File: bench-pp-sieve.pl

package info (click to toggle)
libmath-prime-util-perl 0.73-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,796 kB
  • sloc: perl: 24,676; ansic: 11,471; makefile: 26; python: 24
file content (482 lines) | stat: -rwxr-xr-x 12,357 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env perl
use strict;
use warnings;

use Benchmark qw/:all/;
#use Devel::Size qw/total_size/;
use Math::Prime::Util;
use Math::Prime::FastSieve;
*mpu_erat = \&Math::Prime::Util::erat_primes;
*fs_erat = \&Math::Prime::FastSieve::primes;

my $upper = shift || 8192;
my $count = shift || -1;
my $countarg;
my $sum;

# This is like counting, but we want an array returned.
# The subs will compute a sum on the results.

# In practice you would probably want to return a ref to your array, or return
# a ref to your sieve structure and let the caller decode it as needed.

# Times for 100k.
# Vs. MPU sieve, as we move from 8k to 10M:
#   Atkin MPTA, Rosetta 3 & 1, Shootout, Scriptol, DO Array, DJ Array, and
#   InMany all slow down.  Atkin 2 speeds up (from 65x slower to 54x slower).
# The DJ string methods have almost no relative slowdown, so stretch out their
# advantage over the other fast ones (In Many, DJ Array, DJ Vec, and DO Array).
my $pc_subs = {
  "Rosetta 4" => sub {$sum=0; $sum+=$_ for rosetta4($countarg);$sum;},  #    9/s
  "Atkin MPTA"=> sub {$sum=0; $sum+=$_ for atkin($countarg);$sum;},     #   11/s
  "Merlyn"    => sub {$sum=0; $sum+=$_ for merlyn($countarg);$sum;},    #   15/s
  "Rosetta 2" => sub {$sum=0; $sum+=$_ for rosetta2($countarg);$sum; }, #   16/s
  "DO Vec"    => sub {$sum=0; $sum+=$_ for daos_vec($countarg);$sum;},  #   16/s
  "Atkin 2"   => sub {$sum=0; $sum+=$_ for atkin2($countarg);$sum; },   #   17/s
  "Rosetta 3" => sub {$sum=0; $sum+=$_ for rosetta3($countarg);$sum; }, #   23/s
  "Rosetta 1" => sub {$sum=0; $sum+=$_ for rosetta1($countarg);$sum; }, #   26/s
  "Shootout"  => sub {$sum=0; $sum+=$_ for shootout($countarg);$sum; }, #   30/s
  "Scriptol"  => sub {$sum=0; $sum+=$_ for scriptol($countarg);$sum; }, #   33/s
  "DJ Vec"    => sub {$sum=0; $sum+=$_ for dj1($countarg);$sum; },      #   34/s
  "DO Array"  => sub {$sum=0; $sum+=$_ for daos_array($countarg);$sum;},#   41/s
  "DJ Array"  => sub {$sum=0; $sum+=$_ for dj2($countarg);$sum; },      #   63/s
  "In Many"   => sub {$sum=0; $sum+=$_ for inmany($countarg);$sum; },   #   86/s
  "DJ String1"=> sub {$sum=0; $sum+=$_ for dj3($countarg);$sum; },      #   99/s
  "DJ String2"=> sub {$sum=0; $sum+=$_ for dj4($countarg);$sum; },      #  134/s
  "MPFS Sieve"=> sub {                                                  # 1216/s
               $sum=0; $sum+=$_ for @{fs_erat($countarg)};;$sum; },
  "MPU Sieve" => sub {                                                  # 1290/s
               $sum=0; $sum+=$_ for @{mpu_erat(2,$countarg)};;$sum; },
};

my %verify = (
      10 => 17,
      11 => 28,
     100 => 1060,
     112 => 1480,
     113 => 1593,
     114 => 1593,
    1000 => 76127,
   10000 => 5736396,
  100000 => 454396537,
);

# Verify
while (my($name, $sub) = each (%$pc_subs)) {
  while (my($n, $v_pi_sum) = each (%verify)) {
    $countarg = $n;
    my $pi_sum = $sub->();
    die "$name ($n) = $pi_sum, should be $v_pi_sum" unless $pi_sum == $v_pi_sum;
  }
}
print "Done with verification, starting benchmark\n";

$countarg = $upper;
cmpthese($count, $pc_subs);



# www.scriptol.com/programming/sieve.php
sub scriptol {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @flags = (0 .. $max);
  for my $i (2 .. int(sqrt($max)) + 1)
  {
       next unless defined $flags[$i];
       for (my $k=$i+$i; $k <= $max; $k+=$i)
       {
           undef $flags[$k];
       }
  }
  return grep { defined $flags[$_] } 2 .. $max;
}

# http://dada.perl.it/shootout/sieve.perl.html
sub shootout {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @primes;
  my @flags = (0 .. $max);
  for my $i (2 .. $max) {
       next unless defined $flags[$i];
       for (my $k=$i+$i; $k <= $max; $k+=$i) {
           undef $flags[$k];
       }
       push @primes, $i;
  }
  @primes;
}

# http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages
sub inmany {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @c;
  for(my $t=3; $t*$t<=$max; $t+=2) {
     if (!$c[$t]) {
         for(my $s=$t*$t; $s<=$max; $s+=$t*2) { $c[$s]++ }
     }
 }
 my @primes = (2);
 for(my $t=3; $t<=$max; $t+=2) {
     $c[$t] || push @primes, $t;
 }
 @primes;
 # grep { $c[$_] } 3 .. $max;
}

# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta1 {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @primes;
  my @tested = (1);
  my $j = 1;
  while ($j < $max) {
    next if $tested[$j++];
    push @primes, $j;
    for (my $k= $j; $k <= $max; $k+=$j) {
      $tested[$k-1]= 1;
    }
  }
  @primes;
}

# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta2 {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @primes;
  my $nonPrimes = '';
  foreach my $p (2 .. $max) {
    unless (vec($nonPrimes, $p, 1)) {
      for (my $i = $p * $p; $i <= $max; $i += $p) {
        vec($nonPrimes, $i, 1) = 1;
      }
      push @primes, $p;
    }
  }
  @primes;
}

# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta3 {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my(@s, $i);
  grep { not $s[ $i  = $_ ] and do
           { $s[ $i += $_ ]++ while $i <= $max; 1 }
       } 2 .. $max;
}

# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta4 {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my $i;
  my $s = '';
  grep { not vec $s, $i  = $_, 1 and do
          { (vec $s, $i += $_, 1) = 1 while $i <= $max; 1 }
       } 2 .. $max;
}

# From Math::Primes::TiedArray
sub atkin {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;
  return 2 if $max < 5;

    my $sqrt     = sqrt($max);
    my %sieve;
    foreach my $x ( 1 .. $sqrt ) {

        foreach my $y ( 1 .. $sqrt ) {

            my $n = 3 * $x**2 - $y**2;
            if (    $x > $y
                and $n <= $max
                and $n % 12 == 11 )
            {
                $sieve{$n} = not $sieve{$n};
            }

            $n = 3 * $x**2 + $y**2;
            if ( $n <= $max and $n % 12 == 7 ) {
                $sieve{$n} = not $sieve{$n};
            }

            $n = 4 * $x**2 + $y**2;
            if (    $n <= $max
                and ( $n % 12 == 1 or $n % 12 == 5 ) )
            {
                $sieve{$n} = not $sieve{$n};
            }
        }
    }
    # eliminate composites by sieving
    foreach my $n ( 5 .. $sqrt ) {

        next unless $sieve{$n};

        my $k = int(1/$n**2) * $n**2;
        while ( $k <= $max ) {
            $sieve{$k} = 0;
            $k += $n**2;
        }
    }
    my @primes = (2, 3);
    push @primes, grep { $sieve{$_} } 5 .. $max;
    @primes;
}

# Naive Sieve of Atkin, basically straight from Wikipedia.
#
# <rant>
#
# First thing to note about SoA, is that people love to quote things like
# "memory use is O(N^(1/2+o(1)))" then proceed to _clearly_ use N bytes in
# their implementation.  If your data structures between SoA and SoE are the
# same, then all talk about comparative O(blah..blah) memory use is stupid.
#
# Secondly, assuming you're not Dan Bernstein, if your Sieve of Atkin is
# faster than your Sieve of Eratosthenes, then I strongly suggest you verify
# your code actually _works_, and secondly I would bet you made stupid mistakes
# in your SoE implementation.  If your SoA code even remotely resembles the
# Wikipedia code and it comes out faster than SoE, then I _guarantee_ your
# SoE is borked.
#
# SoA does have a slightly better asymptotic operation count O(N/loglogN) vs.
# O(N) for SoE.  The Wikipedia-like code that most people use is O(N) so it
# isn't even theoretically better unless you pull lots of stunts like primegen
# does.  Even if you do, loglogN is essentially a small constant for most uses
# (it's under 4 for all 64-bit values), so you need to make sure all the rest
# of your overhead is controlled.
#
# Sumarizing, in practice the SoE is faster, and often a LOT faster.
#
# </rant>
#
sub atkin2 {
  my($max) = @_;
  return 0 if $max < 2;
  return 1 if $max < 3;

  my @sieve;

  my $sqrt = int(sqrt($max));
  for my $x (1 .. $sqrt) {
    for my $y (1 .. $sqrt) {
      my $n;

      $n = 4*$x*$x + $y*$y;
      if ( ($n <= $max) && ( (($n%12) == 1) || (($n%12) == 5) ) ) {
        $sieve[$n] ^= 1;
      }
      $n = 3*$x*$x + $y*$y;
      if ( ($n <= $max) && (($n%12) == 7) ) {
        $sieve[$n] ^= 1;
      }
      $n = 3*$x*$x - $y*$y;
      if ( ($x > $y) && ($n <= $max) && (($n%12) == 11) ) {
        $sieve[$n] ^= 1;
      }
    }
  }

  for my $n (5 .. $sqrt) {
    if ($sieve[$n]) {
      my $k = $n*$n;
      my $z = $k;
      while ($z <= $max) {
        $sieve[$z] = 0;
        $z += $k;
      }
    }
  }

  $sieve[2] = 1;
  $sieve[3] = 1;
  grep { $sieve[$_] } 2 .. $max;
}

# https://github.com/daoswald/Inline-C-Perl-Mongers-Talk/blob/master/primesbench.pl
sub daos_array {
  my($top) = @_;
  return 0 if $top < 2;
  return 1 if $top < 3;
  $top++;

    my @primes = (1) x $top;
    my $i_times_j;
    for my $i ( 2 .. sqrt $top ) {
        if ( $primes[$i] ) {
            for ( my $j = $i; ( $i_times_j = $i * $j ) < $top; $j++ ) {
                undef $primes[$i_times_j];
            }
        }
    }
  return grep { $primes[$_] } 2 .. $#primes;
}

sub daos_vec {
  my($top) = @_;
  return 0 if $top < 2;
  return 1 if $top < 3;

  my $primes = '';
    vec( $primes, $top, 1 ) = 0;
    my $i_times_j;
    for my $i ( 2 .. sqrt $top ) {
        if ( !vec( $primes, $i, 1 ) ) {
            for ( my $j = $i; ( $i_times_j = $i * $j ) <= $top; $j++ ) {
                vec( $primes, $i_times_j, 1 ) = 1;
            }
        }
    }
  return grep { !vec( $primes, $_, 1 ) } 2 .. $top;
}

# Merlyn's Unix Review Column 26, June 1999
# http://www.stonehenge.com/merlyn/UnixReview/col26.html
sub merlyn {
  my($UPPER) = @_;
  return 0 if $UPPER < 2;
  return 1 if $UPPER < 3;

  my @primes;
  my $sieve = "";
  GUESS: for (my $guess = 2; $guess <= $UPPER; $guess++) {
    next GUESS if vec($sieve,$guess,1);
    push @primes, $guess;
    for (my $mults = $guess * $guess; $mults <= $UPPER; $mults += $guess) {
      vec($sieve,$mults,1) = 1;
    }
  }
  @primes;
}


sub dj1 {
  my($end) = @_;
  return 0 if $end < 2;
  return 1 if $end < 3;

  # vector
  my $sieve = '';
  my $n = 3;
  while ( ($n*$n) <= $end ) {
    my $s = $n*$n;
    while ($s <= $end) {
      vec($sieve, $s >> 1, 1) = 1;
      $s += 2*$n;
    }
    do { $n += 2 } while vec($sieve, $n >> 1, 1) != 0;
  }

  my @primes = (2);
  $n = 3;
  while ($n <= $end) {
    push @primes, $n if !vec($sieve, $n >> 1, 1);
    $n += 2;
  }
  @primes;
}

sub dj2 {
  my($end) = @_;
  return 0 if $end < 2;
  return 1 if $end < 3;

  # array
  my @sieve;
  my $n = 3;
  while ( ($n*$n) <= $end ) {
    my $s = $n*$n;
    while ($s <= $end) {
      $sieve[$s>>1] = 1;
      $s += 2*$n;
    }
    do { $n += 2 } while $sieve[$n>>1];
  }
  my @primes = (2);
  $n = 3;
  while ($n <= $end) {
    push @primes, $n if !$sieve[$n>>1];
    $n += 2;
  }
  @primes;
}

sub dj3 {
  my($end) = @_;
  return 0 if $end < 2;
  return 1 if $end < 3;
  $end-- if ($end & 1) == 0;

  # string
  my $sieve = '1' . '0' x ($end>>1);
  my $n = 3;
  while ( ($n*$n) <= $end ) {
    my $s = $n*$n;
    my $filter_s   = $s >> 1;
    my $filter_end = $end >> 1;
    while ($filter_s <= $filter_end) {
      substr($sieve, $filter_s, 1) = '1';
      $filter_s += $n;
    }
    do { $n += 2 } while substr($sieve, $n>>1, 1);
  }
  my @primes = (2);
  $n = 3-2;
  foreach my $s (split("0", substr($sieve, 1), -1)) {
    $n += 2 + 2 * length($s);
    push @primes, $n if $n <= $end;
  }
  @primes;
}

sub dj4 {
  my($end) = @_;
  return 0 if $end < 2;
  return 1 if $end < 3;
  $end-- if ($end & 1) == 0;

  # string with prefill
  my $whole = int( ($end>>1) / 15);
  my $sieve = '100010010010110' . '011010010010110' x $whole;
  substr($sieve, ($end>>1)+1) = '';
  my $n = 7;
  while ( ($n*$n) <= $end ) {
    my $s = $n*$n;
    my $filter_s   = $s >> 1;
    my $filter_end = $end >> 1;
    while ($filter_s <= $filter_end) {
      substr($sieve, $filter_s, 1) = '1';
      $filter_s += $n;
    }
    do { $n += 2 } while substr($sieve, $n>>1, 1);
  }
  my @primes = (2, 3, 5);
  $n = 7-2;
  foreach my $s (split("0", substr($sieve, 3), -1)) {
    $n += 2 + 2 * length($s);
    push @primes, $n if $n <= $end;
  }
  @primes;
}