1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
|
#include <string.h>
#include <math.h>
#include <float.h>
#include <gmp.h>
#include "ptypes.h"
#include "real.h"
#include "prime_iterator.h"
#include "primality.h"
#include "factor.h"
#define FUNC_mpz_logn 1
#include "utility.h"
static unsigned long precbits(mpf_t x, unsigned long prec, unsigned long add) {
unsigned long bits1 = mpf_get_prec(x), bits2 = DIGS2BITS(prec);
return add + ((bits1 > bits2) ? bits1 : bits2);
}
/*****************************************************************************/
/* Put result into char with correct number of digits */
static char* _str_real(mpf_t f, unsigned long prec) {
char* out;
unsigned long k;
int neg = (mpf_sgn(f) < 0);
if (neg)
mpf_neg(f, f);
for (k = 0; mpf_cmp_ui(f, 1000000000U) >= 0; k += 9)
mpf_div_ui(f, f, 1000000000U);
for (; mpf_cmp_ui(f, 1) >= 0; k++)
mpf_div_ui(f, f, 10);
New(0, out, 10+((k>prec) ? k : prec), char);
gmp_sprintf(out, "%.*Ff", prec, f);
if (out[0] == '0') {
memmove(out, out+2, prec);
} else { /* We rounded up. Treat like 0.1 with one larger k */
memmove(out+1, out+2, prec);
k++;
}
if (k >= prec) { /* No decimal */
if (k-prec < 10) {
memset(out+prec, '0', k-prec);
prec=k-1;
} else {
out[prec++] = 'E';
prec += sprintf(out+prec, "%lu", k-prec+1);
}
} else { /* insert decimal in correct place */
memmove(out+k+1, out+k, prec-k);
out[k] = '.';
}
out[prec+1]='\0';
if (neg) {
memmove(out+1, out, prec+2);
out[0] = '-';
}
return out;
}
static char* _frac_real(mpz_t num, mpz_t den, unsigned long prec) {
#if 0
char* out;
mpf_t fnum, fden, res;
unsigned long numbits = mpz_sizeinbase(num, 2);
unsigned long denbits = mpz_sizeinbase(den, 2);
unsigned long numdigs = mpz_sizeinbase(num, 10);
unsigned long dendigs = mpz_sizeinbase(den, 10);
mpf_init2(fnum, 1 + numbits); mpf_set_z(fnum, num);
mpf_init2(fden, 1 + denbits); mpf_set_z(fden, den);
mpf_init2(res, (unsigned long) (8 + (numbits-denbits+1) + prec*3.4) );
mpf_div(res, fnum, fden);
mpf_clear(fnum); mpf_clear(fden);
New(0, out, (10+numdigs-dendigs)+prec, char);
gmp_sprintf(out, "%.*Ff", (int)(prec), res);
mpf_clear(res);
return out;
#else
char* out;
mpf_t fnum, fden;
unsigned long bits = 32+(unsigned long)(prec*3.32193);
mpf_init2(fnum, bits); mpf_set_z(fnum, num);
mpf_init2(fden, bits); mpf_set_z(fden, den);
mpf_div(fnum, fnum, fden);
out = _str_real(fnum, prec);
mpf_clear(fden);
mpf_clear(fnum);
return out;
#endif
}
/********************* Riemann Zeta and Riemann R *********************/
static void _bern_real_zeta(mpf_t bn, mpz_t zn, unsigned long prec);
static unsigned long zeta_n = 0;
static mpz_t* zeta_d = 0;
void free_borwein_zeta(void) {
unsigned long i;
if (zeta_n > 0) {
for (i = 0; i <= zeta_n; i++)
mpz_clear(zeta_d[i]);
Safefree(zeta_d);
zeta_n = 0;
}
}
static void _borwein_d(unsigned long D) {
mpz_t t1, t2, t3, sum;
unsigned long i, n = 3 + (1.31 * D);
if (zeta_n >= n)
return;
free_borwein_zeta();
n += 10; /* Add some in case we want a few more digits later */
zeta_n = n;
New(0, zeta_d, n+1, mpz_t);
mpz_init(t1); mpz_init(t2); mpz_init(t3);
mpz_init_set_ui(sum, 1);
mpz_init_set(zeta_d[0], sum);
mpz_fac_ui(t1, n);
mpz_fac_ui(t2, n);
for (i = 1; i <= n; i++) {
mpz_mul_ui(t1, t1, 2*(n+i-1)); /* We've pulled out a 2 from t1 and t2 */
mpz_divexact_ui(t2, t2, n-i+1);
mpz_mul_ui(t2, t2, (2*i-1) * i);
mpz_divexact(t3, t1, t2);
mpz_add(sum, sum, t3);
mpz_init_set(zeta_d[i], sum);
}
mpz_clear(sum); mpz_clear(t3); mpz_clear(t2); mpz_clear(t1);
}
/* MPFR does some shortcuts, then does an in-place version of Borwein 1991.
* It's quite clever, and has the advantage of not using the statics. Our
* code can be a little faster in some cases, slower in others. They
* certainly have done more rigorous error bounding, allowing fewer guard
* bits and earlier loop exits.
*
* For real values, we use our home-grown mpf_pow function, which is slower
* at high precisions compared to MPFR or Pari.
*/
static void _zeta(mpf_t z, mpf_t f, unsigned long prec)
{
unsigned long k, S, p;
mpf_t s, tf, term;
mpz_t t1;
if (mpf_cmp_ui(f,1) == 0) {
mpf_set_ui(z, 0);
return;
}
/* Shortcut if we know all prec terms are zeros. */
if (mpf_cmp_ui(f, 1+3.3219281*prec) >= 0 || mpf_cmp_ui(f, mpf_get_prec(z)) > 0) {
mpf_set_ui(z,1);
return;
}
S = (mpf_integer_p(f) && mpf_fits_ulong_p(f)) ? mpf_get_ui(f) : 0;
/* Negative integers using Bernoulli */
if (S == 0 && mpf_integer_p(f) && mpf_fits_slong_p(f) && mpf_sgn(f) != 0) {
S = -mpf_get_si(f);
if (!(S & 1)) { /* negative even integers are zero */
mpf_set_ui(z,0);
} else { /* negative odd integers are -B_(n+1)/(n+1) */
mpz_t n;
mpz_init_set_ui(n, S+1);
_bern_real_zeta(z, n, prec);
mpf_div_ui(z, z, S+1);
mpf_neg(z,z);
mpz_clear(n);
}
return;
}
mpf_init2(s, 96+mpf_get_prec(z)); mpf_set(s, f);
mpf_init2(tf, 96+mpf_get_prec(z));
mpf_init2(term, 96+mpf_get_prec(z));
mpz_init(t1);
if (S && S <= 14 && !(S & 1)) { /* Small even S can be done with Pi */
unsigned long div[]={0,6,90,945,9450,93555,638512875,18243225};
const_pi(z, prec);
mpf_pow_ui(z, z, S);
if (S == 12) mpf_mul_ui(z, z, 691);
if (S == 14) mpf_mul_ui(z, z, 2);
mpf_div_ui(z, z, div[S/2]);
} else if (mpf_cmp_ui(f, 3+prec*2.15) > 0) { /* Only one term (3^s < prec) */
if (S) {
mpf_set_ui(term, 1);
mpf_mul_2exp(term, term, S);
} else {
mpf_set_ui(term, 2);
mpf_pow(term, term, s);
}
mpf_sub_ui(tf, term, 1);
mpf_div(z, term, tf);
} else if ( (mpf_cmp_ui(f,20) > 0 && mpf_cmp_ui(f, prec/3.5) > 0) ||
(prec > 500 && (mpz_ui_pow_ui(t1, 8*prec, S), mpz_sizeinbase(t1,2) > (20+3.3219281*prec))) ) {
/* Basic formula, for speed (also note only valid for > 1) */
PRIME_ITERATOR(iter);
mpf_set_ui(z, 1);
for (p = 2; p <= 1000000000; p = prime_iterator_next(&iter)) {
if (S) {
mpz_ui_pow_ui(t1, p, S);
mpf_set_z(term, t1);
} else {
mpf_set_ui(tf, p);
mpf_pow(term, tf, s);
mpz_set_f(t1, term);
}
if (mpz_sizeinbase(t1,2) > (20+3.3219281*prec)) break;
mpf_sub_ui(tf, term, 1);
mpf_div(term, term, tf);
mpf_mul(z, z, term);
}
prime_iterator_destroy(&iter);
} else {
/* TODO: negative non-integer inputs past -20 or so are very wrong. */
_borwein_d( (mpf_cmp_d(f,-3.0) >= 0) ? prec : 80+2*prec );
mpf_set_ui(z, 0);
for (k = 0; k <= zeta_n-1; k++) {
if (S) {
mpz_ui_pow_ui(t1, k+1, S);
mpf_set_z(term, t1);
} else {
mpf_set_ui(tf, k+1);
mpf_pow(term, tf, s);
}
mpz_sub(t1, zeta_d[k], zeta_d[zeta_n]);
mpf_set_z(tf, t1);
mpf_div(term, tf, term);
if (k&1) mpf_sub(z, z, term);
else mpf_add(z, z, term);
}
mpf_set_z(tf, zeta_d[zeta_n]);
mpf_div(z, z, tf);
if (S) {
mpf_set_ui(tf, 1);
mpf_div_2exp(tf, tf, S-1);
} else {
mpf_set_ui(term, 2);
mpf_ui_sub(tf, 1, s);
mpf_pow(tf, term, tf);
}
mpf_ui_sub(tf, 1, tf);
mpf_div(z, z, tf);
mpf_neg(z, z);
}
mpz_clear(t1);
mpf_clear(term); mpf_clear(tf); mpf_clear(s);
}
static void _zetaint(mpf_t z, unsigned long s, unsigned long prec)
{
mpf_t f;
if (s <= 1) {
mpf_set_ui(z, 0);
} else if (s >= (1+3.3219281*prec) || s > mpf_get_prec(z)) {
/* Shortcut if we know all prec terms are zeros. */
mpf_set_ui(z,1);
} else {
mpf_init2(f, mpf_get_prec(z));
mpf_set_ui(f, s);
_zeta(z, f, prec);
mpf_clear(f);
}
}
static void _riemann_r(mpf_t r, mpf_t n, unsigned long prec)
{
mpf_t logn, sum, term, part_term, tol, tf;
unsigned long k, bits = precbits(r, prec, 7);
mpf_init2(logn, bits);
mpf_init2(sum, bits);
mpf_init2(term, bits);
mpf_init2(part_term, bits);
mpf_init2(tol, bits);
mpf_init2(tf, bits);
mpf_log(logn, n);
mpf_set_ui(tol, 10); mpf_pow_ui(tol, tol, prec); mpf_ui_div(tol,1,tol);
#if 1 /* Standard Gram Series */
mpf_set_ui(part_term, 1);
mpf_set_ui(sum, 1);
for (k = 1; k < 10000; k++) {
mpf_mul(part_term, part_term, logn);
mpf_div_ui(part_term, part_term, k);
_zetaint(tf, k+1, prec+1);
mpf_mul_ui(tf, tf, k);
mpf_div(term, part_term, tf);
mpf_add(sum, sum, term);
mpf_abs(term, term);
mpf_mul(tf, sum, tol);
if (mpf_cmp(term, tf) <= 0) break;
}
#else /* Accelerated (about half the number of terms needed) */
/* See: http://mathworld.wolfram.com/GramSeries.html (5)
* Ramanujan's G (3) and its restatements (5) and (6) are equal,
* but G is only asymptotically equal to R (restated in (4) as per Gram).
* To avoid confusion we won't use this. Too bad, as it can be 2x faster.
*/
mpf_set(part_term, logn);
mpf_set_ui(sum, 0);
_zetaint(tf, 2, prec);
mpf_div(term, part_term, tf);
mpf_add(sum, sum, term);
for (k = 2; k < 1000000; k++) {
if (mpf_cmp(part_term, tol) <= 0) break;
mpf_mul(tf, logn, logn);
if (k < 32768) {
mpf_div_ui(tf, tf, (2*k-2) * (2*k-1));
} else {
mpf_div_ui(tf, tf, 2*k-2); mpf_div_ui(tf, tf, 2*k-1);
}
mpf_mul(part_term, part_term, tf);
_zetaint(tf, 2*k, prec);
mpf_mul_ui(tf, tf, 2*k-1);
mpf_div(term, part_term, tf);
mpf_add(sum, sum, term);
}
mpf_mul_ui(sum, sum, 2);
mpf_add_ui(sum, sum, 1);
#endif
mpf_set(r, sum);
mpf_clear(tf); mpf_clear(tol); mpf_clear(part_term);
mpf_clear(term); mpf_clear(sum); mpf_clear(logn);
}
/*********************** Constants: Euler, Pi ***********************/
/* See:
* http://numbers.computation.free.fr/Constants/Gamma/gamma.pdf
* https://www.ginac.de/CLN/binsplit.pdf (3.1)
* https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/gamma_gazmath_eng.pdf
* Pari/GP trans1.c
*
* Mortici and Chen (2013) have a O(n^-12) method, but it still too slow.
* https://link.springer.com/content/pdf/10.1186/1029-242X-2013-222.pdf
*
* The Stieltjes zeta method isn't terrible but too slow for large n.
*
* We use the same series method as Pari, running about 3x faster.
* We should use binary splitting as it still isn't really fast.
* Each doubling of digits increases time by 4x.
*/
static void _const_euler(mpf_t gamma, unsigned long prec)
{
const double log10 = 2.3025850929940456840179914546843642076L;
const unsigned long maxsqr = (1UL << (4*sizeof(unsigned long))) - 1;
unsigned long bits = 40 + DIGS2BITS(prec);
unsigned long x = floor(2 + prec * log10/4);
unsigned long N = ceil(1 + 3.591121477*x - 0.195547*log(x));
unsigned long xx = x*x;
unsigned long k;
mpf_t u, v, a, b, fxx;
if (prec <= 100) {
mpf_set_str(gamma, "0.5772156649015328606065120900824024310421593359399235988057672348848677267776646709369470632917467495", 10);
return;
}
mpf_init2(u, bits);
mpf_init2(v, bits);
mpf_init2(a, bits);
mpf_init2(b, bits);
/*
* Brent and McMillan (1980) algorithm B1.
* http://www.ams.org/journals/mcom/1980-34-149/S0025-5718-1980-0551307-4/
*/
mpf_set_ui(u, x);
mpf_log(u, u);
mpf_neg(u, u);
mpf_set(a, u);
mpf_set_ui(b, 1);
mpf_set_ui(v, 1);
if (x <= maxsqr && N <= maxsqr) {
for (k = 1; k <= N; k++) {
mpf_mul_ui(b, b, xx);
mpf_div_ui(b, b, k*k); /* B_k = B_{k-1} * x^2 / k^2 */
mpf_mul_ui(a, a, xx);
mpf_div_ui(a, a, k);
mpf_add(a, a, b);
mpf_div_ui(a, a, k); /* A_k = (A_{k-1} * x^2 / k + B_k) / k */
mpf_add(u, u, a);
mpf_add(v, v, b);
}
} else {
mpf_init2(fxx,bits);
mpf_set_ui(fxx, x);
mpf_mul(fxx, fxx, fxx);
for (k = 1; k <= N; k++) {
mpf_mul(b,b,fxx);
if (k <= maxsqr) { mpf_div_ui(b,b,k*k); }
else { mpf_div_ui(b,b,k); mpf_div_ui(b,b,k); }
mpf_mul(a,a,fxx);
mpf_div_ui(a, a, k);
mpf_add(a, a, b);
mpf_div_ui(a, a, k);
mpf_add(u, u, a);
mpf_add(v, v, b);
}
mpf_clear(fxx);
}
mpf_div(gamma, u, v);
mpf_clear(u); mpf_clear(v); mpf_clear(a); mpf_clear(b);
}
/* There are a plethora of interesting ways to calculate Pi.
*
* - Spigot. Far too slow, though nice in plain C for a few hundred digits.
*
* - Machin-like, using Machin, Störmer, Chien-lih, Arndt, etc.
* See http://www.jjj.de/arctan/arctanpage.html for best arctan series.
*
* - AGM. Quite good, and this seems to be best for relatively small sizes.
* See: https://arxiv.org/abs/1802.07558
*
* - Ramanujan / Chudnovsky with binary splitting.
* About 2-4x faster than AGM for large enough sizes. This version is based
* on Alexander Yee's example. I have tested vs a port of Pari/GP's abpq_sum
* and it came out about the same speed but uses a lot more memory.
* There are many more optimizations that can be done for this. Xue's code
* on the GMP page uses quite a bit of code to do running reduction of P,Q
* which makes it about 1.5x faster.
*/
static void _set_pqr(mpz_t P, mpz_t Q, mpz_t R, unsigned long b)
{
if (sizeof(unsigned long) < 8 || b > 630000) {
mpz_set_ui(P, b);
mpz_mul(Q, P, P);
mpz_mul_ui(R, P, 26726400UL);
mpz_mul_ui(R, R, 409297880UL);
mpz_mul(Q, Q, R);
mpz_set_ui(R, 2*b-1);
mpz_mul_ui(R, R, 6*b-5);
mpz_mul_ui(R, R, 6*b-1);
mpz_mul_ui(P, P, 545140134UL);
mpz_add_ui(P, P, 13591409UL);
} else {
mpz_set_ui(Q, b*b*b);
mpz_mul_ui(Q, Q, 26726400UL*409297880UL); /* 10939058860032000UL */
mpz_set_ui(R, (2*b-1) * (6*b-5) * (6*b-1));
mpz_set_ui(P, b*545140134UL);
mpz_add_ui(P, P, 13591409UL);
}
mpz_mul(P, P, R);
if (b % 2 == 1) mpz_neg(P, P);
}
static void _sum_pqr(mpz_t P, mpz_t Q, mpz_t R, mpz_t u, unsigned long a, unsigned long b)
{
if (b-a == 1) {
_set_pqr(P, Q, R, b);
} else {
mpz_t P1, Q1, R1;
unsigned long m;
mpz_init(P1); mpz_init(Q1); mpz_init(R1);
if (b-a == 2) {
_set_pqr(P, Q, R, b-1);
_set_pqr(P1, Q1, R1, b);
} else if (b-a == 3) {
m = a+2;
_sum_pqr(P, Q, R, u, a, m);
_set_pqr(P1, Q1, R1, b);
} else {
m = a + (b-a)*0.54; /* Biased splitting */
_sum_pqr(P, Q, R, u, a, m);
_sum_pqr(P1, Q1, R1, u, m, b);
}
/* P = P0*Q1+P1*R0 Q = Q0*Q1 R = R0*R1 */
mpz_mul(u, P1, R);
mpz_mul(P, P, Q1); mpz_add(P, P, u);
mpz_mul(Q, Q, Q1);
mpz_mul(R, R, R1);
mpz_clear(P1); mpz_clear(Q1); mpz_clear(R1);
}
}
static void _ramanujan_pi(mpf_t pi, unsigned long prec)
{
unsigned long terms = (1 + DIGS2BITS(prec)/47.11041314);
mpz_t P, Q, R, u;
mpf_t t;
mpz_init(P); mpz_init(Q); mpz_init(R);
mpz_init(u);
_sum_pqr(P, Q, R, u, 0, terms);
mpz_clear(u);
mpz_mul_ui(R, Q, 13591409UL);
mpz_add(P, P, R);
mpz_mul_ui(Q, Q, 4270934400UL);
/* pi = Q / (P * sqrt(10005)) */
mpf_init2(t, mpf_get_prec(pi));
mpf_set_ui(t, 10005);
mpf_sqrt(t, t);
mpf_set_z(pi, P);
mpf_mul(t, t, pi);
mpf_set_z(pi, Q);
mpf_div(pi, pi, t);
mpf_clear(t);
mpz_clear(R); mpz_clear(Q); mpz_clear(P);
}
static void _agm_pi(mpf_t pi, unsigned long prec)
{
mpf_t t, an, bn, tn, prev_an;
unsigned long k, bits = ceil(prec * 3.322);
mpf_init2(t, 10+bits);
mpf_init2(an, 10+bits);
mpf_init2(bn, 10+bits);
mpf_init2(tn, 10+bits);
mpf_init2(prev_an, 10+bits);
mpf_set_ui(an, 1);
mpf_div_2exp(bn, an, 1);
mpf_div_2exp(tn, an, 2);
mpf_sqrt(bn, bn);
/* Comments from Brent 1976 */
for (k = 0; (prec >> (k+1)) > 0; k++) {
mpf_set(prev_an, an); /* Y <- A */
mpf_add(t, an, bn);
mpf_div_2exp(an, t, 1); /* A <- (A+B)/2 */
mpf_mul(t, bn, prev_an);
mpf_sqrt(bn, t); /* B <- (BY)^(1/2) */
mpf_sub(prev_an, prev_an, an);
mpf_mul(t, prev_an, prev_an);
mpf_mul_2exp(t, t, k);
mpf_sub(tn, tn, t); /* T <- T - 2^k (A-Y)^2 */
#if 0 /* Instead of doing the comparison, we assume doubling per iteration */
mpf_sub(t, an, bn);
mpf_mul_2exp(t, t, bits);
if (mpf_cmp_ui(t,1) <= 0) break;
#endif
}
mpf_add(t, an, bn);
mpf_mul(an, t, t);
mpf_mul_2exp(t, tn, 2);
mpf_div(pi, an, t); /* return (A+B)^2 / 4T */
mpf_clear(tn); mpf_clear(bn); mpf_clear(an);
mpf_clear(prev_an); mpf_clear(t);
}
static void _const_pi(mpf_t pi, unsigned long prec)
{
if (prec <= 100) {
mpf_set_str(pi, "3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706798215", 10);
} else if (prec <= 3000) {
_agm_pi(pi, prec);
} else {
_ramanujan_pi(pi, prec);
}
}
/* http://numbers.computation.free.fr/Constants/Log2/log2.ps
* Machin-like formula 25. */
static void _const_log2(mpf_t logn, unsigned long prec)
{
mpf_t t;
mpz_t t1, t2, term1, term2, pows;
unsigned long bits = precbits(logn, prec, 64);
mpz_init(t1); mpz_init(t2); mpz_init(term1); mpz_init(term2); mpz_init(pows);
mpf_init2(t, bits);
mpz_ui_pow_ui(pows, 10, 20+prec);
mpz_arctanh(term1, 26, pows, t1, t2); mpz_mul_ui(term1, term1, 18);
mpz_arctanh(term2, 4801, pows, t1, t2); mpz_mul_ui(term2, term2, 2);
mpz_sub(term1, term1, term2);
mpz_arctanh(term2, 8749, pows, t1, t2); mpz_mul_ui(term2, term2, 8);
mpz_add(term1, term1, term2);
/* term1 = 69313147... */
mpf_set_z(logn, term1);
mpf_set_z(t, pows);
mpf_div(logn, logn, t);
/* logn = .69313147... */
mpf_clear(t);
mpz_clear(t1); mpz_clear(t2); mpz_clear(term1); mpz_clear(term2); mpz_clear(pows);
}
/* Cache constants. We should thread lock these. */
static mpf_t _fconst_euler, _fconst_pi, _fconst_log2;
static unsigned long _prec_euler = 0, _prec_pi = 0, _prec_log2 = 0;
#define CONST_FUNC(name) \
void const_##name(mpf_t c, unsigned long prec) { \
if (prec > _prec_##name) { \
prec += 10; \
if (_prec_##name == 0) mpf_init2(_fconst_##name, 7+DIGS2BITS(prec)); \
else mpf_set_prec(_fconst_##name, 7+DIGS2BITS(prec)); \
_const_##name(_fconst_##name, prec); \
_prec_##name = prec; \
} \
mpf_set(c, _fconst_##name); \
}
CONST_FUNC(euler);
CONST_FUNC(pi);
CONST_FUNC(log2);
void free_float_constants(void) {
_prec_euler = 0; mpf_clear(_fconst_euler);
_prec_pi = 0; mpf_clear(_fconst_pi);
_prec_log2 = 0; mpf_clear(_fconst_log2);
}
/***************** Exponential / Logarithmic Integral *****************/
void li(mpf_t r, mpf_t n, unsigned long prec)
{
mpz_t factorial;
mpf_t logn, sum, inner_sum, term, p, q, tol;
unsigned long j, k, bits = precbits(r, prec, 10);
mpf_init2(logn, bits);
mpf_log(logn, n);
mpf_init2(sum, bits);
mpf_init2(inner_sum, bits);
mpf_init2(term, bits);
mpf_init2(p, bits);
mpf_init2(q, bits);
mpf_init2(tol, bits);
mpf_set_ui(tol, 10); mpf_pow_ui(tol, tol, prec); mpf_ui_div(tol,1,tol);
mpz_init_set_ui(factorial, 1);
mpf_set_si(p, -1);
for (j = 1, k = 0; j < 1000000; j++) {
mpz_mul_ui(factorial, factorial, j);
mpf_mul(p, p, logn);
mpf_neg(p, p);
for (; k <= (j - 1) / 2; k++) {
mpf_set_ui(q, 1);
mpf_div_ui(q, q, 2*k+1);
mpf_add(inner_sum, inner_sum, q);
}
mpf_set_z(q, factorial);
mpf_mul_2exp(q, q, j-1);
mpf_mul(term, p, inner_sum);
mpf_div(term, term, q);
mpf_add(sum, sum, term);
mpf_abs(term, term);
mpf_mul(q, sum, tol);
mpf_abs(q, q);
if (mpf_cmp(term, q) <= 0) break;
}
mpf_sqrt(q, n);
mpf_mul(r, sum, q);
mpf_abs(logn,logn);
mpf_log(q, logn);
mpf_add(r, r, q);
/* Find out roughly how many digits of C we need, then get it and add */
mpf_set(q, r);
for (k = prec; mpf_cmp_ui(q, 1024*1024) >= 0; k -= 6)
mpf_div_2exp(q, q, 20);
const_euler(q, k);
mpf_add(r, r, q);
mpz_clear(factorial);
mpf_clear(tol);
mpf_clear(q);
mpf_clear(p);
mpf_clear(term);
mpf_clear(inner_sum);
mpf_clear(sum);
mpf_clear(logn);
}
void ei(mpf_t r, mpf_t x, unsigned long prec)
{
#if 0
#include <mpfr.h>
mpfr_t C, Cin;
mpfr_init2(C, 10+DIGS2BITS(prec));
mpfr_init2(Cin, mpf_get_prec(x));
mpfr_set_f(Cin, x, MPFR_RNDN);
mpfr_eint(C, Cin, MPFR_RNDN);
mpfr_get_f(r, C, MPFR_RNDN);
mpfr_clear(Cin);
mpfr_clear(C);
return;
#endif
if (mpf_sgn(x) > 0 && mpf_cmp_ui(x, 100) < 0) {
/* x > 0 only */
mpf_t factn, invn, term, sum, t, tol;
unsigned long n, bits = precbits(r, prec, 14);
mpf_init2(factn, bits);
mpf_init2(invn, bits);
mpf_init2(term, bits);
mpf_init2(sum, bits);
mpf_init2(t, bits);
mpf_init2(tol, bits);
mpf_set_ui(tol, 10); mpf_pow_ui(tol, tol, prec+4); mpf_ui_div(tol,1,tol);
mpf_set(factn, x);
for (n = 2; n <= 1000000; n++) {
mpf_set_ui(t, n);
mpf_ui_div(invn, 1, t);
mpf_mul(t, x, invn);
mpf_mul(factn, factn, t);
mpf_mul(term, factn, invn);
mpf_add(sum, sum, term);
mpf_abs(term, term);
mpf_mul(t, sum, tol);
mpf_abs(t, t);
if (mpf_cmp(term, t) <= 0) break;
}
const_euler(t, prec+4); mpf_add(sum, sum, t);
mpf_log(t, x); mpf_add(sum, sum, t);
mpf_add(sum, sum, x);
mpf_set(r, sum);
mpf_clear(tol); mpf_clear(t); mpf_clear(sum);
mpf_clear(term); mpf_clear(invn); mpf_clear(factn);
} else {
mpf_exp(r, x);
li(r, r, prec+3);
}
}
/*************************** Harmonic ***************************/
static void _harmonic(mpz_t a, mpz_t b, mpz_t t) {
mpz_sub(t, b, a);
if (mpz_cmp_ui(t, 1) == 0) {
mpz_set(b, a);
mpz_set_ui(a, 1);
} else {
mpz_t q, r;
mpz_add(t, a, b);
mpz_tdiv_q_2exp(t, t, 1);
mpz_init_set(q, t); mpz_init_set(r, t);
_harmonic(a, q, t);
_harmonic(r, b, t);
mpz_mul(a, a, b);
mpz_mul(t, q, r);
mpz_add(a, a, t);
mpz_mul(b, b, q);
mpz_clear(q); mpz_clear(r);
}
}
void harmfrac(mpz_t num, mpz_t den, mpz_t zn)
{
mpz_t t;
mpz_init(t);
mpz_add_ui(den, zn, 1);
mpz_set_ui(num, 1);
_harmonic(num, den, t);
mpz_gcd(t, num, den);
mpz_divexact(num, num, t);
mpz_divexact(den, den, t);
mpz_clear(t);
}
/************************** Bernoulli **************************/
static void _bern_real_zeta(mpf_t bn, mpz_t zn, unsigned long prec)
{
unsigned long s = mpz_get_ui(zn);
mpf_t tf;
if (s & 1) {
mpf_set_d(bn, (s == 1) ? 0.5 : 0.0);
return;
}
mpf_init2(tf, mpf_get_prec(bn));
/* For large values with low precision, we should look at approximations.
* http://www.ebyte.it/library/downloads/2008_MTH_Nemes_GammaApproximationUpdate.pdf
* http://www.luschny.de/math/primes/bernincl.html
* http://arxiv.org/pdf/math/0702300.pdf
*/
_zetaint(bn, s, prec);
/* We should be using an approximation here, e.g. Pari's mpfactr. For
* large values this is the majority of time taken for this function. */
{ mpz_t t; mpz_init(t); mpz_fac_ui(t, s); mpf_set_z(tf, t); mpz_clear(t);}
mpf_mul(bn, bn, tf);
/* bn = s! * zeta(s) */
const_pi(tf, prec);
mpf_mul_ui(tf, tf, 2);
mpf_pow_ui(tf, tf, s);
mpf_div(bn, bn, tf);
/* bn = s! * zeta(s) / (2Pi)^s */
mpf_mul_2exp(bn, bn, 1);
if ((s & 3) == 0) mpf_neg(bn, bn);
/* bn = (-1)^(n-1) * 2 * s! * zeta(s) / (2Pi)^s */
mpf_clear(tf);
}
static void _bernfrac_comb(mpz_t num, mpz_t den, mpz_t zn, mpz_t t)
{
unsigned long k, j, n = mpz_get_ui(zn);
mpz_t* T;
if (n <= 1 || (n & 1)) {
mpz_set_ui(num, (n<=1) ? 1 : 0);
mpz_set_ui(den, (n==1) ? 2 : 1);
return;
}
/* Denominator */
mpz_set_ui(t, 1);
mpz_mul_2exp(den, t, n); /* den = U = 1 << n */
mpz_sub_ui(t, den, 1); /* t = U-1 */
mpz_mul(den, den, t); /* den = U*(U-1) */
n >>= 1;
/* Luschny's version of the "Brent-Harvey" method */
/* Algorithm TangentNumbers from https://arxiv.org/pdf/1108.0286.pdf */
New(0, T, n+1, mpz_t);
for (k = 1; k <= n; k++) mpz_init(T[k]);
mpz_set_ui(T[1], 1);
for (k = 2; k <= n; k++)
mpz_mul_ui(T[k], T[k-1], k-1);
for (k = 2; k <= n; k++) {
for (j = k; j <= n; j++) {
mpz_mul_ui(t, T[j], j-k+2);
mpz_mul_ui(T[j], T[j-1], j-k);
mpz_add(T[j], T[j], t);
}
}
/* (14), also last line of Algorithm FastTangentNumbers from paper */
mpz_mul_ui(num, T[n], n);
mpz_mul_si(num, num, (n & 1) ? 2 : -2);
for (k = 1; k <= n; k++) mpz_clear(T[k]);
Safefree(T);
}
static void _bernfrac_zeta(mpz_t num, mpz_t den, mpz_t zn, mpz_t t)
{
unsigned long prec, n = mpz_get_ui(zn);
double nbits;
mpf_t bn, tf;
/* Compute integer numerator by getting the real bn first. */
if (n <= 1 || (n & 1)) {
mpz_set_ui(num, (n<=1) ? 1 : 0);
mpz_set_ui(den, (n==1) ? 2 : 1);
return;
}
if (n == 2) { mpz_set_ui(num, 1); mpz_set_ui(den, 6); return; }
/* Calculate denominator */
{
int i, ndivisors;
mpz_t *D;
mpz_set_ui(t, n >> 1);
D = divisor_list(&ndivisors, t);
mpz_set_ui(den, 6);
for (i = 1; i < ndivisors; i++) {
mpz_mul_2exp(t,D[i],1); mpz_add_ui(t,t,1);
if (_GMP_is_prime(t))
mpz_mul(den, den, t);
}
for (i = 0; i < ndivisors; i++)
mpz_clear(D[i]);
Safefree(D);
}
/* Estimate number of bits, from Pari, also see Stein 2006 */
nbits = mpz_logn(den) + (n+0.5) * log((double)n) - n*2.8378770664093454835606594728L + 1.712086L;
nbits /= log(2);
nbits += 32;
prec = (unsigned long)(nbits/3.32193 + 1);
mpf_init2(bn, nbits);
mpf_init2(tf, nbits);
_bern_real_zeta(bn, zn, prec);
mpf_set_z(tf, den);
mpf_mul(bn, bn, tf);
mpf_set_d(tf, (mpf_sgn(bn) < 0) ? -0.5 : 0.5);
mpf_add(bn, bn, tf);
mpz_set_f(num, bn);
mpf_clear(tf);
mpf_clear(bn);
}
void bernfrac(mpz_t num, mpz_t den, mpz_t zn)
{
mpz_t t;
mpz_init(t);
if (mpz_cmp_ui(zn,46) < 0) {
_bernfrac_comb(num, den, zn, t);
} else {
_bernfrac_zeta(num, den, zn, t);
}
mpz_gcd(t, num, den);
mpz_divexact(num, num, t);
mpz_divexact(den, den, t);
mpz_clear(t);
}
/*************************** Lambert W ***************************/
static double _lambertw_approx(double x) {
double w, k1, k2, k3;
if (x < -0.312) {
/* Near the branch point. See Fukushima (2013) section 2.5. */
k2 = 2.0 * (1.0 + 2.71828182845904523536 * x);
if (k2 <= 0) return -1.0 + 1*DBL_EPSILON;
k1 = sqrt(k2);
/* Use Puiseux series, e.g. Verberic 2009, Boost, Johannson (2020). */
w = -1.0 + (1.0 + (-1.0/3.0 + (11.0/72.0 + (-43.0/540.0 + (769.0/17280.0 + (-221.0/8505.0 + (680863.0/43545600.0 + (-1963.0/204120.0 + 226287557.0/37623398400.0
* k1) * k1) * k1) * k1) * k1) * k1) * k1) * k1) * k1;
} else if (x > -0.14 && x < 0.085) {
/* Around zero. See Fukushima (2013) section 2.6. */
w = (1.0 + (-1.0 + (3.0/2.0 + (-8.0/3.0 + (125.0/24.0 + (-54.0/5.0 + (16807.0/720.0 + (-16384.0/315.0 + 531441.0/4480.0
* x) * x) * x) * x) * x) * x) * x) * x) * x;
} else if (x < 1) {
/* This and the rest from Vazquez-Leal et al. (2019). */
k1 = sqrt(1.0 + 2.71828182845904523536 * x);
k2 = 0.33333333333333333333 + 0.7071067811865475244 / k1 - 0.058925565098880 * k1 +
(x + 0.36787944117144) * (0.050248489761611 + (0.11138904851051 + 0.040744556245195 * x) * x)
/
(1.0 + (2.7090878606183 + (1.5510922597820 + 0.095477712183841 * x) * x) * x);
w = -(k2-1)/k2;
} else if (x < 40) {
k1 = 1.0 + (5.950065500550155 + (13.96586471370701 + (10.52192021050505 + (3.065294254265870 + 0.1204576876518760 * x) * x) * x) * x) * x;
w = 0.1600049638651493 * log(k1);
} else if (x < 20000) {
k1 = 1.0 + (-3.16866642511229e11 + (3.420439800038598e10 +
(-1.501433652432257e9 + (3.44887729947585e7 + (-4.453783741137856e5 +
(3257.926478908996 + (-10.82545259305382 + (0.6898058947898353e-1 +
0.4703653406071575e-4 * x) * x) * x) * x) * x) * x) * x) * x) * x;
w = 0.9898045358731312e-1 * log(k1);
} else {
k1 = 1.0 / (1.0 + log(1.0 + x));
k2 = 1.0 / k1;
k3 = log(k2);
w = k2-1-k3+(1+k3+(-1/2+(1/2)*k3*k3 +(-1/6+(-1+(-1/2+
(1/3) * k3) * k3) * k3) * k1) * k1) * k1;
}
/* Improve the FP estimate using two simple Halley iterations. */
if (x >= -0.36728) {
if (w != 0) w = (w/(1.0+w)) * (1.0+log(x/w));
if (w != 0) w = (w/(1.0+w)) * (1.0+log(x/w));
if (isnan(w)) w = DBL_EPSILON;
}
/* Result is over 15 digits, 16 when x > 0 */
return w;
}
static void _lambertw(mpf_t r, mpf_t x, unsigned long prec)
{
int i;
unsigned long bits = 96+mpf_get_prec(r); /* More bits for intermediate */
mpf_t w, t, tol, w1, zn, qn, en;
if (mpf_cmp_d(x, -0.36787944117145) < 0)
croak("Invalid input to LambertW: x must be >= -1/e");
if (mpf_sgn(x) == 0)
{ mpf_set(r, x); return; }
/* Use Fritsch rather than Halley. */
mpf_init2(w, bits);
mpf_init2(t, bits);
mpf_init2(tol, bits);
mpf_init2(w1, bits);
mpf_init2(zn, bits);
mpf_init2(qn, bits);
mpf_init2(en, bits);
/* Initial estimate done in FP instead of mpf. */
mpf_set_d(w, _lambertw_approx(mpf_get_d(x)));
/* Divide prec by 2 since t should be have 4x number of zeros each round */
mpf_set_ui(tol, 10);
mpf_pow_ui(tol, tol, (mpf_cmp_d(x, -.36) < 0) ? prec : prec/2);
mpf_ui_div(tol,1,tol);
for (i = 0; i < 500 && mpz_sgn(w) != 0; i++) {
mpf_add_ui(w1, w, 1);
mpf_div(t, x, w);
mpf_log(zn, t);
mpf_sub(zn, zn, w);
mpf_mul_ui(t, zn, 2);
mpf_div_ui(t, t, 3);
mpf_add(t, t, w1);
mpf_mul(t, t, w1);
mpf_mul_ui(qn, t, 2);
mpf_sub(en, qn, zn);
mpf_mul_ui(t, zn, 2);
mpf_sub(t, qn, t);
mpf_div(en, en, t);
mpf_div(t, zn, w1);
mpf_mul(en, en, t);
mpf_mul(t, w, en);
mpf_add(w, w, t);
mpf_abs(t, t);
if (mpf_cmp(t, tol) <= 0) break;
if (mpf_cmp_d(w,-1) <= 0) break;
}
mpf_clear(en); mpf_clear(qn); mpf_clear(zn);
mpf_clear(w1); mpf_clear(tol); mpf_clear(t);
if (mpf_cmp_d(w, -1) <= 0)
mpf_set_si(r, -1);
else
mpf_set(r, w);
mpf_clear(w);
}
/*****************************************************************************/
/*****************************************************************************/
char* zetareal(mpf_t z, unsigned long prec)
{
size_t est_digits = 10+prec;
char* out;
if (mpf_cmp_ui(z,1) == 0) return 0;
if (mpz_sgn(z) < 0) est_digits += -mpf_get_si(z);
_zeta(z, z, prec);
New(0, out, est_digits, char);
gmp_sprintf(out, "%.*Ff", (int)(prec), z);
return out;
}
char* riemannrreal(mpf_t r, unsigned long prec)
{
if (mpf_cmp_ui(r,0) <= 0) return 0;
_riemann_r(r, r, prec);
return _str_real(r, prec);
}
char* lambertwreal(mpf_t x, unsigned long prec) {
_lambertw(x, x, prec);
return _str_real(x, prec);
}
char* lireal(mpf_t r, unsigned long prec)
{
if (mpf_cmp_ui(r,0) < 0) return 0;
if (mpf_cmp_ui(r,1) == 0) return 0;
li(r, r, prec);
return _str_real(r, prec);
}
char* eireal(mpf_t r, unsigned long prec)
{
if (mpf_cmp_ui(r,0) == 0) return 0;
ei(r, r, prec);
return _str_real(r, prec);
}
#define DEFINE_REAL_1ARG(func, mfunc) \
char* func(mpf_t r, unsigned long prec) { \
mfunc(r, r); \
return _str_real(r, prec); \
}
#define DEFINE_REAL_2ARG(func, mfunc) \
char* func(mpf_t r, mpf_t x, unsigned long prec) { \
mfunc(r, r, x); \
return _str_real(r, prec); \
}
DEFINE_REAL_1ARG(logreal, mpf_log)
DEFINE_REAL_1ARG(expreal, mpf_exp)
DEFINE_REAL_2ARG(powreal, mpf_pow)
DEFINE_REAL_2ARG(rootreal, mpf_root)
DEFINE_REAL_2ARG(addreal, mpf_add)
DEFINE_REAL_2ARG(subreal, mpf_sub)
DEFINE_REAL_2ARG(mulreal, mpf_mul)
DEFINE_REAL_2ARG(divreal, mpf_div)
char* agmreal(mpf_t a, mpf_t b, unsigned long prec)
{
if (mpz_sgn(a) == 0 || mpz_sgn(b) == 0) {
mpf_set_ui(a,0);
} else if (mpz_sgn(a) < 0 || mpz_sgn(b) < 0) {
return 0; /* NaN */
}
mpf_agm(a, a, b);
return _str_real(a, prec);
}
char* eulerconst(unsigned long prec) {
char* out;
mpf_t gamma;
unsigned long bits = 7 + DIGS2BITS(prec);
mpf_init2(gamma, bits);
const_euler(gamma, prec);
New(0, out, prec+4, char);
gmp_sprintf(out, "%.*Ff", (int)(prec), gamma);
mpf_clear(gamma);
return out;
}
char* piconst(unsigned long prec) {
char* out;
mpf_t pi;
unsigned long bits = 7 + DIGS2BITS(prec);
mpf_init2(pi, bits);
const_pi(pi, prec);
New(0, out, prec+4, char);
gmp_sprintf(out, "%.*Ff", (int)(prec-1), pi);
mpf_clear(pi);
return out;
}
char* harmreal(mpz_t zn, unsigned long prec) {
char* out;
mpz_t num, den;
mpz_init(num); mpz_init(den);
harmfrac(num, den, zn);
out = _frac_real(num, den, prec);
mpz_clear(den); mpz_clear(num);
return out;
}
char* bernreal(mpz_t zn, unsigned long prec) {
char* out;
if (mpz_cmp_ui(zn,40) < 0) {
mpz_t num, den, t;
mpz_init(num); mpz_init(den); mpz_init(t);
_bernfrac_comb(num, den, zn, t);
out = _frac_real(num, den, prec);
mpz_clear(t); mpz_clear(den); mpz_clear(num);
} else {
mpf_t z;
unsigned long bits = 32 + DIGS2BITS(prec);
mpf_init2(z, bits);
_bern_real_zeta(z, zn, prec);
out = _str_real(z, prec);
mpf_clear(z);
}
return out;
}
|