File: ECProjectivePoint.pm

package info (click to toggle)
libmath-prime-util-perl 0.73-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,796 kB
  • sloc: perl: 24,676; ansic: 11,471; makefile: 26; python: 24
file content (307 lines) | stat: -rw-r--r-- 6,554 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package Math::Prime::Util::ECProjectivePoint;
use strict;
use warnings;
use Carp qw/carp croak confess/;

BEGIN {
  $Math::Prime::Util::ECProjectivePoint::AUTHORITY = 'cpan:DANAJ';
  $Math::Prime::Util::ECProjectivePoint::VERSION = '0.73';
}

BEGIN {
  do { require Math::BigInt;  Math::BigInt->import(try=>"GMP,Pari"); }
    unless defined $Math::BigInt::VERSION;
}

# Pure perl (with Math::BigInt) manipulation of Elliptic Curves
# in projective coordinates.

sub new {
  my ($class, $c, $n, $x, $z) = @_;
  $c = Math::BigInt->new("$c") unless ref($c) eq 'Math::BigInt';
  $n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt';
  $x = Math::BigInt->new("$x") unless ref($x) eq 'Math::BigInt';
  $z = Math::BigInt->new("$z") unless ref($z) eq 'Math::BigInt';

  croak "n must be >= 2" unless $n >= 2;
  $c->bmod($n);

  my $self = {
    c => $c,
    d => ($c + 2) >> 2,
    n => $n,
    x => $x,
    z => $z,
    f => $n-$n+1,
  };

  bless $self, $class;
  return $self;
}

sub _addx {
  my ($x1, $x2, $xin, $n) = @_;

  my $u = ($x2 - 1) * ($x1 + 1);
  my $v = ($x2 + 1) * ($x1 - 1);

  my $upv2 = ($u + $v) ** 2;
  my $umv2 = ($u - $v) ** 2;

  return ( $upv2 % $n, ($umv2*$xin) % $n );
}

sub _add3 {
  my ($x1, $z1, $x2, $z2, $xin, $zin, $n) = @_;

  my $u = ($x2 - $z2) * ($x1 + $z1);
  my $v = ($x2 + $z2) * ($x1 - $z1);

  my $upv2 = $u + $v;  $upv2->bmul($upv2);
  my $umv2 = $u - $v;  $umv2->bmul($umv2);

  $upv2->bmul($zin)->bmod($n);
  $umv2->bmul($xin)->bmod($n);
  return ($upv2, $umv2);
}

sub _double {
  my ($x, $z, $n, $d) = @_;

  my $u = $x + $z;   $u->bmul($u);
  my $v = $x - $z;   $v->bmul($v);

  my $w = $u - $v;
  my $t = $d * $w + $v;

  $u->bmul($v)->bmod($n);
  $w->bmul($t)->bmod($n);
  return ($u, $w);
}

sub mul {
  my ($self, $k) = @_;
  my $x = $self->{'x'};
  my $z = $self->{'z'};
  my $n = $self->{'n'};
  my $d = $self->{'d'};

  my ($x1, $x2, $z1, $z2);

  my $r = --$k;
  my $l = -1;
  while ($r != 1) { $r >>= 1; $l++ }
  if ($k & (1 << $l)) {
    ($x2, $z2) = _double($x, $z, $n, $d);
    ($x1, $z1) = _add3($x2, $z2, $x, $z, $x, $z, $n);
    ($x2, $z2) = _double($x2, $z2, $n, $d);
  } else {
    ($x1, $z1) = _double($x, $z, $n, $d);
    ($x2, $z2) = _add3($x, $z, $x1, $z1, $x, $z, $n);
  }
  $l--;
  while ($l >= 1) {
    if ($k & (1 << $l)) {
      ($x1, $z1) = _add3($x1, $z1, $x2, $z2, $x, $z, $n);
      ($x2, $z2) = _double($x2, $z2, $n, $d);
    } else {
      ($x2, $z2) = _add3($x2, $z2, $x1, $z1, $x, $z, $n);
      ($x1, $z1) = _double($x1, $z1, $n, $d);
    }
    $l--;
  }
  if ($k & 1) {
    ($x, $z) = _double($x2, $z2, $n, $d);
  } else {
    ($x, $z) = _add3($x2, $z2, $x1, $z1, $x, $z, $n);
  }

  $self->{'x'} = $x;
  $self->{'z'} = $z;
  return $self;
}

sub add {
  my ($self, $other) = @_;
  croak "add takes a EC point"
    unless ref($other) eq 'Math::Prime::Util::ECProjectivePoint';
  croak "second point is not on the same curve"
    unless $self->{'c'} == $other->{'c'} &&
           $self->{'n'} == $other->{'n'};

  ($self->{'x'}, $self->{'z'}) = _add3($self->{'x'}, $self->{'z'},
                                       $other->{'x'}, $other->{'z'},
                                       $self->{'x'}, $self->{'z'},
                                       $self->{'n'});
  return $self;
}

sub double {
  my ($self) = @_;
  ($self->{'x'}, $self->{'z'}) = _double($self->{'x'}, $self->{'z'}, $self->{'n'}, $self->{'d'});
  return $self;
}

#sub _extended_gcd {
#  my ($a, $b) = @_;
#  my $zero = $a-$a;
#  my ($x, $lastx, $y, $lasty) = ($zero, $zero+1, $zero+1, $zero);
#  while ($b != 0) {
#    my $q = int($a/$b);
#    ($a, $b) = ($b, $a % $b);
#    ($x, $lastx) = ($lastx - $q*$x, $x);
#    ($y, $lasty) = ($lasty - $q*$y, $y);
#  }
#  return ($a, $lastx, $lasty);
#}

sub normalize {
  my ($self) = @_;
  my $n = $self->{'n'};
  my $z = $self->{'z'};
  #my ($f, $u, undef) = _extended_gcd( $z, $n );
  my $f = Math::BigInt::bgcd( $z, $n );
  my $u = $z->copy->bmodinv($n);
  $self->{'x'} = ( $self->{'x'} * $u ) % $n;
  $self->{'z'} = $n-$n+1;
  $self->{'f'} = ($f * $self->{'f'}) % $n;
  return $self;
}

sub c { return shift->{'c'}; }
sub d { return shift->{'d'}; }
sub n { return shift->{'n'}; }
sub x { return shift->{'x'}; }
sub z { return shift->{'z'}; }
sub f { return shift->{'f'}; }

sub is_infinity {
  my $self = shift;
  return ($self->{'x'}->is_zero() && $self->{'z'}->is_one());
}

sub copy {
  my $self = shift;
  return Math::Prime::Util::ECProjectivePoint->new(
    $self->{'c'}, $self->{'n'}, $self->{'x'}, $self->{'z'});
}

1;

__END__


# ABSTRACT: Elliptic curve operations for projective points

=pod

=encoding utf8

=for stopwords mul

=for test_synopsis use v5.14;  my($c,$n,$k,$ECP2);


=head1 NAME

Math::Prime::Util::ECProjectivePoint - Elliptic curve operations for projective points


=head1 VERSION

Version 0.73


=head1 SYNOPSIS

  # Create a point on a curve (a,b,n) with coordinates 0,1
  my $ECP = Math::Prime::Util::ECProjectivePoint->new($c, $n, 0, 1);

  # scalar multiplication by $k.
  $ECP->mul($k);

  # add two points on the same curve
  $ECP->add($ECP2);

  say "P = O" if $ECP->is_infinity();

=head1 DESCRIPTION

This really should just be in Math::EllipticCurve.

To write.


=head1 FUNCTIONS

=head2 new

  $point = Math::Prime::Util::ECProjectivePoint->new(c, n, x, z);

Returns a new point on the curve defined by the Montgomery parameter c.

=head2 c

=head2 n

Returns the C<c>, C<d>, or C<n> values that describe the curve.

=head2 d

Returns the precalculated value of C<int( (c + 2) / 4 )>.

=head2 x

=head2 z

Returns the C<x> or C<z> values that define the point on the curve.

=head2 f

Returns a possible factor found after L</normalize>.

=head2 add

Takes another point on the same curve as an argument and adds it this point.

=head2 double

Double the current point on the curve.

=head2 mul

Takes an integer and performs scalar multiplication of the point.

=head2 is_infinity

Returns true if the point is (0,1), which is the point at infinity for
the affine coordinates.

=head2 copy

Returns a copy of the point.

=head2 normalize

Performs an extended GCD operation to make C<z=1>.  If a factor of C<n> is
found it is put in C<f>.


=head1 SEE ALSO

L<Math::EllipticCurve::Prime>

This really should just be in a L<Math::EllipticCurve> module.

=head1 AUTHORS

Dana Jacobsen E<lt>dana@acm.orgE<gt>


=head1 COPYRIGHT

Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

=cut