_setbit(base, n-1);
mpz_setbit(base, 0);
do {
mpz_set_ui(p, isaac_rand32());
mpz_mul_2exp(p, p, n-32);
mpz_ior(p, p, base);
} while (!_GMP_is_prob_prime(p));
mpz_clear(base);
#endif
}
}
/* PRIMEINC: pick random value, select next prime. */
/* Fast but bad distribution. */
static int _random_prime_primeinc(mpz_t p, mpz_t lo, mpz_t hi)
{
mpz_t r, t;
mpz_init(t);
mpz_init(r);
mpz_sub(r, hi, lo);
mpz_isaac_urandomm(t, r);
mpz_clear(r);
mpz_add(t, t, lo);
mpz_sub_ui(t, t, 1);
_GMP_next_prime(t);
if (mpz_cmp(t,hi) > 0) {
mpz_sub_ui(t, lo, 1);
_GMP_next_prime(t);
if (mpz_cmp(t,hi) > 0) {
mpz_clear(t);
return 0;
}
}
mpz_set(p, t);
mpz_clear(t);
return 1;
}
/* TRIVIAL: pick random values until one is prime */
/* Perfect distribution. */
static int _random_prime_trivial(mpz_t p, mpz_t lo_in, mpz_t hi_in)
{
mpz_t r, t, lo, hi;
int res = 0, tries = 10000;
if (mpz_cmp_ui(hi_in,2) < 0 || mpz_cmp(lo_in,hi_in) > 0)
return 0;
mpz_init_set(lo, lo_in);
mpz_init_set(hi, hi_in);
if (mpz_cmp_ui(lo,2) <= 0) {
mpz_set_ui(lo,1);
} else if (mpz_even_p(lo)) {
mpz_add_ui(lo,lo,1);
}
if (mpz_cmp_ui(hi,2) <= 0) {
mpz_set_ui(hi,1);
} else if (mpz_even_p(hi)) {
mpz_sub_ui(hi,hi,1);
}
/* lo and hi are now odd */
if (mpz_cmp(lo,hi) >= 0) {
if (mpz_cmp(lo,hi) > 0) {
/* null range */
} else if (mpz_cmp_ui(lo,1) == 0) {
mpz_set_ui(p,2);
res = 1;
} else if (_GMP_is_prob_prime(lo)) {
mpz_set(p,lo);
res = 1;
}
mpz_clear(hi); mpz_clear(lo);
return res;
}
/* lo and hi are now odd and at least one odd between them */
mpz_init(t);
mpz_init(r);
mpz_sub(r, hi, lo);
mpz_tdiv_q_2exp(r, r, 1);
mpz_add_ui(r,r,1);
do {
mpz_isaac_urandomm(t, r);
mpz_mul_2exp(t, t, 1);
mpz_add(t, t, lo);
if (mpz_cmp_ui(t,1) == 0) mpz_set_ui(t,2); /* map 1 back to 2 */
} while (!_GMP_is_prob_prime(t) && --tries > 0);
if (tries > 0) {
mpz_set(p, t);
res = 1;
} else {
/* We couldn't find anything. Perhaps no primes in range. */
res = _random_prime_primeinc(p, lo, hi);
}
mpz_clear(r); mpz_clear(t); mpz_clear(hi); mpz_clear(lo);
return res;
}
/* Set p to a random prime between lo and hi inclusive */
int mpz_random_prime(mpz_t p, mpz_t lo, mpz_t hi)
{
return _random_prime_trivial(p,lo,hi);
}
void mpz_random_ndigit_prime(mpz_t p, UV n)
{
mpz_t lo, hi;
switch (n) {
case 0: mpz_set_ui(p,0); return;
case 1: mpz_set_ui(p, pr[isaac_rand(4)]); return;
case 2: mpz_set_ui(p, pr[4+isaac_rand(21)]); return;
default: break;
}
mpz_init_set_ui(lo,10);
mpz_pow_ui(lo, lo, n-1);
mpz_init(hi);
mpz_mul_ui(hi, lo, 10);
if (!mpz_random_prime(p, lo, hi))
croak("Failed to find %"UVuf" digit prime\n", n);
mpz_clear(lo);
mpz_clear(hi);
}
/* Random number rop such that 2*mult*rop+1 has nbits bits. */
static void _rand_in_bit_interval(mpz_t rop, UV nbits, mpz_t mult)
{
mpz_t t, lo, hi;
mpz_init(t); mpz_init(lo); mpz_init(hi);
mpz_mul_ui(t, mult, 2);
mpz_setbit(lo, nbits-1);
mpz_sub_ui(lo, lo, 1);
mpz_cdiv_q(lo, lo, t); /* lo = ceil(2^(nbits-1)-1 / (2*mult)) */
mpz_setbit(hi, nbits);
mpz_sub_ui(hi, hi, 2);
mpz_fdiv_q(hi, hi, t); /* hi = floor(2^nbits-2 / (2*mult)) */
mpz_sub(t, hi, lo);
mpz_isaac_urandomm(rop, t);
mpz_add(rop, rop, lo);
mpz_clear(t); mpz_clear(lo); mpz_clear(hi);
}
#define _SAFE_REJECT(q, p1, p2, p3, p4, p5) \
{ uint32_t qm = mpz_fdiv_ui(q, p1*p2*p3*p4*p5); \
if ((qm % p1) == 0 || (qm % p1) == (p1>>1)) continue; \
if ((qm % p2) == 0 || (qm % p2) == (p2>>1)) continue; \
if ((qm % p3) == 0 || (qm % p3) == (p3>>1)) continue; \
if ((qm % p4) == 0 || (qm % p4) == (p4>>1)) continue; \
if ((qm % p5) == 0 || (qm % p5) == (p5>>1)) continue; \
}
void mpz_random_safe_prime(mpz_t p, UV nbits)
{
static const unsigned char small_safe[] = {5,7,11,23,47,59,83,107};
mpz_t q, base;
uint32_t qmod, PR, tlimit;
int verbose;
PRIME_ITERATOR(iter);
switch (nbits) {
case 0: case 1: case 2: mpz_set_ui(p, 0); return;
case 3: mpz_set_ui(p, small_safe[ 0+isaac_rand(2)]); return;
case 4: mpz_set_ui(p, 11); return;
case 5: mpz_set_ui(p, 23); return;
case 6: mpz_set_ui(p, small_safe[ 4+isaac_rand(2)]); return;
case 7: mpz_set_ui(p, small_safe[ 6+isaac_rand(2)]); return;
default: break;
}
mpz_init(q); mpz_init(base);
if (nbits > 35) {
mpz_isaac_urandomb(base, nbits-35);
mpz_mul_2exp(base,base,2);
}
mpz_setbit(base, nbits-1);
mpz_setbit(base, 1);
mpz_setbit(base, 0);
verbose = get_verbose_level();
tlimit = (nbits <= 512000) ? (nbits*(nbits/64.0) + 0.5) : 4000000000U;
while (1) {
/* 1. Generate random nbit p */
if (nbits > 35) {
mpz_set_ui(p, isaac_rand32());
mpz_mul_2exp(p, p, nbits-33);
} else {
mpz_isaac_urandomb(p, nbits-3);
mpz_mul_2exp(p, p, 2);
}
mpz_ior(p, p, base);
/* 2. p = 2q+1 => q = p >> 1 */
mpz_div_2exp(q, p, 1);
/* 3. Fast compositeness pretests for both q and p at the same time. */
qmod = mpz_fdiv_ui(q, 1155UL);
if ( (qmod % 3) != 2 ||
(qmod % 5) == 0 || (qmod % 7) == 0 || (qmod % 11) == 0 ||
(qmod % 5) == 2 || (qmod % 7) == 3 || (qmod % 11) == 5) continue;
if (nbits < 16) {
/* 4. Pretest that p isn't easily composite */
if (!primality_pretest(p)) continue;
/* 5. Pretest that q isn't easily composite */
if (!primality_pretest(q)) continue;
} else {
_SAFE_REJECT(q, 13U, 17U, 19U, 23U, 29U);
_SAFE_REJECT(q, 31U, 37U, 41U, 43U, 47U);
_SAFE_REJECT(q, 53U, 59U, 61U, 67U, 71U);
_SAFE_REJECT(q, 73U, 79U, 83U, 89U, 97U);
if (tlimit >= 101) {
prime_iterator_setprime(&iter, PR = 101);
while (PR <= tlimit) {
uint32_t qm = mpz_fdiv_ui(q, PR);
if (qm == 0 || qm == (PR>>1)) break;
PR = prime_iterator_next(&iter);
}
if (PR <= tlimit) continue;
}
}
if (verbose > 2) { printf("."); fflush(stdout); }
/* 6. BPSW on q and M-R base 2 on p. */
if (!is_euler_plumb_pseudoprime(q)) continue; /* Start faster */
if (verbose > 2) { printf("+"); fflush(stdout); }
if (!miller_rabin_ui(p, 2)) continue;
if (verbose > 2) { printf("*"); fflush(stdout); }
if (!_GMP_is_lucas_pseudoprime(q, 2)) continue;
if (nbits > 64 && !miller_rabin_ui(q, 2)) continue; /* Verify fast test */
break;
}
mpz_clear(base); mpz_clear(q);
prime_iterator_destroy(&iter);
}
/* Gordon's algorithm */
void mpz_random_strong_prime(mpz_t p, UV nbits)
{
mpz_t S, T, R, P0, t, i, j;
UV rbits, sbits, tbits;
if (nbits < 128) croak("random_strong_prime, bits must be >= 128");
if (nbits < 256) {
rbits = ((nbits+1) >> 1) - 2;
sbits = (nbits >> 1) - 20;
tbits = rbits - 20;
} else {
UV N1, N2;
{ /* Calculate FIPS 186-4 C.10 recommended parameter */
UV t_, l2_;
for (l2_ = 1, t_ = nbits; t_ >>= 1; ) l2_++;
N1 = (nbits/2)-l2_-7;
N2 = N1/2;
}
if (N1 > 200) N1 = 201;
if (N2 > 100) N2 = 101;
if (N2 < 100) N2 += N1/4;
rbits = sbits = N1;
tbits = N2;
}
mpz_init(S); mpz_init(T); mpz_init(R); mpz_init(P0);
mpz_init(t); mpz_init(i); mpz_init(j);
while (1) {
mpz_random_nbit_prime(S, sbits);
mpz_random_nbit_prime(T, tbits);
_rand_in_bit_interval(i, rbits, T);
while (1) {
mpz_mul(t, i, T);
mpz_mul_ui(t, t, 2);
mpz_add_ui(R, t, 1); /* R = 2*i*T+1 */
if (_GMP_is_prob_prime(R)) break;
mpz_add_ui(i,i,1);
}
mpz_sub_ui(t, R, 2);
mpz_powm(P0, S, t, R);
mpz_mul_ui(P0, P0, 2);
mpz_mul(P0, P0, S);
mpz_sub_ui(P0, P0, 1);
mpz_mul(i, R, S);
mpz_mul_ui(t, i, 2);
_rand_in_bit_interval(j, nbits, i);
while (1) {
mpz_mul(p, j, t);
mpz_add(p, p, P0); /* p = 2*j*R*S+p0 */
if (mpz_sizeinbase(p,2) > nbits) break;
if (_GMP_is_prob_prime(p)) {
mpz_clear(t); mpz_clear(i); mpz_clear(j);
mpz_clear(S); mpz_clear(T); mpz_clear(R); mpz_clear(P0);
/* p-1 has factor R. p+1 has factor S. r-1 has factor T. */
return;
}
mpz_add_ui(j,j,1);
}
}
}
/*===========================================================================*/
/* Proven primes (Maurer and Shawe-Taylor */
/*===========================================================================*/
#define MAKE_PROOF_START(proofptr, n, nums) \
if (proofptr) { \
char* thisproof, *thisptr; \
int prevlen = (*proofptr == 0) ? 0 : strlen(*proofptr); \
int thislen = (5 + mpz_sizeinbase(n,10)) * nums + 200; \
New(0, thisproof, thislen + prevlen + 1, char); \
thisptr = thisproof; \
thisptr += gmp_sprintf(thisptr,
#define MAKE_PROOF_END(proofptr) \
); \
if (*proofptr) { \
thisptr += gmp_sprintf(thisptr,"\n"); \
strcat(thisptr, *proofptr); \
Safefree(*proofptr); \
} \
*proofptr = thisproof; \
}
#define USE_THEOREM5 0
void mpz_random_maurer_prime(mpz_t n, UV k, char** proofptr)
{
mpz_t t, a, q, I, R;
double m, r, minr = USE_THEOREM5 ? 0.334 : 0.5;
int i, verbose = get_verbose_level();
/* We could use safely use k <= 64. */
if (k <= 32)
return mpz_random_nbit_prime(n, k);
r = minr; /* size of q relative to size of n */
m = 20; /* always use at least this many bits of randomness */
if (k > 2*m) {
do {
double s = ((double)isaac_rand32()) / ((double)4294967295.0); /* [0,1] */
r = pow(2,s-1); /* exp2 is C99 */
#if USE_THEOREM5
r = 0.334 + 1.332 * (r-0.5); /* Stretch r to cover 0.334 - 1 */
#endif
} while ((k-r*k) <= m);
}
#if 0 /* Improve efficiency for less than ideal distribution */
r -= 0.25; if (r < minr) r = minr;
#endif
mpz_init(t); mpz_init(a); mpz_init(q); mpz_init(I); mpz_init(R);
mpz_random_maurer_prime(q, (UV)(r*k)+1, proofptr);
mpz_setbit(I, k-1);
mpz_mul_ui(t, q, 2);
mpz_fdiv_q(I, I, t); /* I = floor(2^(k-1) / 2q) */
if (verbose && verbose != 3)
{ gmp_printf("r = %lf k = %lu q = %Zd I = %Zd\n",r,k,q,I); fflush(stdout); }
while (1) {
if (verbose > 2) { printf("."); fflush(stdout); }
mpz_isaac_urandomm(R, I); /* [0, I-1] */
mpz_add(R, R, I); /* [I, 2I-I] */
mpz_add_ui(R, R, 1); /* [I+1,2I] */
#if USE_THEOREM5
mpz_setbit(R, 0); /* We need R to be odd */
#endif
mpz_mul(n, R, q);
mpz_mul_ui(n,n,2);
mpz_add_ui(n,n,1); /* n = 2Rq+1 */
if (!primality_pretest(n)) continue;
if (verbose > 2) { printf("+"); fflush(stdout); }
/* if (!is_euler_plumb_pseudoprime(n)) continue; */
if (!miller_rabin_ui(n,2)) continue;
/* n is a base-2 psp and probably prime */
if (verbose > 2) { printf("*"); fflush(stdout); }
/* See if we can use BLS75 theorem 3 */
mpz_mul_ui(t, q, 2);
mpz_add_ui(t, t, 1);
mpz_mul(t, t, t);
if (mpz_cmp(t, n) > 0) {
for (i = 0; i < 20; i++) {
mpz_set_ui(a, pr[i]);
/* Check A^R mod N != N-1 */
mpz_powm(a, a, R, n);
mpz_add_ui(t,a,1);
if (mpz_cmp(t, n) == 0) continue;
/* Check A^{Rq} mod N == N-1 */
mpz_powm(a, a, q, n);
mpz_add_ui(t,a,1);
if (mpz_cmp(t, n) != 0) continue;
if (verbose > 2) { printf("(%"UVuf")",k); fflush(stdout); }
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(n,2)) croak("Maurer internal failure");
MAKE_PROOF_START(proofptr, n, 3)
"Type BLS3\nN %Zd\nQ %Zd\nA %u\n", n, q, pr[i]
MAKE_PROOF_END(proofptr)
mpz_clear(t); mpz_clear(a); mpz_clear(q); mpz_clear(I); mpz_clear(R);
return;
}
/* Blast, we couldn't find the right 'a' value fast enough. Try a new n. */
continue;
}
/* Our q is smaller than sqrt(n)/2-1, so use BLS75 theorem 5. */
#if !USE_THEOREM5
croak("random_maurer_prime: internal bit size error");
#else
/* Check for obvious generation problems. */
if (mpz_even_p(R)) continue;
if (mpz_cmp_ui(R, 1) <= 0) continue;
mpz_gcd(t, q, R); if (mpz_cmp_ui(t, 1) != 0) continue;
/* Theorem 5 with m = 2, assuming (I) which we'll check after this. */
{
mpz_t ts, tr, F;
mpz_init(ts); mpz_init(tr); mpz_init(F);
mpz_mul_ui(F, q, 2);
/* Calculate r,s from page 624 of BLS75 */
mpz_mul_ui(t, F, 2);
mpz_tdiv_qr(ts, tr, R, t);
/* Verify the r,s condition */
mpz_mul(t, tr, tr);
mpz_submul_ui(t, ts, 8); /* t = r^2-8s */
if (mpz_sgn(ts) != 0 && mpz_perfect_square_p(t)) {
/* printf("fail r/s check\n"); */
mpz_clear(ts); mpz_clear(tr); mpz_clear(F);
continue;
}
/* Verify size of N with m=2. a,t are temps. Should not fail. */
mpz_mul(t, F, tr);
mpz_add_ui(a, t, 1); /* a = rF + 1 */
mpz_sub_ui(tr, tr, 1);
mpz_mul(t, F, F);
mpz_mul_ui(t, t, 2);
mpz_mul(t, t, tr);
mpz_add(a, a, t); /* a = (r-1)2FF + rF + 1 */
mpz_mul(t, F, F);
mpz_mul(t, t, F);
mpz_mul_ui(t, t, 4);
mpz_add(a, a, t); /* a = 4FFF + (r-1)2FF + rF + 1 */
mpz_add_ui(t, F, 1);
mpz_clear(tr); mpz_clear(ts); mpz_clear(F);
if (mpz_cmp(n,a) >= 0) {
/* printf("fail N size check\n"); */
continue;
}
/* Check divisibility required to use m=2 */
if (mpz_divisible_p(n,t)) {
/* printf("fail N divisiblity check\n"); */
continue;
}
}
#define SET_A_CHECK_PSP(i) \
mpz_set_ui(a, pr[i]); \
if (apsp[i] == -1) \
{ mpz_sub_ui(t,n,1); mpz_powm(t,a,t,n); apsp[i] = (mpz_cmp_ui(t,1) == 0); } \
if (apsp[i] == 0) continue;
#define CHECK_GCD(t) \
mpz_powm(t, a, t, n); mpz_sub_ui(t, t, 1); mpz_gcd(t, t, n); \
if (mpz_cmp_ui(t,1) != 0) continue;
{
int j, apsp[20]; /* apsp caches psp check. Init all to -1. */
for (i = 0; i < 20; i++) apsp[i] = -1;
apsp[0] = 1; /* We passed a base 2 psp test to get here */
/* Find an a that works for p=2 */
for (i = 0; i < 20; i++) {
SET_A_CHECK_PSP(i);
mpz_mul(t, q, R);
CHECK_GCD(t);
/* We are good for p=2. Find an a for p=q. */
for (j = 0; j < 20; j++) {
SET_A_CHECK_PSP(j);
mpz_mul_ui(t, R, 2);
CHECK_GCD(t);
/* Success */
if (verbose > 2) { printf("(%lu)",k); fflush(stdout); }
if (i == 0 && j == 0) {
MAKE_PROOF_START(proofptr, n, 2)
"Type BLS5\nN %Zd\nQ[1] %Zd\n----\n", n, q
MAKE_PROOF_END(proofptr)
} else {
MAKE_PROOF_START(proofptr, n, 2)
"Type BLS5\nN %Zd\nQ[1] %Zd\nA[0] %lu\nA[1] %lu\n----\n", n, q, pr[i], pr[j]
MAKE_PROOF_END(proofptr)
}
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(n,2)) croak("Maurer internal failure");
mpz_clear(t); mpz_clear(a); mpz_clear(q); mpz_clear(I); mpz_clear(R);
return;
}
break; /* Failed for p=q */
}
}
/* Blast, we couldn't find the right 'a' value fast enough. Try a new n. */
#endif
}
}
/* FIPS 186-4 algorithm but using our CSPRNG (ISAAC) instead of SHA-256 */
void mpz_random_shawe_taylor_prime(mpz_t c, UV k, char** proofptr)
{
mpz_t c0, t, u, a, z;
if (k <= 32)
return mpz_random_nbit_prime(c, k);
mpz_init(c0); mpz_init(t); mpz_init(u); mpz_init(a); mpz_init(z);
mpz_random_shawe_taylor_prime(c0, 1 + (k+1)/2, proofptr);
mpz_isaac_urandomb(t, k-1);
mpz_setbit(t,k-1); /* Steps 18-21: t a random k-bit integer */
mpz_mul_ui(u, c0, 2);
mpz_cdiv_q(t, t, u); /* Step 22: set t based on random integer */
while (1) {
/* Steps 23-24 */
mpz_mul_ui(u, c0, 2); /* u = 2c0 */
mpz_mul(c, u, t);
mpz_add_ui(c, c, 1); /* c = 2tc0+1 */
if (mpz_sizeinbase(c,2) > k) {
mpz_set_ui(t,0);
mpz_setbit(t,k-1);
mpz_cdiv_q(t, t, u);
mpz_mul(c, u, t);
mpz_add_ui(c, c, 1);
}
/* Don't bother with Steps 26-31 for obvious composites */
if (primality_pretest(c) && miller_rabin_ui(c,2)) {
/* Steps 26-29 */
mpz_sub_ui(u, c, 3);
mpz_isaac_urandomm(a, u);
mpz_add_ui(a, a, 2);
/* Step 30 */
mpz_mul_ui(u, t, 2);
mpz_powm(z, a, u, c);
/* Step 31 */
mpz_sub_ui(u, z, 1);
mpz_gcd(u, u, c);
if (mpz_cmp_ui(u, 1) == 0) {
mpz_powm(u, z, c0, c);
if (mpz_cmp_ui(u, 1) == 0) {
/* Ensure all results passed BPSW. ~20% speed penalty. */
if (!_GMP_is_lucas_pseudoprime(c,2)) croak("ST internal failure");
MAKE_PROOF_START(proofptr, c, 3)
"Type Pocklington\nN %Zd\nQ %Zd\nA %Zd\n", c, c0, a
MAKE_PROOF_END(proofptr)
mpz_clear(c0); mpz_clear(t); mpz_clear(u); mpz_clear(a); mpz_clear(z);
return;
}
}
}
mpz_add_ui(t,t,1);
}
}
/*===========================================================================*/
|