1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
#!/usr/bin/env perl
use strict;
use warnings;
use Benchmark qw/:all/;
#use Devel::Size qw/total_size/;
use Math::Prime::Util;
use Math::Prime::FastSieve;
*mpu_erat = \&Math::Prime::Util::erat_primes;
*fs_erat = \&Math::Prime::FastSieve::primes;
my $upper = shift || 8192;
my $count = shift || -1;
my $countarg;
my $sum;
# This is like counting, but we want an array returned.
# The subs will compute a sum on the results.
# In practice you would probably want to return a ref to your array, or return
# a ref to your sieve structure and let the caller decode it as needed.
# Times for 100k.
# Vs. MPU sieve, as we move from 8k to 10M:
# Atkin MPTA, Rosetta 3 & 1, Shootout, Scriptol, DO Array, DJ Array, and
# InMany all slow down. Atkin 2 speeds up (from 65x slower to 54x slower).
# The DJ string methods have almost no relative slowdown, so stretch out their
# advantage over the other fast ones (In Many, DJ Array, DJ Vec, and DO Array).
my $pc_subs = {
"Rosetta 4" => sub {$sum=0; $sum+=$_ for rosetta4($countarg);$sum;}, # 9/s
"Atkin MPTA"=> sub {$sum=0; $sum+=$_ for atkin($countarg);$sum;}, # 11/s
"Merlyn" => sub {$sum=0; $sum+=$_ for merlyn($countarg);$sum;}, # 15/s
"Rosetta 2" => sub {$sum=0; $sum+=$_ for rosetta2($countarg);$sum; }, # 16/s
"DO Vec" => sub {$sum=0; $sum+=$_ for daos_vec($countarg);$sum;}, # 16/s
"Atkin 2" => sub {$sum=0; $sum+=$_ for atkin2($countarg);$sum; }, # 17/s
"Rosetta 3" => sub {$sum=0; $sum+=$_ for rosetta3($countarg);$sum; }, # 23/s
"Rosetta 1" => sub {$sum=0; $sum+=$_ for rosetta1($countarg);$sum; }, # 26/s
"Shootout" => sub {$sum=0; $sum+=$_ for shootout($countarg);$sum; }, # 30/s
"Scriptol" => sub {$sum=0; $sum+=$_ for scriptol($countarg);$sum; }, # 33/s
"DJ Vec" => sub {$sum=0; $sum+=$_ for dj1($countarg);$sum; }, # 34/s
"DO Array" => sub {$sum=0; $sum+=$_ for daos_array($countarg);$sum;},# 41/s
"DJ Array" => sub {$sum=0; $sum+=$_ for dj2($countarg);$sum; }, # 63/s
"In Many" => sub {$sum=0; $sum+=$_ for inmany($countarg);$sum; }, # 86/s
"DJ String1"=> sub {$sum=0; $sum+=$_ for dj3($countarg);$sum; }, # 99/s
"DJ String2"=> sub {$sum=0; $sum+=$_ for dj4($countarg);$sum; }, # 134/s
"MPFS Sieve"=> sub { # 1216/s
$sum=0; $sum+=$_ for @{fs_erat($countarg)};;$sum; },
"MPU Sieve" => sub { # 1290/s
$sum=0; $sum+=$_ for @{mpu_erat(2,$countarg)};;$sum; },
};
my %verify = (
10 => 17,
11 => 28,
100 => 1060,
112 => 1480,
113 => 1593,
114 => 1593,
1000 => 76127,
10000 => 5736396,
100000 => 454396537,
);
# Verify
while (my($name, $sub) = each (%$pc_subs)) {
while (my($n, $v_pi_sum) = each (%verify)) {
$countarg = $n;
my $pi_sum = $sub->();
die "$name ($n) = $pi_sum, should be $v_pi_sum" unless $pi_sum == $v_pi_sum;
}
}
print "Done with verification, starting benchmark\n";
$countarg = $upper;
cmpthese($count, $pc_subs);
# www.scriptol.com/programming/sieve.php
sub scriptol {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @flags = (0 .. $max);
for my $i (2 .. int(sqrt($max)) + 1)
{
next unless defined $flags[$i];
for (my $k=$i+$i; $k <= $max; $k+=$i)
{
undef $flags[$k];
}
}
return grep { defined $flags[$_] } 2 .. $max;
}
# http://dada.perl.it/shootout/sieve.perl.html
sub shootout {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @primes;
my @flags = (0 .. $max);
for my $i (2 .. $max) {
next unless defined $flags[$i];
for (my $k=$i+$i; $k <= $max; $k+=$i) {
undef $flags[$k];
}
push @primes, $i;
}
@primes;
}
# http://c2.com/cgi/wiki?SieveOfEratosthenesInManyProgrammingLanguages
sub inmany {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @c;
for(my $t=3; $t*$t<=$max; $t+=2) {
if (!$c[$t]) {
for(my $s=$t*$t; $s<=$max; $s+=$t*2) { $c[$s]++ }
}
}
my @primes = (2);
for(my $t=3; $t<=$max; $t+=2) {
$c[$t] || push @primes, $t;
}
@primes;
# grep { $c[$_] } 3 .. $max;
}
# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta1 {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @primes;
my @tested = (1);
my $j = 1;
while ($j < $max) {
next if $tested[$j++];
push @primes, $j;
for (my $k= $j; $k <= $max; $k+=$j) {
$tested[$k-1]= 1;
}
}
@primes;
}
# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta2 {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @primes;
my $nonPrimes = '';
foreach my $p (2 .. $max) {
unless (vec($nonPrimes, $p, 1)) {
for (my $i = $p * $p; $i <= $max; $i += $p) {
vec($nonPrimes, $i, 1) = 1;
}
push @primes, $p;
}
}
@primes;
}
# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta3 {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my(@s, $i);
grep { not $s[ $i = $_ ] and do
{ $s[ $i += $_ ]++ while $i <= $max; 1 }
} 2 .. $max;
}
# http://rosettacode.org/wiki/Sieve_of_Eratosthenes#Perl
sub rosetta4 {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my $i;
my $s = '';
grep { not vec $s, $i = $_, 1 and do
{ (vec $s, $i += $_, 1) = 1 while $i <= $max; 1 }
} 2 .. $max;
}
# From Math::Primes::TiedArray
sub atkin {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
return 2 if $max < 5;
my $sqrt = sqrt($max);
my %sieve;
foreach my $x ( 1 .. $sqrt ) {
foreach my $y ( 1 .. $sqrt ) {
my $n = 3 * $x**2 - $y**2;
if ( $x > $y
and $n <= $max
and $n % 12 == 11 )
{
$sieve{$n} = not $sieve{$n};
}
$n = 3 * $x**2 + $y**2;
if ( $n <= $max and $n % 12 == 7 ) {
$sieve{$n} = not $sieve{$n};
}
$n = 4 * $x**2 + $y**2;
if ( $n <= $max
and ( $n % 12 == 1 or $n % 12 == 5 ) )
{
$sieve{$n} = not $sieve{$n};
}
}
}
# eliminate composites by sieving
foreach my $n ( 5 .. $sqrt ) {
next unless $sieve{$n};
my $k = int(1/$n**2) * $n**2;
while ( $k <= $max ) {
$sieve{$k} = 0;
$k += $n**2;
}
}
my @primes = (2, 3);
push @primes, grep { $sieve{$_} } 5 .. $max;
@primes;
}
# Naive Sieve of Atkin, basically straight from Wikipedia.
#
# <rant>
#
# First thing to note about SoA, is that people love to quote things like
# "memory use is O(N^(1/2+o(1)))" then proceed to _clearly_ use N bytes in
# their implementation. If your data structures between SoA and SoE are the
# same, then all talk about comparative O(blah..blah) memory use is stupid.
#
# Secondly, assuming you're not Dan Bernstein, if your Sieve of Atkin is
# faster than your Sieve of Eratosthenes, then I strongly suggest you verify
# your code actually _works_, and secondly I would bet you made stupid mistakes
# in your SoE implementation. If your SoA code even remotely resembles the
# Wikipedia code and it comes out faster than SoE, then I _guarantee_ your
# SoE is borked.
#
# SoA does have a slightly better asymptotic operation count O(N/loglogN) vs.
# O(N) for SoE. The Wikipedia-like code that most people use is O(N) so it
# isn't even theoretically better unless you pull lots of stunts like primegen
# does. Even if you do, loglogN is essentially a small constant for most uses
# (it's under 4 for all 64-bit values), so you need to make sure all the rest
# of your overhead is controlled.
#
# Sumarizing, in practice the SoE is faster, and often a LOT faster.
#
# </rant>
#
sub atkin2 {
my($max) = @_;
return 0 if $max < 2;
return 1 if $max < 3;
my @sieve;
my $sqrt = int(sqrt($max));
for my $x (1 .. $sqrt) {
for my $y (1 .. $sqrt) {
my $n;
$n = 4*$x*$x + $y*$y;
if ( ($n <= $max) && ( (($n%12) == 1) || (($n%12) == 5) ) ) {
$sieve[$n] ^= 1;
}
$n = 3*$x*$x + $y*$y;
if ( ($n <= $max) && (($n%12) == 7) ) {
$sieve[$n] ^= 1;
}
$n = 3*$x*$x - $y*$y;
if ( ($x > $y) && ($n <= $max) && (($n%12) == 11) ) {
$sieve[$n] ^= 1;
}
}
}
for my $n (5 .. $sqrt) {
if ($sieve[$n]) {
my $k = $n*$n;
my $z = $k;
while ($z <= $max) {
$sieve[$z] = 0;
$z += $k;
}
}
}
$sieve[2] = 1;
$sieve[3] = 1;
grep { $sieve[$_] } 2 .. $max;
}
# https://github.com/daoswald/Inline-C-Perl-Mongers-Talk/blob/master/primesbench.pl
sub daos_array {
my($top) = @_;
return 0 if $top < 2;
return 1 if $top < 3;
$top++;
my @primes = (1) x $top;
my $i_times_j;
for my $i ( 2 .. sqrt $top ) {
if ( $primes[$i] ) {
for ( my $j = $i; ( $i_times_j = $i * $j ) < $top; $j++ ) {
undef $primes[$i_times_j];
}
}
}
return grep { $primes[$_] } 2 .. $#primes;
}
sub daos_vec {
my($top) = @_;
return 0 if $top < 2;
return 1 if $top < 3;
my $primes = '';
vec( $primes, $top, 1 ) = 0;
my $i_times_j;
for my $i ( 2 .. sqrt $top ) {
if ( !vec( $primes, $i, 1 ) ) {
for ( my $j = $i; ( $i_times_j = $i * $j ) <= $top; $j++ ) {
vec( $primes, $i_times_j, 1 ) = 1;
}
}
}
return grep { !vec( $primes, $_, 1 ) } 2 .. $top;
}
# Merlyn's Unix Review Column 26, June 1999
# http://www.stonehenge.com/merlyn/UnixReview/col26.html
sub merlyn {
my($UPPER) = @_;
return 0 if $UPPER < 2;
return 1 if $UPPER < 3;
my @primes;
my $sieve = "";
GUESS: for (my $guess = 2; $guess <= $UPPER; $guess++) {
next GUESS if vec($sieve,$guess,1);
push @primes, $guess;
for (my $mults = $guess * $guess; $mults <= $UPPER; $mults += $guess) {
vec($sieve,$mults,1) = 1;
}
}
@primes;
}
sub dj1 {
my($end) = @_;
return 0 if $end < 2;
return 1 if $end < 3;
# vector
my $sieve = '';
my $n = 3;
while ( ($n*$n) <= $end ) {
my $s = $n*$n;
while ($s <= $end) {
vec($sieve, $s >> 1, 1) = 1;
$s += 2*$n;
}
do { $n += 2 } while vec($sieve, $n >> 1, 1) != 0;
}
my @primes = (2);
$n = 3;
while ($n <= $end) {
push @primes, $n if !vec($sieve, $n >> 1, 1);
$n += 2;
}
@primes;
}
sub dj2 {
my($end) = @_;
return 0 if $end < 2;
return 1 if $end < 3;
# array
my @sieve;
my $n = 3;
while ( ($n*$n) <= $end ) {
my $s = $n*$n;
while ($s <= $end) {
$sieve[$s>>1] = 1;
$s += 2*$n;
}
do { $n += 2 } while $sieve[$n>>1];
}
my @primes = (2);
$n = 3;
while ($n <= $end) {
push @primes, $n if !$sieve[$n>>1];
$n += 2;
}
@primes;
}
sub dj3 {
my($end) = @_;
return 0 if $end < 2;
return 1 if $end < 3;
$end-- if ($end & 1) == 0;
# string
my $sieve = '1' . '0' x ($end>>1);
my $n = 3;
while ( ($n*$n) <= $end ) {
my $s = $n*$n;
my $filter_s = $s >> 1;
my $filter_end = $end >> 1;
while ($filter_s <= $filter_end) {
substr($sieve, $filter_s, 1) = '1';
$filter_s += $n;
}
do { $n += 2 } while substr($sieve, $n>>1, 1);
}
my @primes = (2);
$n = 3-2;
foreach my $s (split("0", substr($sieve, 1), -1)) {
$n += 2 + 2 * length($s);
push @primes, $n if $n <= $end;
}
@primes;
}
sub dj4 {
my($end) = @_;
return 0 if $end < 2;
return 1 if $end < 3;
$end-- if ($end & 1) == 0;
# string with prefill
my $whole = int( ($end>>1) / 15);
my $sieve = '100010010010110' . '011010010010110' x $whole;
substr($sieve, ($end>>1)+1) = '';
my $n = 7;
while ( ($n*$n) <= $end ) {
my $s = $n*$n;
my $filter_s = $s >> 1;
my $filter_end = $end >> 1;
while ($filter_s <= $filter_end) {
substr($sieve, $filter_s, 1) = '1';
$filter_s += $n;
}
do { $n += 2 } while substr($sieve, $n>>1, 1);
}
my @primes = (2, 3, 5);
$n = 7-2;
foreach my $s (split("0", substr($sieve, 3), -1)) {
$n += 2 + 2 * length($s);
push @primes, $n if $n <= $end;
}
@primes;
}
|