1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <float.h>
/* The AKS primality algorithm for native integers.
*
* There are three versions here:
* V6 The v6 algorithm from the latest AKS paper.
* https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
* BORNEMANN Improvements from Bernstein, Voloch, and a clever r/s
* selection from Folkmar Bornemann. Similar to Bornemann's
* 2003 Pari/GP implementation:
* https://homepage.univie.ac.at/Dietrich.Burde/pari/aks.gp
* BERN41 My implementation of theorem 4.1 from Bernstein's 2003 paper.
* https://cr.yp.to/papers/aks.pdf
*
* Each one is orders of magnitude faster than the previous, and by default
* we use Bernstein 4.1 as it is by far the fastest.
*
* Note that AKS is very, very slow compared to other methods. It is, however,
* polynomial in log(N), and log-log performance graphs show nice straight
* lines for both implementations. However APR-CL and ECPP both start out
* much faster and the slope will be less for any sizes of N that we're
* interested in.
*
* For native 64-bit integers this is purely a coding exercise, as BPSW is
* a million times faster and gives proven results.
*
*
* When n < 2^(wordbits/2)-1, we can do a straightforward intermediate:
* r = (r + a * b) % n
* If n is larger, then these are replaced with:
* r = addmod( r, mulmod(a, b, n), n)
* which is a lot more work, but keeps us correct.
*
* Software that does polynomial convolutions followed by a modulo can be
* very fast, but will fail when n >= (2^wordbits)/r.
*
* This is all much easier in GMP.
*
* Copyright 2012-2016, Dana Jacobsen.
*/
#define SQRTN_SHORTCUT 1
#define IMPL_V6 0 /* From the primality_v6 paper */
#define IMPL_BORNEMANN 0 /* From Bornemann's 2002 implementation */
#define IMPL_BERN41 1 /* From Bernstein's early 2003 paper */
#include "ptypes.h"
#include "aks.h"
#define FUNC_isqrt 1
#define FUNC_gcd_ui 1
#include "util.h"
#include "cache.h"
#include "mulmod.h"
#include "factor.h"
#if IMPL_BORNEMANN || IMPL_BERN41
/* We could use lgamma, but it isn't in MSVC and not in pre-C99. The only
* sure way to find if it is available is test compilation (ala autoconf).
* Instead, we'll just use our own implementation.
* See http://mrob.com/pub/ries/lanczos-gamma.html for alternates. */
static double log_gamma(double x)
{
static const double log_sqrt_two_pi = 0.91893853320467274178;
static const double lanczos_coef[8+1] =
{ 0.99999999999980993, 676.5203681218851, -1259.1392167224028,
771.32342877765313, -176.61502916214059, 12.507343278686905,
-0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7 };
double base = x + 7.5, sum = 0;
int i;
for (i = 8; i >= 1; i--)
sum += lanczos_coef[i] / (x + (double)i);
sum += lanczos_coef[0];
sum = log_sqrt_two_pi + log(sum/x) + ( (x+0.5)*log(base) - base );
return sum;
}
/* Note: For lgammal we need logl in the above.
* Max error drops from 2.688466e-09 to 1.818989e-12. */
#undef lgamma
#define lgamma(x) log_gamma(x)
#endif
#if IMPL_BERN41
static double log_binomial(UV n, UV k)
{
return log_gamma(n+1) - log_gamma(k+1) - log_gamma(n-k+1);
}
static double log_bern41_binomial(UV r, UV d, UV i, UV j, UV s)
{
return log_binomial( 2*s, i)
+ log_binomial( d, i)
+ log_binomial( 2*s-i, j)
+ log_binomial( r-2-d, j);
}
static int bern41_acceptable(UV n, UV r, UV s)
{
double scmp = ceil(sqrt( (r-1)/3.0 )) * log(n);
UV d = (UV) (0.5 * (r-1));
UV i = (UV) (0.475 * (r-1));
UV j = i;
if (d > r-2) d = r-2;
if (i > d) i = d;
if (j > (r-2-d)) j = r-2-d;
return (log_bern41_binomial(r,d,i,j,s) >= scmp);
}
#endif
#if 0
/* Naive znorder. Works well if limit is small. Note arguments. */
static UV order(UV r, UV n, UV limit) {
UV j;
UV t = 1;
for (j = 1; j <= limit; j++) {
t = mulmod(t, n, r);
if (t == 1)
break;
}
return j;
}
static void poly_print(UV* poly, UV r)
{
int i;
for (i = r-1; i >= 1; i--) {
if (poly[i] != 0)
printf("%lux^%d + ", poly[i], i);
}
if (poly[0] != 0) printf("%lu", poly[0]);
printf("\n");
}
#endif
static void poly_mod_mul(UV* px, UV* py, UV* res, UV r, UV mod)
{
UV degpx, degpy;
UV i, j, pxi, pyj, rindex;
/* Determine max degree of px and py */
for (degpx = r-1; degpx > 0 && !px[degpx]; degpx--) ; /* */
for (degpy = r-1; degpy > 0 && !py[degpy]; degpy--) ; /* */
/* We can sum at least j values at once */
j = (mod >= HALF_WORD) ? 0 : (UV_MAX / ((mod-1)*(mod-1)));
if (j >= degpx || j >= degpy) {
/* res will be written completely, so no need to set */
for (rindex = 0; rindex < r; rindex++) {
UV sum = 0;
j = rindex;
for (i = 0; i <= degpx; i++) {
if (j <= degpy)
sum += px[i] * py[j];
j = (j == 0) ? r-1 : j-1;
}
res[rindex] = sum % mod;
}
} else {
memset(res, 0, r * sizeof(UV)); /* Zero result accumulator */
for (i = 0; i <= degpx; i++) {
pxi = px[i];
if (pxi == 0) continue;
if (mod < HALF_WORD) {
for (j = 0; j <= degpy; j++) {
pyj = py[j];
rindex = i+j; if (rindex >= r) rindex -= r;
res[rindex] = (res[rindex] + (pxi*pyj) ) % mod;
}
} else {
for (j = 0; j <= degpy; j++) {
pyj = py[j];
rindex = i+j; if (rindex >= r) rindex -= r;
res[rindex] = muladdmod(pxi, pyj, res[rindex], mod);
}
}
}
}
memcpy(px, res, r * sizeof(UV)); /* put result in px */
}
static void poly_mod_sqr(UV* px, UV* res, UV r, UV mod)
{
UV c, d, s, sum, rindex, maxpx;
UV degree = r-1;
int native_sqr = (mod > isqrt(UV_MAX/(2*r))) ? 0 : 1;
memset(res, 0, r * sizeof(UV)); /* zero out sums */
/* Discover index of last non-zero value in px */
for (s = degree; s > 0; s--)
if (px[s] != 0)
break;
maxpx = s;
/* 1D convolution */
for (d = 0; d <= 2*degree; d++) {
UV *pp1, *pp2, *ppend;
UV s_beg = (d <= degree) ? 0 : d-degree;
UV s_end = ((d/2) <= maxpx) ? d/2 : maxpx;
if (s_end < s_beg) continue;
sum = 0;
pp1 = px + s_beg;
pp2 = px + d - s_beg;
ppend = px + s_end;
if (native_sqr) {
while (pp1 < ppend)
sum += 2 * *pp1++ * *pp2--;
/* Special treatment for last point */
c = px[s_end];
sum += (s_end*2 == d) ? c*c : 2*c*px[d-s_end];
rindex = (d < r) ? d : d-r; /* d % r */
res[rindex] = (res[rindex] + sum) % mod;
#if HAVE_UINT128
} else {
uint128_t max = ((uint128_t)1 << 127) - 1;
uint128_t c128, sum128 = 0;
while (pp1 < ppend) {
c128 = ((uint128_t)*pp1++) * ((uint128_t)*pp2--);
if (c128 > max) c128 %= mod;
c128 <<= 1;
if (c128 > max) c128 %= mod;
sum128 += c128;
if (sum128 > max) sum128 %= mod;
}
c128 = px[s_end];
if (s_end*2 == d) {
c128 *= c128;
} else {
c128 *= px[d-s_end];
if (c128 > max) c128 %= mod;
c128 <<= 1;
}
if (c128 > max) c128 %= mod;
sum128 += c128;
if (sum128 > max) sum128 %= mod;
rindex = (d < r) ? d : d-r; /* d % r */
res[rindex] = ((uint128_t)res[rindex] + sum128) % mod;
#else
} else {
while (pp1 < ppend) {
UV p1 = *pp1++;
UV p2 = *pp2--;
sum = addmod(sum, mulmod(2, mulmod(p1, p2, mod), mod), mod);
}
c = px[s_end];
if (s_end*2 == d)
sum = addmod(sum, sqrmod(c, mod), mod);
else
sum = addmod(sum, mulmod(2, mulmod(c, px[d-s_end], mod), mod), mod);
rindex = (d < r) ? d : d-r; /* d % r */
res[rindex] = addmod(res[rindex], sum, mod);
#endif
}
}
memcpy(px, res, r * sizeof(UV)); /* put result in px */
}
static UV* poly_mod_pow(UV* pn, UV power, UV r, UV mod)
{
UV *res, *temp;
Newz(0, res, r, UV);
New(0, temp, r, UV);
res[0] = 1;
while (power) {
if (power & 1) poly_mod_mul(res, pn, temp, r, mod);
power >>= 1;
if (power) poly_mod_sqr(pn, temp, r, mod);
}
Safefree(temp);
return res;
}
static int test_anr(UV a, UV n, UV r)
{
UV* pn;
UV* res;
UV i;
int retval = 1;
Newz(0, pn, r, UV);
a %= r;
pn[0] = a;
pn[1] = 1;
res = poly_mod_pow(pn, n, r, n);
res[n % r] = addmod(res[n % r], n - 1, n);
res[0] = addmod(res[0], n - a, n);
for (i = 0; i < r; i++)
if (res[i] != 0)
retval = 0;
Safefree(res);
Safefree(pn);
return retval;
}
/*
* Avanzi and MihÇilescu, 2007
* http://www.uni-math.gwdg.de/preda/mihailescu-papers/ouraks3.pdf
* "As a consequence, one cannot expect the present variants of AKS to
* compete with the earlier primality proving methods like ECPP and
* cyclotomy." - conclusion regarding memory consumption
*/
int is_aks_prime(UV n)
{
UV r, s, a, starta = 1;
if (n < 2)
return 0;
if (n == 2)
return 1;
if (is_power(n, 0))
return 0;
if (n > 11 && ( !(n%2) || !(n%3) || !(n%5) || !(n%7) || !(n%11) )) return 0;
/* if (!is_prob_prime(n)) return 0; */
#if IMPL_V6
{
UV sqrtn = isqrt(n);
double log2n = log(n) / log(2); /* C99 has a log2() function */
UV limit = (UV) floor(log2n * log2n);
MPUverbose(1, "# aks limit is %lu\n", (unsigned long) limit);
for (r = 2; r < n; r++) {
if ((n % r) == 0)
return 0;
#if SQRTN_SHORTCUT
if (r > sqrtn)
return 1;
#endif
if (znorder(n, r) > limit)
break;
}
if (r >= n)
return 1;
s = (UV) floor(sqrt(r-1) * log2n);
}
#endif
#if IMPL_BORNEMANN
{
UV fac[MPU_MAX_FACTORS+1];
UV slim;
double c1, c2, x;
double const t = 48;
double const t1 = (1.0/((t+1)*log(t+1)-t*log(t)));
double const dlogn = log(n);
r = next_prime( (UV) (t1*t1 * dlogn*dlogn) );
while (!is_primitive_root(n,r,1))
r = next_prime(r);
slim = (UV) (2*t*(r-1));
c1 = lgamma(r-1);
c2 = dlogn * floor(sqrt(r));
{ /* Binary search for first s in [1,slim] where x >= 0 */
UV i = 1;
UV j = slim;
while (i < j) {
s = i + (j-i)/2;
x = (lgamma(r-1+s) - c1 - lgamma(s+1)) / c2 - 1.0;
if (x < 0) i = s+1;
else j = s;
}
s = i-1;
}
s = (s+3) >> 1;
/* Bornemann checks factors up to (s-1)^2, we check to max(r,s) */
/* slim = (s-1)*(s-1); */
slim = (r > s) ? r : s;
MPUverbose(2, "# aks trial to %lu\n", slim);
if (trial_factor(n, fac, 2, slim) > 1)
return 0;
if (slim >= HALF_WORD || (slim*slim) >= n)
return 1;
}
#endif
#if IMPL_BERN41
{
UV slim, fac[MPU_MAX_FACTORS+1];
double const log2n = log(n) / log(2);
/* Tuning: Initial 'r' selection. Search limit for 's'. */
double const r0 = ((log2n > 32) ? 0.010 : 0.003) * log2n * log2n;
UV const rmult = (log2n > 32) ? 6 : 30;
r = next_prime(r0 < 2 ? 2 : (UV)r0); /* r must be at least 3 */
while ( !is_primitive_root(n,r,1) || !bern41_acceptable(n,r,rmult*(r-1)) )
r = next_prime(r);
{ /* Binary search for first s in [1,slim] where conditions met */
UV bi = 1;
UV bj = rmult * (r-1);
while (bi < bj) {
s = bi + (bj-bi)/2;
if (!bern41_acceptable(n, r, s)) bi = s+1;
else bj = s;
}
s = bj;
if (!bern41_acceptable(n, r, s)) croak("AKS: bad s selected");
/* S goes from 2 to s+1 */
starta = 2;
s = s+1;
}
/* Check divisibility to s * (s-1) to cover both gcd conditions */
slim = s * (s-1);
MPUverbose(2, "# aks trial to %lu\n", (unsigned long)slim);
if (trial_factor(n, fac, 2, slim) > 1)
return 0;
if (slim >= HALF_WORD || (slim*slim) >= n)
return 1;
/* Check b^(n-1) = 1 mod n for b in [2..s] */
for (a = 2; a <= s; a++) {
if (powmod(a, n-1, n) != 1)
return 0;
}
}
#endif
MPUverbose(1, "# aks r = %lu s = %lu\n", (unsigned long) r, (unsigned long) s);
/* Almost every composite will get recognized by the first test.
* However, we need to run 's' tests to have the result proven for all n
* based on the theorems we have available at this time. */
for (a = starta; a <= s; a++) {
if (! test_anr(a, n, r) )
return 0;
MPUverbose(2, ".");
}
MPUverbose(2, "\n");
return 1;
}
|