1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/* Our API for random numbers.
*
* We can use ISAAC, ChaCha20, or something else.
*
* 3700 ns/word ChaCha20 in Perl
* 3100 ns/word Salsa20 in Perl
* 1600 ns/word ChaCha8 in Perl
* 760 ns/word ISAAC in Perl
*
* 11.20 ns/word ChaCha20 (openbsd)
* 10.31 ns/word ChaCha20 (dj)
* 8.66 ns/word ChaCha20 (sse2 Peters)
* 6.85 ns/word ChaCha12 (dj)
* 5.99 ns/word Tyche
* 5.11 ns/word ChaCha8 (dj)
* 4.37 ns/word MT19937 (Cokus)
* 4.14 ns/word Tyche-i
* 3.26 ns/word ISAAC
* 3.18 ns/word PCG64 (64-bit state, 64-bit types)
* 1.95 ns/word PCG64 (64-bit state, 128-bit types)
* 1.84 ns/word ChaCha20 (AVX2 chacha-opt)
* 1.48 ns/word Xoroshiro128+
* 1.16 ns/word SplitMix64
*
* These functions do locking, the underlying library does not.
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include "ptypes.h"
#include "csprng.h"
#include "chacha.h"
#define SEED_BYTES (32+8)
#define CSEED(ctx,bytes,data,good) chacha_seed(ctx,bytes,data,good)
#define CRBYTES(ctx,bytes,data) chacha_rand_bytes(ctx,bytes,data)
#define CIRAND32(ctx) chacha_irand32(ctx)
#define CIRAND64(ctx) chacha_irand64(ctx)
#define CSELFTEST() chacha_selftest()
/* Helper macros, similar to ChaCha, so we're consistent. */
#ifndef U8TO32_LE
#define U8TO32_LE(p) \
(((uint32_t)((p)[0]) ) | \
((uint32_t)((p)[1]) << 8) | \
((uint32_t)((p)[2]) << 16) | \
((uint32_t)((p)[3]) << 24))
#endif
#define U32TO8_LE(p, v) \
do { \
uint32_t _v = v; \
(p)[0] = (((_v) ) & 0xFFU); \
(p)[1] = (((_v) >> 8) & 0xFFU); \
(p)[2] = (((_v) >> 16) & 0xFFU); \
(p)[3] = (((_v) >> 24) & 0xFFU); \
} while (0)
/*****************************************************************************/
/* We put a simple 32-bit non-CS PRNG here to help fill small seeds. */
#if 0
/* XOSHIRO128** 32-bit output, 32-bit types, 128-bit state */
static INLINE uint32_t rotl(const uint32_t x, int k) {
return (x << k) | (x >> (32 - k));
}
uint32_t prng_next(char* ctx) {
uint32_t *s = (uint32_t*) ctx;
const uint32_t result_starstar = rotl(s[0] * 5, 7) * 9;
const uint32_t t = s[1] << 9;
s[2] ^= s[0]; s[3] ^= s[1]; s[1] ^= s[2]; s[0] ^= s[3];
s[2] ^= t;
s[3] = rotl(s[3], 11);
return result_starstar;
}
char* prng_new(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint32_t *state;
New(0, state, 4, uint32_t);
state[0] = 1; state[1] = b; state[2] = c; state[3] = d;
(void) prng_next((char*)state);
state[0] += a;
(void) prng_next((char*)state);
return (char*) state;
}
#else
/* PCG RXS M XS 32. 32-bit output, 32-bit state and types. */
uint32_t prng_next(char* ctx) {
uint32_t *rng = (uint32_t*) ctx;
uint32_t word, oldstate = rng[0];
rng[0] = rng[0] * 747796405U + rng[1];
word = ((oldstate >> ((oldstate >> 28u) + 4u)) ^ oldstate) * 277803737u;
return (word >> 22u) ^ word;
}
char* prng_new(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
uint32_t *state;
New(0, state, 2, uint32_t);
state[0] = 0U;
state[1] = (b << 1u) | 1u;
(void) prng_next((char*)state);
state[0] += a;
(void) prng_next((char*)state);
state[0] ^= c;
(void) prng_next((char*)state);
state[0] ^= d;
(void) prng_next((char*)state);
return (char*) state;
}
#endif
/*****************************************************************************/
uint32_t csprng_context_size(void)
{
return sizeof(chacha_context_t);
}
static char _has_selftest_run = 0;
void csprng_seed(void *ctx, uint32_t bytes, const unsigned char* data)
{
unsigned char seed[SEED_BYTES + 4];
/* If given a short seed, minimize zeros in state */
if (bytes >= SEED_BYTES) {
memcpy(seed, data, SEED_BYTES);
} else {
char* rng;
uint32_t a, b, c, d, i;
memcpy(seed, data, bytes);
memset(seed+bytes, 0, sizeof(seed)-bytes);
a = U8TO32_LE((seed + 0));
b = U8TO32_LE((seed + 4));
c = U8TO32_LE((seed + 8));
d = U8TO32_LE((seed + 12));
rng = prng_new(a,b,c,d);
for (i = 4*((bytes+3)/4); i < SEED_BYTES; i += 4)
U32TO8_LE(seed + i, prng_next(rng));
Safefree(rng);
#if 0
printf("got %u bytes in expanded to %u\n", bytes, SEED_BYTES);
printf("from: ");for(i=0;i<bytes;i++)printf("%02x",data[i]);printf("\n");
printf("to: ");for(i=0;i<SEED_BYTES;i++)printf("%02x",seed[i]);printf("\n");
#endif
}
if (!_has_selftest_run) {
_has_selftest_run = 1;
CSELFTEST();
}
CSEED(ctx, SEED_BYTES, seed, (bytes >= 16));
}
extern void csprng_srand(void* ctx, UV insecure_seed)
{
#if BITS_PER_WORD == 32
unsigned char seed[4] = {0};
U32TO8_LE(seed, insecure_seed);
csprng_seed(ctx, 4, seed);
#else
unsigned char seed[8] = {0};
if (insecure_seed <= UVCONST(4294967295)) {
U32TO8_LE(seed, insecure_seed);
csprng_seed(ctx, 4, seed);
} else {
U32TO8_LE(seed, insecure_seed);
U32TO8_LE(seed + 4, (insecure_seed >> 32));
csprng_seed(ctx, 8, seed);
}
#endif
}
void csprng_rand_bytes(void* ctx, uint32_t bytes, unsigned char* data)
{
CRBYTES(ctx, bytes, data);
}
uint32_t irand32(void* ctx)
{
return CIRAND32(ctx);
}
UV irand64(void* ctx)
{
#if BITS_PER_WORD < 64
croak("irand64 too many bits for UV");
#else
return CIRAND64(ctx);
#endif
}
/*****************************************************************************/
int is_csprng_well_seeded(void *ctx)
{
chacha_context_t *cs = ctx;
return cs->goodseed;
}
/* There are many ways to get floats from integers. A few good, many bad.
*
* Vigna recommends (x64 >> 11) * (1.0 / (1ULL<<53)).
* http://xoroshiro.di.unimi.it
* Also see alternatives discussed:
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/speed-up-real.html
*
* Melissa O'Neill notes the problem is harder than it looks, doesn't address.
* http://www.pcg-random.org/pdf/toms-oneill-pcg-family-v1.02.pdf
*
* randomstate for numpy uses separate code for each generator.
* With the exception of dSFMT, they each one one of:
* (x64 >> 11) * (1 / 9007199254740992.0)
* ((x32 >> 5) * 67108864.0 + (y32 >> 6)) / 9007199254740992.0
* where the first one is identical to Vigna.
*
* David Jones recommends the minor 32-bit variant:
* ((x32 >> 6) * 134217728.0 + (y32 >> 5)) / 9007199254740992.0
* http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
*
* Taylor Campbell discusses this in:
* http://mumble.net/~campbell/tmp/random_real.c
* He points out that there are two common non-broken choices,
* div by 2^-53 or div by 2^-64, and each are slightly flawed in
* different ways. He shows a theoretically better method.
*/
/*
* We prefer the x64 / 2^-64 method. It seems to produce the best results
* and is easiest for ensuring we fill up all the bits.
* It is similar to what Geoff Kuenning does in MTwist, though he computes
* the constants at runtime to ensure a dodgy compiler won't munge them.
*/
#define TO_NV_32 2.3283064365386962890625000000000000000E-10L
#define TO_NV_64 5.4210108624275221700372640043497085571E-20L
#define TO_NV_96 1.2621774483536188886587657044524579675E-29L
#define TO_NV_128 2.9387358770557187699218413430556141945E-39L
#define DRAND_32_32 (CIRAND32(ctx) * TO_NV_32)
#define DRAND_64_32 (((CIRAND32(ctx)>>5) * 67108864.0 + (CIRAND32(ctx)>>6)) / 9007199254740992.0)
#define DRAND_64_64 (CIRAND64(ctx) * TO_NV_64)
#define DRAND_128_32 (CIRAND32(ctx) * TO_NV_32 + CIRAND32(ctx) * TO_NV_64 + CIRAND32(ctx) * TO_NV_96 + CIRAND32(ctx) * TO_NV_128)
#define DRAND_128_64 (CIRAND64(ctx) * TO_NV_64 + CIRAND64(ctx) * TO_NV_128)
NV drand64(void* ctx)
{
NV r;
#if NVMANTBITS <= 32
r = DRAND_32_32;
#elif NVMANTBITS <= 64
r = (BITS_PER_WORD <= 32) ? DRAND_64_32 : DRAND_64_64;
#else
r = (BITS_PER_WORD <= 32) ? DRAND_128_32 : DRAND_128_64;
#endif
return r;
}
/* Return rand 32-bit integer between 0 to n-1 inclusive */
uint32_t urandomm32(void *ctx, uint32_t n)
{
uint32_t r, rmin;
if (n <= 1)
return 0;
rmin = -n % n;
while (1) {
r = CIRAND32(ctx);
if (r >= rmin)
break;
}
return r % n;
}
UV urandomm64(void* ctx, UV n)
{
UV r, rmin;
if (n <= 4294967295UL)
return urandomm32(ctx,n);
if (n-1 == 4294967295UL)
return irand32(ctx);
rmin = -n % n;
while (1) {
r = CIRAND64(ctx);
if (r >= rmin)
break;
}
return r % n;
}
UV urandomb(void* ctx, int nbits)
{
if (nbits == 0) {
return 0;
} else if (nbits <= 32) {
return irand32(ctx) >> (32-nbits);
#if BITS_PER_WORD == 64
} else if (nbits <= 64) {
return irand64(ctx) >> (64-nbits);
#endif
}
croak("irand64 too many bits for UV");
}
|