1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define FUNC_popcnt 1
#define FUNC_isqrt 1
#include "ptypes.h"
#include "sieve.h"
#include "cache.h"
#include "lmo.h"
#include "constants.h"
#include "prime_nth_count.h"
#include "util.h"
#include <math.h>
#if _MSC_VER || defined(__IBMC__) || defined(__IBMCPP__) || (defined(__STDC_VERSION__) && __STDC_VERSION >= 199901L)
/* math.h should give us these as functions or macros.
*
* extern long double floorl(long double);
* extern long double ceill(long double);
* extern long double sqrtl(long double);
* extern long double logl(long double);
*/
#else
#define floorl(x) (long double) floor( (double) (x) )
#define ceill(x) (long double) ceil( (double) (x) )
#define sqrtl(x) (long double) sqrt( (double) (x) )
#define logl(x) (long double) log( (double) (x) )
#endif
#if defined(__GNUC__)
#define word_unaligned(m,wordsize) ((uintptr_t)m & (wordsize-1))
#else /* uintptr_t is part of C99 */
#define word_unaligned(m,wordsize) ((unsigned int)m & (wordsize-1))
#endif
/* TODO: This data is duplicated in util.c. */
static const unsigned char prime_sieve30[] =
{0x01,0x20,0x10,0x81,0x49,0x24,0xc2,0x06,0x2a,0xb0,0xe1,0x0c,0x15,0x59,0x12,
0x61,0x19,0xf3,0x2c,0x2c,0xc4,0x22,0xa6,0x5a,0x95,0x98,0x6d,0x42,0x87,0xe1,
0x59,0xa9,0xa9,0x1c,0x52,0xd2,0x21,0xd5,0xb3,0xaa,0x26,0x5c,0x0f,0x60,0xfc,
0xab,0x5e,0x07,0xd1,0x02,0xbb,0x16,0x99,0x09,0xec,0xc5,0x47,0xb3,0xd4,0xc5,
0xba,0xee,0x40,0xab,0x73,0x3e,0x85,0x4c,0x37,0x43,0x73,0xb0,0xde,0xa7,0x8e,
0x8e,0x64,0x3e,0xe8,0x10,0xab,0x69,0xe5,0xf7,0x1a,0x7c,0x73,0xb9,0x8d,0x04,
0x51,0x9a,0x6d,0x70,0xa7,0x78,0x2d,0x6d,0x27,0x7e,0x9a,0xd9,0x1c,0x5f,0xee,
0xc7,0x38,0xd9,0xc3,0x7e,0x14,0x66,0x72,0xae,0x77,0xc1,0xdb,0x0c,0xcc,0xb2,
0xa5,0x74,0xe3,0x58,0xd5,0x4b,0xa7,0xb3,0xb1,0xd9,0x09,0xe6,0x7d,0x23,0x7c,
0x3c,0xd3,0x0e,0xc7,0xfd,0x4a,0x32,0x32,0xfd,0x4d,0xb5,0x6b,0xf3,0xa8,0xb3,
0x85,0xcf,0xbc,0xf4,0x0e,0x34,0xbb,0x93,0xdb,0x07,0xe6,0xfe,0x6a,0x57,0xa3,
0x8c,0x15,0x72,0xdb,0x69,0xd4,0xaf,0x59,0xdd,0xe1,0x3b,0x2e,0xb7,0xf9,0x2b,
0xc5,0xd0,0x8b,0x63,0xf8,0x95,0xfa,0x77,0x40,0x97,0xea,0xd1,0x9f,0xaa,0x1c,
0x48,0xae,0x67,0xf7,0xeb,0x79,0xa5,0x55,0xba,0xb2,0xb6,0x8f,0xd8,0x2d,0x6c,
0x2a,0x35,0x54,0xfd,0x7c,0x9e,0xfa,0xdb,0x31,0x78,0xdd,0x3d,0x56,0x52,0xe7,
0x73,0xb2,0x87,0x2e,0x76,0xe9,0x4f,0xa8,0x38,0x9d,0x5d,0x3f,0xcb,0xdb,0xad,
0x51,0xa5,0xbf,0xcd,0x72,0xde,0xf7,0xbc,0xcb,0x49,0x2d,0x49,0x26,0xe6,0x1e,
0x9f,0x98,0xe5,0xc6,0x9f,0x2f,0xbb,0x85,0x6b,0x65,0xf6,0x77,0x7c,0x57,0x8b,
0xaa,0xef,0xd8,0x5e,0xa2,0x97,0xe1,0xdc,0x37,0xcd,0x1f,0xe6,0xfc,0xbb,0x8c,
0xb7,0x4e,0xc7,0x3c,0x19,0xd5,0xa8,0x9e,0x67,0x4a,0xe3,0xf5,0x97,0x3a,0x7e,
0x70,0x53,0xfd,0xd6,0xe5,0xb8,0x1c,0x6b,0xee,0xb1,0x9b,0xd1,0xeb,0x34,0xc2,
0x23,0xeb,0x3a,0xf9,0xef,0x16,0xd6,0x4e,0x7d,0x16,0xcf,0xb8,0x1c,0xcb,0xe6,
0x3c,0xda,0xf5,0xcf};
#define NPRIME_SIEVE30 (sizeof(prime_sieve30)/sizeof(prime_sieve30[0]))
static const unsigned short primes_small[] =
{0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,
101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,
193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,
293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,
409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499};
#define NPRIMES_SMALL (sizeof(primes_small)/sizeof(primes_small[0]))
static const unsigned char byte_zeros[256] =
{8,7,7,6,7,6,6,5,7,6,6,5,6,5,5,4,7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,
7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,
7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,
6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,
7,6,6,5,6,5,5,4,6,5,5,4,5,4,4,3,6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,
6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,
6,5,5,4,5,4,4,3,5,4,4,3,4,3,3,2,5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,
5,4,4,3,4,3,3,2,4,3,3,2,3,2,2,1,4,3,3,2,3,2,2,1,3,2,2,1,2,1,1,0};
static UV count_zero_bits(const unsigned char* m, UV nbytes)
{
UV count = 0;
#if BITS_PER_WORD == 64
if (nbytes >= 16) {
while ( word_unaligned(m,sizeof(UV)) && nbytes--)
count += byte_zeros[*m++];
if (nbytes >= 8) {
UV* wordptr = (UV*)m;
UV nwords = nbytes / 8;
UV nzeros = nwords * 64;
m += nwords * 8;
nbytes %= 8;
while (nwords--)
nzeros -= popcnt(*wordptr++);
count += nzeros;
}
}
#endif
while (nbytes--)
count += byte_zeros[*m++];
return count;
}
/* Given a sieve of size nbytes, walk it counting zeros (primes) until:
*
* (1) we counted them all: return the count, which will be less than maxcount.
*
* (2) we hit maxcount: set position to the index of the maxcount'th prime
* and return count (which will be equal to maxcount).
*/
static UV count_segment_maxcount(const unsigned char* sieve, UV base, UV nbytes, UV maxcount, UV* pos)
{
UV count = 0;
UV byte = 0;
const unsigned char* sieveptr = sieve;
const unsigned char* maxsieve = sieve + nbytes;
MPUassert(sieve != 0, "count_segment_maxcount incorrect args");
MPUassert(pos != 0, "count_segment_maxcount incorrect args");
*pos = 0;
if ( (nbytes == 0) || (maxcount == 0) )
return 0;
/* Do fixed-length word counts to start, with possible overcounting */
while ((count+64) < maxcount && sieveptr < maxsieve) {
UV top = base + 3*maxcount;
UV div = (top < 8000) ? 8 : /* 8 cannot overcount */
(top < 1000000) ? 4 :
(top < 10000000) ? 3 : 2;
UV minbytes = (maxcount-count)/div;
if (minbytes > (UV)(maxsieve-sieveptr)) minbytes = maxsieve-sieveptr;
count += count_zero_bits(sieveptr, minbytes);
sieveptr += minbytes;
}
/* Count until we reach the end or >= maxcount */
while ( (sieveptr < maxsieve) && (count < maxcount) )
count += byte_zeros[*sieveptr++];
/* If we went too far, back up. */
while (count >= maxcount)
count -= byte_zeros[*--sieveptr];
/* We counted this many bytes */
byte = sieveptr - sieve;
MPUassert(count < maxcount, "count_segment_maxcount wrong count");
if (byte == nbytes)
return count;
/* The result is somewhere in the next byte */
START_DO_FOR_EACH_SIEVE_PRIME(sieve, 0, byte*30+1, nbytes*30-1)
if (++count == maxcount) { *pos = p; return count; }
END_DO_FOR_EACH_SIEVE_PRIME;
MPUassert(0, "count_segment_maxcount failure");
return 0;
}
/* Given a sieve of size nbytes, counting zeros (primes) but excluding the
* areas outside lowp and highp.
*/
static UV count_segment_ranged(const unsigned char* sieve, UV nbytes, UV lowp, UV highp)
{
UV count, hi_d, lo_d, lo_m;
MPUassert( sieve != 0, "count_segment_ranged incorrect args");
if (nbytes == 0) return 0;
count = 0;
hi_d = highp/30;
if (hi_d >= nbytes) {
hi_d = nbytes-1;
highp = hi_d*30+29;
}
if (highp < lowp)
return 0;
#if 0
/* Dead simple way */
START_DO_FOR_EACH_SIEVE_PRIME(sieve, 0, lowp, highp)
count++;
END_DO_FOR_EACH_SIEVE_PRIME;
return count;
#endif
lo_d = lowp/30;
lo_m = lowp - lo_d*30;
/* Count first fragment */
if (lo_m > 1) {
UV upper = (highp <= (lo_d*30+29)) ? highp : (lo_d*30+29);
START_DO_FOR_EACH_SIEVE_PRIME(sieve, 0, lowp, upper)
count++;
END_DO_FOR_EACH_SIEVE_PRIME;
lowp = upper+2;
lo_d = lowp/30;
}
if (highp < lowp)
return count;
/* Count bytes in the middle */
{
UV hi_m = highp - hi_d*30;
UV count_bytes = hi_d - lo_d + (hi_m == 29);
if (count_bytes > 0) {
count += count_zero_bits(sieve+lo_d, count_bytes);
lowp += 30*count_bytes;
}
}
if (highp < lowp)
return count;
/* Count last fragment */
START_DO_FOR_EACH_SIEVE_PRIME(sieve, 0, lowp, highp)
count++;
END_DO_FOR_EACH_SIEVE_PRIME;
return count;
}
/*
* The pi(x) prime count functions. prime_count(x) gives an exact number,
* but requires determining all the primes up to x, so will be much slower.
*
* prime_count_lower(x) and prime_count_upper(x) give lower and upper limits,
* which will bound the exact value. These bounds should be fairly tight.
*
* pi_upper(x) - pi(x) pi_lower(x) - pi(x)
* < 10 for x < 5_371 < 10 for x < 9_437
* < 50 for x < 295_816 < 50 for x < 136_993
* < 100 for x < 1_761_655 < 100 for x < 909_911
* < 200 for x < 9_987_821 < 200 for x < 8_787_901
* < 400 for x < 34_762_891 < 400 for x < 30_332_723
* < 1000 for x < 372_748_528 < 1000 for x < 233_000_533
* < 5000 for x < 1_882_595_905 < 5000 for x < over 4300M
*
* The average of the upper and lower bounds is within 9 for all x < 15809, and
* within 50 for all x < 1_763_367.
*
* It is common to use the following Chebyshev inequality for x >= 17:
* 1*x/logx <-> 1.25506*x/logx
* but this gives terribly loose bounds.
*
* Rosser and Schoenfeld's bound for x >= 67 of
* x/(logx-1/2) <-> x/(logx-3/2)
* is much tighter. These bounds can be tightened even more.
*
* The formulas of Dusart for higher x are better yet. I recommend the paper
* by Burde for further information. Dusart's thesis is also a good resource.
*
* I have tweaked the bounds formulas for small (under 70_000M) numbers so they
* are tighter. These bounds are verified via trial. The Dusart bounds
* (1.8 and 2.51) are used for larger numbers since those are proven.
*
*/
#include "prime_count_tables.h"
UV segment_prime_count(UV low, UV high)
{
const unsigned char* cache_sieve;
unsigned char* segment;
UV segment_size, low_d, high_d;
UV count = 0;
if ((low <= 2) && (high >= 2)) count++;
if ((low <= 3) && (high >= 3)) count++;
if ((low <= 5) && (high >= 5)) count++;
if (low < 7) low = 7;
if (low > high) return count;
#if !defined(BENCH_SEGCOUNT)
if (low == 7 && high <= 30*NPRIME_SIEVE30) {
count += count_segment_ranged(prime_sieve30, NPRIME_SIEVE30, low, high);
return count;
}
/* If we have sparse prime count tables, use them here. These will adjust
* 'low' and 'count' appropriately for a value slightly less than ours.
* This should leave just a small amount of sieving left. They stop at
* some point, e.g. 3000M, so we'll get the answer to that point then have
* to sieve all the rest. We should be using LMO or Lehmer much earlier. */
#ifdef APPLY_TABLES
APPLY_TABLES
#endif
#endif
low_d = low/30;
high_d = high/30;
/* Count full bytes only -- no fragments from primary cache */
segment_size = get_prime_cache(0, &cache_sieve) / 30;
if (segment_size < high_d) {
/* Expand sieve to sqrt(n) */
UV endp = (high_d >= (UV_MAX/30)) ? UV_MAX-2 : 30*high_d+29;
release_prime_cache(cache_sieve);
segment_size = get_prime_cache( isqrt(endp) + 1 , &cache_sieve) / 30;
}
if ( (segment_size > 0) && (low_d <= segment_size) ) {
/* Count all the primes in the primary cache in our range */
count += count_segment_ranged(cache_sieve, segment_size, low, high);
if (high_d < segment_size) {
release_prime_cache(cache_sieve);
return count;
}
low_d = segment_size;
if (30*low_d > low) low = 30*low_d;
}
release_prime_cache(cache_sieve);
/* More primes needed. Repeatedly segment sieve. */
{
void* ctx = start_segment_primes(low, high, &segment);
UV seg_base, seg_low, seg_high;
while (next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
segment_size = seg_high/30 - seg_low/30 + 1;
count += count_segment_ranged(segment, segment_size, seg_low-seg_base, seg_high-seg_base);
}
end_segment_primes(ctx);
}
return count;
}
UV prime_count(UV lo, UV hi)
{
if (lo > hi || hi < 2)
return 0;
#if defined(BENCH_SEGCOUNT)
return segment_prime_count(lo, hi);
#endif
/* We use table acceleration so this is preferable for small inputs */
if (hi < _MPU_LMO_CROSSOVER) return segment_prime_count(lo, hi);
{ /* Rough empirical threshold for when segment faster than LMO */
UV range_threshold = hi / (isqrt(hi)/200);
if ( (hi-lo+1) < range_threshold )
return segment_prime_count(lo, hi);
}
return LMO_prime_count(hi) - ((lo < 2) ? 0 : LMO_prime_count(lo-1));
}
UV prime_count_approx(UV n)
{
if (n < 3000000) return segment_prime_count(2, n);
return (UV) (RiemannR( (long double) n ) + 0.5 );
}
/* See http://numbers.computation.free.fr/Constants/Primes/twin.pdf, page 5 */
/* Upper limit is in Wu, Acta Arith 114 (2004). 4.48857*x/(log(x)*log(x) */
UV twin_prime_count_approx(UV n)
{
/* Best would be another estimate for n < ~ 5000 */
if (n < 2000) return twin_prime_count(3,n);
{
/* Sebah and Gourdon 2002 */
const long double two_C2 = 1.32032363169373914785562422L;
const long double two_over_log_two = 2.8853900817779268147198494L;
long double ln = (long double) n;
long double logn = logl(ln);
long double li2 = Ei(logn) + two_over_log_two-ln/logn;
/* try to minimize MSE */
if (n < 32000000) {
long double fm;
if (n < 4000) fm = 0.2952;
else if (n < 8000) fm = 0.3152;
else if (n < 16000) fm = 0.3090;
else if (n < 32000) fm = 0.3096;
else if (n < 64000) fm = 0.3100;
else if (n < 128000) fm = 0.3089;
else if (n < 256000) fm = 0.3099;
else if (n < 600000) fm = .3091 + (n-256000) * (.3056-.3091) / (600000-256000);
else if (n < 1000000) fm = .3062 + (n-600000) * (.3042-.3062) / (1000000-600000);
else if (n < 4000000) fm = .3067 + (n-1000000) * (.3041-.3067) / (4000000-1000000);
else if (n <16000000) fm = .3033 + (n-4000000) * (.2983-.3033) / (16000000-4000000);
else fm = .2980 + (n-16000000) * (.2965-.2980) / (32000000-16000000);
li2 *= fm * logl(12+logn);
}
return (UV) (two_C2 * li2 + 0.5L);
}
}
UV prime_count_lower(UV n)
{
long double fn, fl1, fl2, lower, a;
if (n < 33000) return segment_prime_count(2, n);
fn = (long double) n;
fl1 = logl(n);
fl2 = fl1 * fl1;
/* Axler 2014: https://arxiv.org/abs/1409.1780 (v7 2016), Cor 3.6
* show variations of this. */
if (n <= 300000) { /* Quite accurate and avoids calling Li for speed. */
a = (n < 70200) ? 947 : (n < 176000) ? 904 : 829;
lower = fn / (fl1 - 1 - 1/fl1 - 2.85/fl2 - 13.15/(fl1*fl2) + a/(fl2*fl2));
} else if (n < UVCONST(4000000000)) {
/* Loose enough that FP differences in Li(n) should be ok. */
a = (n < 88783) ? 4.0L
: (n < 300000) ? -3.0L
: (n < 303000) ? 5.0L
: (n < 1100000) ? -7.0L
: (n < 4500000) ? -37.0L
: (n < 10200000) ? -70.0L
: (n < 36900000) ? -53.0L
: (n < 38100000) ? -29.0L
: -84.0L;
lower = Li(fn) - (sqrtl(fn)/fl1) * (1.94L + 2.50L/fl1 + a/fl2);
} else if (fn < 1e19) { /* Büthe 2015 1.9 1511.02032v1.pdf */
lower = Li(fn) - (sqrtl(fn)/fl1) * (1.94L + 3.88L/fl1 + 27.57L/fl2);
} else { /* Büthe 2014 v3 7.2 1410.7015v3.pdf */
lower = Li(fn) - fl1*sqrtl(fn)/25.132741228718345907701147L;
}
return (UV) ceill(lower);
}
typedef struct {
UV thresh;
float aval;
} thresh_t;
static const thresh_t _upper_thresh[] = {
{ 59000, 2.48 },
{ 355991, 2.54 },
{ 3550000, 2.51 },
{ 3560000, 2.49 },
{ 5000000, 2.48 },
{ 8000000, 2.47 },
{ 13000000, 2.46 },
{ 18000000, 2.45 },
{ 31000000, 2.44 },
{ 41000000, 2.43 },
{ 48000000, 2.42 },
{ 119000000, 2.41 },
{ 182000000, 2.40 },
{ 192000000, 2.395 },
{ 213000000, 2.390 },
{ 271000000, 2.385 },
{ 322000000, 2.380 },
{ 400000000, 2.375 },
{ 510000000, 2.370 },
{ 682000000, 2.367 },
{ UVCONST(2953652287), 2.362 }
};
#define NUPPER_THRESH (sizeof(_upper_thresh)/sizeof(_upper_thresh[0]))
UV prime_count_upper(UV n)
{
int i;
long double fn, fl1, fl2, upper, a;
if (n < 33000) return segment_prime_count(2, n);
fn = (long double) n;
fl1 = logl(n);
fl2 = fl1 * fl1;
/* Axler 2014: https://arxiv.org/abs/1409.1780 (v7 2016), Cor 3.5
*
* upper = fn/(fl1-1.0L-1.0L/fl1-3.35L/fl2-12.65L/(fl2*fl1)-89.6L/(fl2*fl2));
* return (UV) floorl(upper);
*/
if (BITS_PER_WORD == 32 || fn <= 821800000.0) { /* Dusart 2010, page 2 */
for (i = 0; i < (int)NUPPER_THRESH; i++)
if (n < _upper_thresh[i].thresh)
break;
a = (i < (int)NUPPER_THRESH) ? _upper_thresh[i].aval : 2.334L;
upper = fn/fl1 * (1.0L + 1.0L/fl1 + a/fl2);
} else if (fn < 1e19) { /* Büthe 2015 1.10 Skewes number lower limit */
a = (fn < 1100000000.0) ? 0.032 /* Empirical */
: (fn < 10010000000.0) ? 0.027 /* Empirical */
: (fn < 101260000000.0) ? 0.021 /* Empirical */
: 0.0;
upper = Li(fn) - a * fl1*sqrtl(fn)/25.132741228718345907701147L;
} else { /* Büthe 2014 7.4 */
upper = Li(fn) + fl1*sqrtl(fn)/25.132741228718345907701147L;
}
return (UV) floorl(upper);
}
static void simple_nth_limits(UV *lo, UV *hi, long double n, long double logn, long double loglogn) {
const long double a = (n < 228) ? .6483 : (n < 948) ? .8032 : (n < 2195) ? .8800 : (n < 39017) ? .9019 : .9484;
*lo = n * (logn + loglogn - 1.0 + ((loglogn-2.10)/logn));
*hi = n * (logn + loglogn - a);
if (*hi < *lo) *hi = MPU_MAX_PRIME;
}
/* The nth prime will be less or equal to this number */
UV nth_prime_upper(UV n)
{
long double fn, flogn, flog2n, upper;
if (n < NPRIMES_SMALL)
return primes_small[n];
fn = (long double) n;
flogn = logl(n);
flog2n = logl(flogn); /* Note distinction between log_2(n) and log^2(n) */
if (n < 688383) {
UV lo,hi;
simple_nth_limits(&lo, &hi, fn, flogn, flog2n);
while (lo < hi) {
UV mid = lo + (hi-lo)/2;
if (prime_count_lower(mid) < n) lo = mid+1;
else hi = mid;
}
return lo;
}
/* Dusart 2010 page 2 */
upper = fn * (flogn + flog2n - 1.0 + ((flog2n-2.00)/flogn));
if (n >= 46254381) {
/* Axler 2017 http://arxiv.org/pdf/1706.03651.pdf Corollary 1.2 */
upper -= fn * ((flog2n*flog2n-6*flog2n+10.667)/(2*flogn*flogn));
} else if (n >= 8009824) {
/* Axler 2013 page viii Korollar G */
upper -= fn * ((flog2n*flog2n-6*flog2n+10.273)/(2*flogn*flogn));
}
if (upper >= (long double)UV_MAX) {
if (n <= MPU_MAX_PRIME_IDX) return MPU_MAX_PRIME;
croak("nth_prime_upper(%"UVuf") overflow", n);
}
return (UV) floorl(upper);
}
/* The nth prime will be greater than or equal to this number */
UV nth_prime_lower(UV n)
{
double fn, flogn, flog2n, lower;
if (n < NPRIMES_SMALL)
return primes_small[n];
fn = (double) n;
flogn = log(n);
flog2n = log(flogn);
/* For small values, do a binary search on the inverse prime count */
if (n < 2000000) {
UV lo,hi;
simple_nth_limits(&lo, &hi, fn, flogn, flog2n);
while (lo < hi) {
UV mid = lo + (hi-lo)/2;
if (prime_count_upper(mid) < n) lo = mid+1;
else hi = mid;
}
return lo;
}
{ /* Axler 2017 http://arxiv.org/pdf/1706.03651.pdf Corollary 1.4 */
double b1 = (n < 56000000) ? 11.200 : 11.508;
lower = fn * (flogn + flog2n-1.0 + ((flog2n-2.00)/flogn) - ((flog2n*flog2n-6*flog2n+b1)/(2*flogn*flogn)));
}
return (UV) ceill(lower);
}
UV nth_prime_approx(UV n)
{
return (n < NPRIMES_SMALL) ? primes_small[n] : inverse_R(n);
}
UV nth_prime(UV n)
{
const unsigned char* cache_sieve;
unsigned char* segment;
UV upper_limit, segbase, segment_size, p, count, target;
/* If very small, return the table entry */
if (n < NPRIMES_SMALL)
return primes_small[n];
/* Determine a bound on the nth prime. We know it comes before this. */
upper_limit = nth_prime_upper(n);
MPUassert(upper_limit > 0, "nth_prime got an upper limit of 0");
p = count = 0;
target = n-3;
/* For relatively small values, generate a sieve and count the results.
*
* For larger values, compute an approximate low estimate, use our fast
* prime count, then segment sieve forwards or backwards for the rest.
*/
if (upper_limit <= get_prime_cache(0, 0) || upper_limit <= 32*1024*30) {
/* Generate a sieve and count. */
segment_size = get_prime_cache(upper_limit, &cache_sieve) / 30;
/* Count up everything in the cached sieve. */
if (segment_size > 0)
count += count_segment_maxcount(cache_sieve, 0, segment_size, target, &p);
release_prime_cache(cache_sieve);
} else {
/* A binary search on RiemannR is nice, but ends up either often being
* being higher (requiring going backwards) or biased and then far too
* low. Using the inverse Li is easier and more consistent. */
UV lower_limit = inverse_li(n);
/* For even better performance, add in half the usual correction, which
* will get us even closer, so even less sieving required. However, it
* is now possible to get a result higher than the value, so we'll need
* to handle that case. It still ends up being a better deal than R,
* given that we don't have a fast backward sieve. */
lower_limit += inverse_li(isqrt(n))/4;
segment_size = lower_limit / 30;
lower_limit = 30 * segment_size - 1;
count = prime_count(2,lower_limit);
/* printf("We've estimated %lu too %s.\n", (count>n)?count-n:n-count, (count>n)?"FAR":"little"); */
/* printf("Our limit %lu %s a prime\n", lower_limit, is_prime(lower_limit) ? "is" : "is not"); */
if (count >= n) { /* Too far. Walk backwards */
if (is_prime(lower_limit)) count--;
for (p = 0; p <= (count-n); p++)
lower_limit = prev_prime(lower_limit);
return lower_limit;
}
count -= 3;
/* Make sure the segment siever won't have to keep resieving. */
prime_precalc(isqrt(upper_limit));
}
if (count == target)
return p;
/* Start segment sieving. Get memory to sieve into. */
segbase = segment_size;
segment = get_prime_segment(&segment_size);
while (count < target) {
/* Limit the segment size if we know the answer comes earlier */
if ( (30*(segbase+segment_size)+29) > upper_limit )
segment_size = (upper_limit - segbase*30 + 30) / 30;
/* Do the actual sieving in the range */
sieve_segment(segment, segbase, segbase + segment_size-1);
/* Count up everything in this segment */
count += count_segment_maxcount(segment, 30*segbase, segment_size, target-count, &p);
if (count < target)
segbase += segment_size;
}
release_prime_segment(segment);
MPUassert(count == target, "nth_prime got incorrect count");
return ( (segbase*30) + p );
}
/******************************************************************************/
/* TWIN PRIMES */
/******************************************************************************/
#if BITS_PER_WORD < 64
static const UV twin_steps[] =
{58980,48427,45485,43861,42348,41457,40908,39984,39640,39222,
373059,353109,341253,332437,326131,320567,315883,312511,309244,
2963535,2822103,2734294,2673728,
};
static const unsigned int twin_num_exponents = 3;
static const unsigned int twin_last_mult = 4; /* 4000M */
#else
static const UV twin_steps[] =
{58980,48427,45485,43861,42348,41457,40908,39984,39640,39222,
373059,353109,341253,332437,326131,320567,315883,312511,309244,
2963535,2822103,2734294,2673728,2626243,2585752,2554015,2527034,2501469,
24096420,23046519,22401089,21946975,21590715,21300632,21060884,20854501,20665634,
199708605,191801047,186932018,183404596,180694619,178477447,176604059,174989299,173597482,
1682185723,1620989842,1583071291,1555660927,1534349481,1517031854,1502382532,1489745250, 1478662752,
14364197903,13879821868,13578563641,13361034187,13191416949,13053013447,12936030624,12835090276, 12746487898,
124078078589,120182602778,117753842540,115995331742,114622738809,113499818125,112551549250,111732637241,111012321565,
1082549061370,1050759497170,1030883829367,1016473645857,1005206830409,995980796683,988183329733,981441437376,975508027029,
9527651328494, 9264843314051, 9100153493509, 8980561036751, 8886953365929, 8810223086411, 8745329823109, 8689179566509, 8639748641098,
84499489470819, 82302056642520, 80922166953330, 79918799449753, 79132610984280, 78487688897426, 77941865286827, 77469296499217, 77053075040105,
754527610498466, 735967887462370, 724291736697048,
};
static const unsigned int twin_num_exponents = 12;
static const unsigned int twin_last_mult = 4; /* 4e19 */
#endif
UV twin_prime_count(UV beg, UV end)
{
unsigned char* segment;
UV sum = 0;
/* First use the tables of #e# from 1e7 to 2e16. */
if (beg <= 3 && end >= 10000000) {
UV mult, exp, step = 0, base = 10000000;
for (exp = 0; exp < twin_num_exponents && end >= base; exp++) {
for (mult = 1; mult < 10 && end >= mult*base; mult++) {
sum += twin_steps[step++];
beg = mult*base;
if (exp == twin_num_exponents-1 && mult >= twin_last_mult) break;
}
base *= 10;
}
}
if (beg <= 3 && end >= 3) sum++;
if (beg <= 5 && end >= 5) sum++;
if (beg < 11) beg = 7;
if (beg <= end) {
/* Make end points odd */
beg |= 1;
end = (end-1) | 1;
/* Cheesy way of counting the partial-byte edges */
while ((beg % 30) != 1) {
if (is_prime(beg) && is_prime(beg+2) && beg <= end) sum++;
beg += 2;
}
while ((end % 30) != 29) {
if (is_prime(end) && is_prime(end+2) && beg <= end) sum++;
end -= 2; if (beg > end) break;
}
}
if (beg <= end) {
UV seg_base, seg_low, seg_high;
void* ctx = start_segment_primes(beg, end, &segment);
while (next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
UV bytes = seg_high/30 - seg_low/30 + 1;
unsigned char s;
const unsigned char* sp = segment;
const unsigned char* const spend = segment + bytes - 1;
while (sp < spend) {
s = *sp++;
if (!(s & 0x0C)) sum++;
if (!(s & 0x30)) sum++;
if (!(s & 0x80) && !(*sp & 0x01)) sum++;
}
s = *sp;
if (!(s & 0x0C)) sum++;
if (!(s & 0x30)) sum++;
if (!(s & 0x80) && is_prime(seg_high+2)) sum++;
}
end_segment_primes(ctx);
}
return sum;
}
UV nth_twin_prime(UV n)
{
unsigned char* segment;
double dend;
UV nth = 0;
UV beg, end;
if (n < 6) {
switch (n) {
case 0: nth = 0; break;
case 1: nth = 3; break;
case 2: nth = 5; break;
case 3: nth =11; break;
case 4: nth =17; break;
case 5:
default: nth =29; break;
}
return nth;
}
end = UV_MAX - 16;
dend = 800.0 + 1.01L * (double)nth_twin_prime_approx(n);
if (dend < (double)end) end = (UV) dend;
beg = 2;
if (n > 58980) { /* Use twin_prime_count tables to accelerate if possible */
UV mult, exp, step = 0, base = 10000000;
for (exp = 0; exp < twin_num_exponents && end >= base; exp++) {
for (mult = 1; mult < 10 && n > twin_steps[step]; mult++) {
n -= twin_steps[step++];
beg = mult*base;
if (exp == twin_num_exponents-1 && mult >= twin_last_mult) break;
}
base *= 10;
}
}
if (beg == 2) { beg = 31; n -= 5; }
{
UV seg_base, seg_low, seg_high;
void* ctx = start_segment_primes(beg, end, &segment);
while (n && next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
UV p, bytes = seg_high/30 - seg_low/30 + 1;
UV s = ((UV)segment[0]) << 8;
for (p = 0; p < bytes; p++) {
s >>= 8;
if (p+1 < bytes) s |= (((UV)segment[p+1]) << 8);
else if (!is_prime(seg_high+2)) s |= 0xFF00;
if (!(s & 0x000C) && !--n) { nth=seg_base+p*30+11; break; }
if (!(s & 0x0030) && !--n) { nth=seg_base+p*30+17; break; }
if (!(s & 0x0180) && !--n) { nth=seg_base+p*30+29; break; }
}
}
end_segment_primes(ctx);
}
return nth;
}
UV nth_twin_prime_approx(UV n)
{
long double fn = (long double) n;
long double flogn = logl(n);
long double fnlog2n = fn * flogn * flogn;
UV lo, hi;
if (n < 6)
return nth_twin_prime(n);
/* Binary search on the TPC estimate.
* Good results require that the TPC estimate is both fast and accurate.
* These bounds are good for the actual nth_twin_prime values.
*/
lo = (UV) (0.9 * fnlog2n);
hi = (UV) ( (n >= 1e16) ? (1.04 * fnlog2n) :
(n >= 1e13) ? (1.10 * fnlog2n) :
(n >= 1e7 ) ? (1.31 * fnlog2n) :
(n >= 1200) ? (1.70 * fnlog2n) :
(2.3 * fnlog2n + 5) );
if (hi <= lo) hi = UV_MAX;
while (lo < hi) {
UV mid = lo + (hi-lo)/2;
if (twin_prime_count_approx(mid) < fn) lo = mid+1;
else hi = mid;
}
return lo;
}
/******************************************************************************/
/* SUMS */
/******************************************************************************/
/* The fastest way to compute the sum of primes is using a combinatorial
* algorithm such as Deleglise 2012. Since this code is purely native,
* it will overflow a 64-bit result quite quickly. Hence a relatively small
* table plus sum over sieved primes works quite well.
*
* The following info is useful if we ever return 128-bit results or for a
* GMP implementation.
*
* Combinatorial sum of primes < n. Call with phisum(n, isqrt(n)).
* Needs optimization, either caching, Lehmer, or LMO.
* http://mathoverflow.net/questions/81443/fastest-algorithm-to-compute-the-sum-of-primes
* http://www.ams.org/journals/mcom/2009-78-268/S0025-5718-09-02249-2/S0025-5718-09-02249-2.pdf
* http://mathematica.stackexchange.com/questions/80291/efficient-way-to-sum-all-the-primes-below-n-million-in-mathematica
* Deleglise 2012, page 27, simple Meissel:
* y = x^1/3
* a = Pi(y)
* Pi_f(x) = phisum(x,a) + Pi_f(y) - 1 - P_2(x,a)
* P_2(x,a) = sum prime p : y < p <= sqrt(x) of f(p) * Pi_f(x/p) -
* sum prime p : y < p <= sqrt(x) of f(p) * Pi_f(p-1)
*/
static const unsigned char byte_sum[256] =
{120,119,113,112,109,108,102,101,107,106,100,99,96,95,89,88,103,102,96,95,92,
91,85,84,90,89,83,82,79,78,72,71,101,100,94,93,90,89,83,82,88,87,81,80,77,
76,70,69,84,83,77,76,73,72,66,65,71,70,64,63,60,59,53,52,97,96,90,89,86,85,
79,78,84,83,77,76,73,72,66,65,80,79,73,72,69,68,62,61,67,66,60,59,56,55,49,
48,78,77,71,70,67,66,60,59,65,64,58,57,54,53,47,46,61,60,54,53,50,49,43,42,
48,47,41,40,37,36,30,29,91,90,84,83,80,79,73,72,78,77,71,70,67,66,60,59,74,
73,67,66,63,62,56,55,61,60,54,53,50,49,43,42,72,71,65,64,61,60,54,53,59,58,
52,51,48,47,41,40,55,54,48,47,44,43,37,36,42,41,35,34,31,30,24,23,68,67,61,
60,57,56,50,49,55,54,48,47,44,43,37,36,51,50,44,43,40,39,33,32,38,37,31,30,
27,26,20,19,49,48,42,41,38,37,31,30,36,35,29,28,25,24,18,17,32,31,25,24,21,
20,14,13,19,18,12,11,8,7,1,0};
#if BITS_PER_WORD == 64
/* We have a much more limited range, so use a fixed interval. We should be
* able to get any 64-bit sum in under a half-second. */
static const UV sum_table_2e8[] =
{1075207199997324,3071230303170813,4990865886639877,6872723092050268,8729485610396243,10566436676784677,12388862798895708,14198556341669206,15997206121881531,17783028661796383,19566685687136351,21339485298848693,23108856419719148,
24861364231151903,26619321031799321,28368484289421890,30110050320271201,31856321671656548,33592089385327108,35316546074029522,37040262208390735,38774260466286299,40490125006181147,42207686658844380,43915802985817228,45635106002281013,
47337822860157465,49047713696453759,50750666660265584,52449748364487290,54152689180758005,55832433395290183,57540651847418233,59224867245128289,60907462954737468,62597192477315868,64283665223856098,65961576139329367,67641982565760928,
69339211720915217,71006044680007261,72690896543747616,74358564592509127,76016548794894677,77694517638354266,79351385193517953,81053240048141953,82698120948724835,84380724263091726,86028655116421543,87679091888973563,89348007111430334,
90995902774878695,92678527127292212,94313220293410120,95988730932107432,97603162494502485,99310622699836698,100935243057337310,102572075478649557,104236362884241550,105885045921116836,107546170993472638,109163445284201278,
110835950755374921,112461991135144669,114116351921245042,115740770232532531,117408250788520189,119007914428335965,120652479429703269,122317415246500401,123951466213858688,125596789655927842,127204379051939418,128867944265073217,
130480037123800711,132121840147764197,133752985360747726,135365954823762234,137014594650995101,138614165689305879,140269121741383097,141915099618762647,143529289083557618,145146413750649432,146751434858695468,148397902396643807,
149990139346918801,151661665434334577,153236861034424304,154885985064643097,156500983286383741,158120868946747299,159735201435796748,161399264792716319,162999489977602579,164566400448130092,166219688860475191,167836981098849796,
169447127305804401,171078187147848898,172678849082290997,174284436375728242,175918609754056455,177525046501311788,179125593738290153,180765176633753371,182338473848291683,183966529541155489,185585792988238475,187131988176321434,
188797837140841381,190397649440649965,191981841583560122,193609739194967419,195166830650558070,196865965063113041,198400070713177440,200057161591648721,201621899486413406,203238279253414934,204790684829891896,206407676204061001,
208061050481364659,209641606658938873,211192088300183855,212855420483750498,214394145510853736,216036806225784861,217628995137940563,219277567478725189,220833877268454872,222430818525363309,224007307616922530,225640739533952807,
227213096159236934,228853318075566255,230401824696558125,231961445347821085,233593317860593895,235124654760954338,236777716068869769,238431514923528303,239965003913481640,241515977959535845,243129874530821395};
#define N_SUM_TABLE (sizeof(sum_table_2e8)/sizeof(sum_table_2e8[0]))
#endif
/* Add n to the double-word hi,lo */
#define ADD_128(hi, lo, n) \
do { UV _n = n; \
if (_n > (UV_MAX-lo)) { hi++; if (hi == 0) overflow = 1; } \
lo += _n; } while (0)
#define SET_128(hi, lo, n) \
do { hi = (UV) (((n) >> 64) & UV_MAX); \
lo = (UV) (((n) ) & UV_MAX); } while (0)
/* Legendre method for prime sum */
int sum_primes128(UV n, UV *hi_sum, UV *lo_sum) {
#if BITS_PER_WORD == 64 && HAVE_UINT128
uint128_t *V, *S;
UV j, k, r = isqrt(n), r2 = r + n/(r+1);
New(0, V, r2+1, uint128_t);
New(0, S, r2+1, uint128_t);
for (k = 0; k <= r2; k++) {
uint128_t v = (k <= r) ? k : n/(r2-k+1);
V[k] = v;
S[k] = (v*(v+1))/2 - 1;
}
START_DO_FOR_EACH_PRIME(2, r) {
uint128_t a, b, sp = S[p-1], p2 = ((uint128_t)p) * p;
for (j = k-1; j > 1 && V[j] >= p2; j--) {
a = V[j], b = a/p;
if (a > r) a = r2 - n/a + 1;
if (b > r) b = r2 - n/b + 1;
S[a] -= p * (S[b] - sp); /* sp = sum of primes less than p */
}
} END_DO_FOR_EACH_PRIME;
SET_128(*hi_sum, *lo_sum, S[r2]);
Safefree(V);
Safefree(S);
return 1;
#else
return 0;
#endif
}
int sum_primes(UV low, UV high, UV *return_sum) {
UV sum = 0;
int overflow = 0;
if ((low <= 2) && (high >= 2)) sum += 2;
if ((low <= 3) && (high >= 3)) sum += 3;
if ((low <= 5) && (high >= 5)) sum += 5;
if (low < 7) low = 7;
/* If we know the range will overflow, return now */
#if BITS_PER_WORD == 64
if (low == 7 && high >= 29505444491) return 0;
if (low >= 1e10 && (high-low) >= 32e9) return 0;
if (low >= 1e13 && (high-low) >= 5e7) return 0;
#else
if (low == 7 && high >= 323381) return 0;
#endif
#if 1 && BITS_PER_WORD == 64 /* Tables */
if (low == 7 && high >= 2e8) {
UV step;
for (step = 1; high >= (step * 2e8) && step < N_SUM_TABLE; step++) {
sum += sum_table_2e8[step-1];
low = step * 2e8;
}
}
#endif
if (low <= high) {
unsigned char* segment;
UV seg_base, seg_low, seg_high;
void* ctx = start_segment_primes(low, high, &segment);
while (!overflow && next_segment_primes(ctx, &seg_base, &seg_low, &seg_high)) {
UV bytes = seg_high/30 - seg_low/30 + 1;
unsigned char s;
unsigned char* sp = segment;
unsigned char* const spend = segment + bytes - 1;
UV i, p, pbase = 30*(seg_low/30);
/* Clear primes before and after our range */
p = pbase;
for (i = 0; i < 8 && p+wheel30[i] < low; i++)
if ( (*sp & (1<<i)) == 0 )
*sp |= (1 << i);
p = 30*(seg_high/30);
for (i = 0; i < 8; i++)
if ( (*spend & (1<<i)) == 0 && p+wheel30[i] > high )
*spend |= (1 << i);
while (sp <= spend) {
s = *sp++;
if (sum < (UV_MAX >> 3) && pbase < (UV_MAX >> 5)) {
/* sum block of 8 all at once */
sum += pbase * byte_zeros[s] + byte_sum[s];
} else {
/* sum block of 8, checking for overflow at each step */
for (i = 0; i < byte_zeros[s]; i++) {
if (sum+pbase < sum) overflow = 1;
sum += pbase;
}
if (sum+byte_sum[s] < sum) overflow = 1;
sum += byte_sum[s];
if (overflow) break;
}
pbase += 30;
}
}
end_segment_primes(ctx);
}
if (!overflow && return_sum != 0) *return_sum = sum;
return !overflow;
}
double ramanujan_sa_gn(UV un)
{
long double n = (long double) un;
long double logn = logl(n);
long double log2 = logl(2);
return (double)( (logn + logl(logn) - log2 - 0.5) / (log2 + 0.5) );
}
|