File: 50-factoring.t

package info (click to toggle)
libmath-prime-util-gmp-perl 0.52-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,504 kB
  • sloc: ansic: 16,770; perl: 4,530; sh: 162; makefile: 15
file content (208 lines) | stat: -rw-r--r-- 12,862 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#!/usr/bin/env perl
use strict;
use warnings;

use Test::More;
use Math::Prime::Util::GMP qw/factor is_prime sigma divisors is_semiprime/;

my %sigmas = (
  0 => [2,1,1,1],
  1 => [1,1,1,1],
  2 => [2,3,5,9],
  3 => [2,4,10,28],
  4 => [3,7,21,73],
  5 => [2,6,26,126],
  6 => [4,12,50,252],
  7 => [2,8,50,344],
  8 => [4,15,85,585],
  46 => [4,72,2650,109512],
  189 => [8,320,41000,7031360],
  23948 => [6,41916,752727570,"15665729905692"],
  2394823486 => [8,"3918802104","7228222133779519700","15463194466651766947470799224"],
);

plan tests => 0 + 57
                + 24
                + 2
                + 6    # individual tets for factoring methods
                + 7*7  # factor extra tests
                + 8    # factor in scalar context
                + scalar(keys %sigmas)
                + 3    # divisors
                + 2    # is_semiprime
                + 0;

# On a 64-bit machine, put all 32-bit nums in /tmp/foo, 64-bit in /tmp/foo2
#   for i in `sort -n /tmp/foo`; do perl -MMath::Factor::XS=:all -E "say 'is_deeply( [ factor(', $i, ') ], [', join(',', prime_factors($i)), '], \"factor($i)\" );';"; done
#   for i in `sort -n /tmp/foo2`; do perl -MMath::Factor::XS=:all -E "say 'is_deeply( [ factor(\'', $i, '\') ], [', join(',', prime_factors($i)), '], \"factor($i)\" );';"; done
#
# For the latter, check every factor to make sure it fits in 32-bit, quote if
# not.  Run anything larger than 64-bit through Yafu or Pari.
#
# The obvious point here is that we shouldn't generate tests using our own code,
# unless we want to hand verify each case (admittedly not that hard).
#
#diag "factoring 32-bit numbers";
is_deeply( [ factor(0) ], [0], "factor(0)" );
is_deeply( [ factor(1) ], [], "factor(1)" );
is_deeply( [ factor(2) ], [2], "factor(2)" );
is_deeply( [ factor(3) ], [3], "factor(3)" );
is_deeply( [ factor(4) ], [2,2], "factor(4)" );
is_deeply( [ factor(5) ], [5], "factor(5)" );
is_deeply( [ factor(6) ], [2,3], "factor(6)" );
is_deeply( [ factor(7) ], [7], "factor(7)" );
is_deeply( [ factor(8) ], [2,2,2], "factor(8)" );
is_deeply( [ factor(16) ], [2,2,2,2], "factor(16)" );
is_deeply( [ factor(30) ], [2,3,5], "factor(30)" );
is_deeply( [ factor(57) ], [3,19], "factor(57)" );
is_deeply( [ factor(64) ], [2,2,2,2,2,2], "factor(64)" );
is_deeply( [ factor(210) ], [2,3,5,7], "factor(210)" );
is_deeply( [ factor(377) ], [13,29], "factor(377)" );
is_deeply( [ factor(403) ], [13,31], "factor(403)" );
is_deeply( [ factor(629) ], [17,37], "factor(629)" );
is_deeply( [ factor(779) ], [19,41], "factor(779)" );
is_deeply( [ factor(808) ], [2,2,2,101], "factor(808)" );
is_deeply( [ factor(989) ], [23,43], "factor(989)" );
is_deeply( [ factor(1363) ], [29,47], "factor(1363)" );
is_deeply( [ factor(2310) ], [2,3,5,7,11], "factor(2310)" );
is_deeply( [ factor(2727) ], [3,3,3,101], "factor(2727)" );
is_deeply( [ factor(9592) ], [2,2,2,11,109], "factor(9592)" );
is_deeply( [ factor(12625) ], [5,5,5,101], "factor(12625)" );
is_deeply( [ factor(30030) ], [2,3,5,7,11,13], "factor(30030)" );
is_deeply( [ factor(30107) ], [7,11,17,23], "factor(30107)" );
is_deeply( [ factor(34643) ], [7,7,7,101], "factor(34643)" );
is_deeply( [ factor(78498) ], [2,3,3,7,7,89], "factor(78498)" );
is_deeply( [ factor(134431) ], [11,11,11,101], "factor(134431)" );
is_deeply( [ factor(221897) ], [13,13,13,101], "factor(221897)" );
is_deeply( [ factor(496213) ], [17,17,17,101], "factor(496213)" );
is_deeply( [ factor(510510) ], [2,3,5,7,11,13,17], "factor(510510)" );
is_deeply( [ factor(664579) ], [664579], "factor(664579)" );
is_deeply( [ factor(692759) ], [19,19,19,101], "factor(692759)" );
is_deeply( [ factor(1228867) ], [23,23,23,101], "factor(1228867)" );
is_deeply( [ factor(2214143) ], [1487,1489], "factor(2214143)" );
is_deeply( [ factor(2463289) ], [29,29,29,101], "factor(2463289)" );
is_deeply( [ factor(3008891) ], [31,31,31,101], "factor(3008891)" );
is_deeply( [ factor(5115953) ], [37,37,37,101], "factor(5115953)" );
is_deeply( [ factor(5761455) ], [3,5,7,37,1483], "factor(5761455)" );
is_deeply( [ factor(6961021) ], [41,41,41,101], "factor(6961021)" );
is_deeply( [ factor(8030207) ], [43,43,43,101], "factor(8030207)" );
is_deeply( [ factor(9699690) ], [2,3,5,7,11,13,17,19], "factor(9699690)" );
is_deeply( [ factor(10486123) ], [47,47,47,101], "factor(10486123)" );
is_deeply( [ factor(10893343) ], [1327,8209], "factor(10893343)" );
is_deeply( [ factor(12327779) ], [1627,7577], "factor(12327779)" );
is_deeply( [ factor(50847534) ], [2,3,3,3,19,49559], "factor(50847534)" );
is_deeply( [ factor(114256942) ], [2,57128471], "factor(114256942)" );
is_deeply( [ factor(223092870) ], [2,3,5,7,11,13,17,19,23], "factor(223092870)" );
is_deeply( [ factor(455052511) ], [97,331,14173], "factor(455052511)" );
is_deeply( [ factor(547308031) ], [547308031], "factor(547308031)" );
is_deeply( [ factor(701737021) ], [25997,26993], "factor(701737021)" );
is_deeply( [ factor(999999929) ], [999999929], "factor(999999929)" );
is_deeply( [ factor(2147483647) ], [2147483647], "factor(2147483647)" );
is_deeply( [ factor(4118054813) ], [19,216739727], "factor(4118054813)" );
is_deeply( [ factor(4294967293) ], [9241,464773], "factor(4294967293)" );

#diag "factoring 64-bit numbers";
is_deeply( [ factor('6469693230') ], [2,3,5,7,11,13,17,19,23,29], "factor(6469693230)" );
is_deeply( [ factor('17179869172') ], [2,2,9241,464773], "factor(17179869172)" );
is_deeply( [ factor('37607912018') ], [2,'18803956009'], "factor(37607912018)" );
is_deeply( [ factor('200560490130') ], [2,3,5,7,11,13,17,19,23,29,31], "factor(200560490130)" );
is_deeply( [ factor('346065536839') ], [11,11,163,373,47041], "factor(346065536839)" );
is_deeply( [ factor('600851475143') ], [71,839,1471,6857], "factor(600851475143)" );
is_deeply( [ factor('3204941750802') ], [2,3,3,3,11,277,719,27091], "factor(3204941750802)" );
is_deeply( [ factor('7420738134810') ], [2,3,5,7,11,13,17,19,23,29,31,37], "factor(7420738134810)" );
is_deeply( [ factor('29844570422669') ], [19,19,27259,3032831], "factor(29844570422669)" );
is_deeply( [ factor('279238341033925') ], [5,5,7,13,194899,629773], "factor(279238341033925)" );
is_deeply( [ factor('304250263527210') ], [2,3,5,7,11,13,17,19,23,29,31,37,41], "factor(304250263527210)" );
is_deeply( [ factor('2623557157654233') ], [3,113,136841,56555467], "factor(2623557157654233)" );
is_deeply( [ factor('9007199254740991') ], [6361,69431,20394401], "factor(9007199254740991)" );
is_deeply( [ factor('9007199254740992') ], [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2], "factor(9007199254740992)" );
is_deeply( [ factor('9007199254740993') ], [3,107,'28059810762433'], "factor(9007199254740993)" );
is_deeply( [ factor('9999986200004761') ], [99999931,99999931], "factor(9999986200004761)" );
is_deeply( [ factor('13082761331670030') ], [2,3,5,7,11,13,17,19,23,29,31,37,41,43], "factor(13082761331670030)" );
is_deeply( [ factor('24739954287740860') ], [2,2,5,7,1123,'157358823863'], "factor(24739954287740860)" );
is_deeply( [ factor('99999989237606677') ], [316227731,316227767], "factor(99999989237606677)" );
is_deeply( [ factor('614889782588491410') ], [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47], "factor(614889782588491410)" );
is_deeply( [ factor('999999866000004473') ], [999999929,999999937], "factor(999999866000004473)" );
is_deeply( [ factor('3369738766071892021') ], [204518747,'16476429743'], "factor(3369738766071892021)" );
is_deeply( [ factor('10023859281455311421') ], ['1308520867','7660450463'], "factor(10023859281455311421)" );
is_deeply( [ factor('18446744073709551611') ], [11,59,'98818999','287630261'], "factor(18446744073709551611)" );

# Check perfect squares that make it past early testing
is_deeply( [ factor('1524157875323973084894790521049') ], ['1234567890123493','1234567890123493'], "factor(1234567890123493^2)" );
is_deeply( [ factor('823543') ], [qw/7 7 7 7 7 7 7/], "factor 7^7" );
# A good test, but it's slow:
# is_deeply( [ factor('148675665359980297048795508874724049089546782584077934753925649') ], ['1234567890123493', '1234567890123493', '9876543210987701', '9876543210987701'], "factor(1234567890123493^2 * 9876543210987701^2)" );


#diag "factor 105-bit number with p-1";
Math::Prime::Util::GMP::_GMP_set_verbose(4);
is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::pminus1_factor('22095311209999409685885162322219') ], ['3916587618943361', '5641469912004779'], "p-1 factors 22095311209999409685885162322219" );
Math::Prime::Util::GMP::_GMP_set_verbose(0);

is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::pplus1_factor('22095311209999409685885162322219') ], ['3916587618943361', '5641469912004779'], "p+1 factors 22095311209999409685885162322219" );

is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::ecm_factor('16049407357301026788959025956634678743968244330856613525782006075043') ], [qw/99151111 161868154531329727500068314480456792299263740280798402004613/], "ECM factors p8*p60" );

is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::qs_factor('22095311209999409685885162322219') ], ['3916587618943361', '5641469912004779'], "QS factors 22095311209999409685885162322219" );

#diag "factor 736-bit number with HOLF";
is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::holf_factor('185486767418172501041516225455805768237366368964328490571098416064672288855543059138404131637447372942151236559829709849969346650897776687202384767704706338162219624578777915220190863619885201763980069247978050169295918863') ], ['192606732705880508138303165129171270891951231683030125996296974238495711578947569589234612013165893468683239489', '963033663529402540691515825645856354459756158415150629981484871192478557894737847946173060065829467343416197967'], "HOLF factors poorly formed 222-digit semiprime" );

# Test stage 2 of pminus1
is_deeply( [ sort {$a<=>$b} Math::Prime::Util::GMP::pminus1_factor('23113042053749572861737011', 100, 100000) ], ['694059980329', '33301217054459'], "p-1 factors 23113042053749572861737011 in stage 2");

#diag "extra tests for each method";
extra_factor_test("prho_factor",   sub {Math::Prime::Util::GMP::prho_factor(shift)});
extra_factor_test("pbrent_factor", sub {Math::Prime::Util::GMP::pbrent_factor(shift)});
extra_factor_test("pminus1_factor",sub {Math::Prime::Util::GMP::pminus1_factor(shift)});
extra_factor_test("pplus1_factor", sub {Math::Prime::Util::GMP::pplus1_factor(shift)});
extra_factor_test("holf_factor",   sub {Math::Prime::Util::GMP::holf_factor(shift)});
extra_factor_test("squfof_factor", sub {Math::Prime::Util::GMP::squfof_factor(shift)});
extra_factor_test("ecm_factor",    sub {Math::Prime::Util::GMP::ecm_factor(shift)});

sub extra_factor_test {
  my $fname = shift;
  my $fsub = shift;

  is_deeply( [ sort {$a<=>$b} $fsub->(0)   ], [0],       "$fname(0)" );
  is_deeply( [ sort {$a<=>$b} $fsub->(1)   ], [1],       "$fname(1)" );
  is_deeply( [ sort {$a<=>$b} $fsub->(2)   ], [2],       "$fname(2)" );
  is_deeply( [ sort {$a<=>$b} $fsub->(13)  ], [13],      "$fname(13)" );
  is_deeply( [ sort {$a<=>$b} $fsub->(403) ], [13, 31],  "$fname(403)" );
  is_deeply( [ sort {$a<=>$b} $fsub->(53936983) ], [7013, 7691],  "$fname(53936983)" );
  # Most of the time taken for this test file comes from this line:
  is_deeply( [ sort {$a<=>$b} $fsub->('1754012594703269855671') ], ['41110234981', '42666080491'],  "$fname(1754012594703269855671)" );
}

# Factor in scalar context
is( scalar factor(0), 1, "scalar factor(0) should be 1" );
is( scalar factor(1), 0, "scalar factor(1) should be 1" );
is( scalar factor(3), 1, "scalar factor(3) should be 1" );
is( scalar factor(4), 2, "scalar factor(4) should be 2" );
is( scalar factor(5), 1, "scalar factor(5) should be 1" );
is( scalar factor(6), 2, "scalar factor(6) should be 2" );
is( scalar factor(30107), 4, "scalar factor(30107) should be 4" );
is( scalar factor(174636000), 15, "scalar factor(174636000) should be 15" );

# Sigma
while (my($n, $s4) = each (%sigmas)) {
  my @s = map { sigma($n, $_) } 0 .. 3;
  is_deeply( \@s, $s4, "sigma_{0..3}($n)" );
}

is_deeply( [divisors(1)], [1], "divisors(1) in list context" );
is_deeply( [divisors(9283540924)], [qw/1 2 4 7 14 28 331555033 663110066 1326220132 2320885231 4641770462 9283540924/], "divisors(9283540924)" );
is( scalar(divisors(9283540924)), 12, "scalar divisors(9283540924) = 12" );

{
  my @non = map { is_semiprime($_) }
            (qw/ 1477624760980458764344489
                 31065569722765023059646508128204165
                 345642381828009706799087047071899024928076219 /);
  is_deeply( \@non, [0,0,0], "is_semiprime for non-semiprimes" );
  my @oui = map { is_semiprime($_) }
            (qw/ 5205293630375513276567563
                 76608197698048867638852299050055161
                 659828949060872109888044299185869580687593499 /);
  is_deeply( \@oui, [1,1,1], "is_semiprime for semiprimes" );
}