1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
/* GMP version of Racing SQUFOF for up to 126-bit inputs.
* Oct 2017 - Dana Jacobsen
*
* Based heavily on Ben Buhrow's racing SQUFOF implementation.
* All factoring operations use 64-bit unsigned longs so it's quite fast.
*
* Realistically it has decent performance up to about 80 bits.
* From 54 to 80 it is faster to first try p-1 to B1 = 1k-16k.
*
* As of 2017, the fastest method for 64-bit is x86-64 Pollard-Rho.
* After that, a tinyqs such as Jason P's cofactorize-siqs seems fastest.
*/
#include <gmp.h>
#include <math.h>
#include "ptypes.h"
#include "squfof126.h"
#define TEST_FOR_2357(n, f) \
{ \
if (mpz_divisible_ui_p(n, 2)) { mpz_set_ui(f, 2); return 1; } \
if (mpz_divisible_ui_p(n, 3)) { mpz_set_ui(f, 3); return 1; } \
if (mpz_divisible_ui_p(n, 5)) { mpz_set_ui(f, 5); return 1; } \
if (mpz_divisible_ui_p(n, 7)) { mpz_set_ui(f, 7); return 1; } \
if (mpz_cmp_ui(n, 121) < 0) { return 0; } \
}
/* Pick type for 64-bit core, plus methods to get/set from GMP */
#if HAVE_STD_U64
#define SQUFOF_TYPE uint64_t
#elif BITS_PER_WORD == 64
#define SQUFOF_TYPE UV
#else
#define SQUFOF_TYPE unsigned long long
#endif
static INLINE SQUFOF_TYPE mpz_get64(mpz_t n) {
SQUFOF_TYPE v = mpz_getlimbn(n,0);
if (GMP_LIMB_BITS < 64 || sizeof(mp_limb_t) < sizeof(SQUFOF_TYPE))
v |= ((SQUFOF_TYPE)mpz_getlimbn(n,1)) << 32;
return v;
}
static INLINE void mpz_set64(mpz_t n, SQUFOF_TYPE v) {
if (v <= 0xFFFFFFFFUL || sizeof(unsigned long int) >= sizeof(SQUFOF_TYPE)) {
mpz_set_ui(n, v);
} else {
uint32_t upper = (v >> 32), lower = v & 0xFFFFFFFFUL;
mpz_set_ui(n, upper);
mpz_mul_2exp(n, n, 32);
mpz_add_ui(n, n, lower);
}
}
typedef struct
{
int valid;
SQUFOF_TYPE P;
SQUFOF_TYPE bn;
SQUFOF_TYPE Qn;
SQUFOF_TYPE Q0;
SQUFOF_TYPE b0;
SQUFOF_TYPE it;
SQUFOF_TYPE imax;
SQUFOF_TYPE mult;
} mult_t;
/* Return 0 or factor */
static SQUFOF_TYPE squfof_unit(mpz_t n, mult_t* mult_save, mpz_t t)
{
SQUFOF_TYPE imax,i,j,Q0,Qn,bn,b0,P,bbn,Ro,S,So,t1,t2;
P = mult_save->P;
bn = mult_save->bn;
Qn = mult_save->Qn;
Q0 = mult_save->Q0;
b0 = mult_save->b0;
i = mult_save->it;
imax = i + mult_save->imax;
#define SQUARE_SEARCH_ITERATION \
t1 = P; \
P = bn*Qn - P; \
t2 = Qn; \
Qn = Q0 + bn*(t1-P); \
Q0 = t2; \
bn = (b0 + P) / Qn; \
i++;
while (1) {
if (i & 0x1) {
SQUARE_SEARCH_ITERATION;
}
/* i is now even */
while (1) {
/* We need to know P, bn, Qn, Q0, iteration count, i from prev */
if (i >= imax) {
/* save state and try another multiplier. */
mult_save->P = P;
mult_save->bn = bn;
mult_save->Qn = Qn;
mult_save->Q0 = Q0;
mult_save->it = i;
return 0;
}
SQUARE_SEARCH_ITERATION; /* Even iteration */
/* Check if Qn is a perfect square */
t2 = Qn & 127;
if (!((t2*0x8bc40d7d) & (t2*0xa1e2f5d1) & 0x14020a)) {
t1 = (uint32_t) sqrt(Qn);
if (Qn == t1*t1)
break;
}
SQUARE_SEARCH_ITERATION; /* Odd iteration */
}
S = t1;
mult_save->it = i;
/* Reduce to G0 */
Ro = P + S*((b0 - P)/S);
/* So = (n - (UV)Ro*(UV)Ro)/(UV)S; */
mpz_set64(t, Ro);
mpz_mul(t, t, t);
mpz_sub(t, n, t);
mpz_div_ui(t, t, S); /* S is 32-bit so this is ok */
So = mpz_get64(t);
bbn = (b0+Ro)/So;
#define SYMMETRY_POINT_ITERATION \
t1 = Ro; \
Ro = bbn*So - Ro; \
if (Ro == t1) break; \
t2 = So; \
So = S + bbn*(t1-Ro); \
S = t2; \
bbn = (b0+Ro)/So;
/* Search for symmetry point, occurs at approximately i/2 */
j = 0;
while (1) {
SYMMETRY_POINT_ITERATION;
SYMMETRY_POINT_ITERATION;
SYMMETRY_POINT_ITERATION;
SYMMETRY_POINT_ITERATION;
if (j++ > imax) {
mult_save->valid = 0;
return 0;
}
}
mpz_set64(t, Ro);
mpz_gcd(t, t, n);
t1 = mpz_get64(t);
if (t1 > 1)
return t1;
}
}
/* Gower and Wagstaff 2008:
* http://www.ams.org/journals/mcom/2008-77-261/S0025-5718-07-02010-8/
* Section 5.3. I've added some with 13,17,19. Sorted by F(). */
static const SQUFOF_TYPE squfof_multipliers[] =
#if 0
{ 3*5*7*11, 3*5*7, 3*5*11, 3*5, 3*7*11, 3*7, 5*7*11, 5*7,
3*11, 3, 5*11, 5, 7*11, 7, 11, 1 };
#endif
#if 0
{ 3*5*7*11, 3*5*7, 3*5*7*11*13, 3*5*7*13, 3*5*7*11*17, 3*5*11,
3*5*7*17, 3*5, 3*5*7*11*19, 3*5*11*13,3*5*7*19, 3*5*7*13*17,
3*5*13, 3*7*11, 3*7, 5*7*11, 3*7*13, 5*7,
3*5*17, 5*7*13, 3*5*19, 3*11, 3*7*17, 3,
3*11*13, 5*11, 3*7*19, 3*13, 5, 5*11*13,
5*7*19, 5*13, 7*11, 7, 3*17, 7*13,
11, 1 };
#endif
#if 1
{ 33*1680, 11*1680, 66*1680, 3*1680, 2*1680, 6*1680, 22*1680, 78*1680,
1*1680, 26*1680, 39*1680, 13*1680,102*1680, 30*1680, 34*1680, 10*1680,
15*1680, 51*1680, 5*1680, 57*1680, 17*1680, 19*1680,
3*5*7*11, 3*5*7, 3*5*7*11*13, 3*5*7*13, 3*5*7*11*17, 3*5*11,
3*5*7*17, 3*5, 3*5*7*11*19, 3*5*11*13,3*5*7*19, 3*5*7*13*17,
3*5*13, 3*7*11, 3*7, 5*7*11, 3*7*13, 5*7,
3*5*17, 5*7*13, 3*5*19, 3*11, 3*7*17, 3,
3*11*13, 5*11, 3*7*19, 3*13, 5, 5*11*13,
5*7*19, 5*13, 7*11, 7, 3*17, 7*13,
11, 1 };
#endif
#define NSQUFOF_MULT (sizeof(squfof_multipliers)/sizeof(squfof_multipliers[0]))
int squfof126(mpz_t n, mpz_t f, UV rounds)
{
mpz_t t, nn64;
mult_t mult_save[NSQUFOF_MULT];
SQUFOF_TYPE i, mult, f64, f64red, sqrtnn64, rounds_done = 0;
int mults_racing = NSQUFOF_MULT;
const uint32_t max_bits = 2 * sizeof(SQUFOF_TYPE)*8 - 2;
if (sizeof(SQUFOF_TYPE) < 8 || mpz_sizeinbase(n,2) > max_bits) {
mpz_set(f, n);
return 0;
}
TEST_FOR_2357(n, f);
for (i = 0; i < NSQUFOF_MULT; i++) {
mult_save[i].valid = -1;
mult_save[i].it = 0;
}
mpz_init(t); mpz_init(nn64);
/* Process the multipliers a little at a time: 0.5 * (n*mult)^1/5 */
while (mults_racing > 0 && rounds_done < rounds) {
for (i = 0; i < NSQUFOF_MULT && rounds_done < rounds; i++) {
if (mult_save[i].valid == 0) continue;
mult = squfof_multipliers[i];
mpz_mul_ui(nn64, n, mult);
if (mult_save[i].valid == -1) {
if (mpz_sizeinbase(nn64,2) > max_bits) {
mult_save[i].valid = 0; /* This multiplier would overflow */
mults_racing--;
continue;
}
mpz_sqrt(t,nn64);
sqrtnn64 = mpz_get64(t);
mpz_mul(t,t,t);
mpz_sub(t, nn64, t);
mult_save[i].valid = 1;
mult_save[i].Q0 = 1;
mult_save[i].b0 = sqrtnn64;
mult_save[i].P = sqrtnn64;
mult_save[i].Qn = mpz_get64(t); /* nn64 - isqrt(nn64)^2 */
if (mult_save[i].Qn == 0) {
mpz_clear(t); mpz_clear(nn64);
mpz_set64(f, sqrtnn64);
return 1; /* nn64 is a perfect square */
}
mpz_root(t, nn64, 5);
mult_save[i].bn = (2 * sqrtnn64) / mult_save[i].Qn; /* n < 127-bit */
mult_save[i].it = 0;
mult_save[i].mult = mult;
mult_save[i].imax = (SQUFOF_TYPE) (0.5 * mpz_get64(t));
if (mult_save[i].imax < 20)
mult_save[i].imax = 20;
}
if (mults_racing == 1 || mult_save[i].imax > (rounds-rounds_done))
mult_save[i].imax = (rounds - rounds_done);
f64 = squfof_unit(nn64, &mult_save[i], t);
if (f64 > 1) {
mpz_set64(t, f64);
f64red = f64 / mpz_gcd_ui(t, t, mult);
if (f64red > 1) {
mpz_clear(t); mpz_clear(nn64);
mpz_set64(f, f64red);
return 1;
}
/* Found trivial factor. Quit working with this multiplier. */
mult_save[i].valid = 0;
}
if (mult_save[i].valid == 0)
mults_racing--;
rounds_done += mult_save[i].imax; /* Assume we did all rounds */
}
}
/* No factors found */
mpz_clear(t);
mpz_clear(nn64);
mpz_set(f, n);
return 0;
}
|