1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
|
package Math::Prime::Util::RandomPrimes;
use strict;
use warnings;
use Carp qw/carp croak confess/;
use Math::Prime::Util qw/ prime_get_config
verify_prime
is_provable_prime_with_cert
primorial prime_count nth_prime
is_prob_prime is_strong_pseudoprime
next_prime prev_prime
urandomb urandomm random_bytes
/;
BEGIN {
$Math::Prime::Util::RandomPrimes::AUTHORITY = 'cpan:DANAJ';
$Math::Prime::Util::RandomPrimes::VERSION = '0.73';
}
BEGIN {
do { require Math::BigInt; Math::BigInt->import(try=>"GMP,Pari"); }
unless defined $Math::BigInt::VERSION;
use constant OLD_PERL_VERSION=> $] < 5.008;
use constant MPU_MAXBITS => (~0 == 4294967295) ? 32 : 64;
use constant MPU_64BIT => MPU_MAXBITS == 64;
use constant MPU_32BIT => MPU_MAXBITS == 32;
use constant MPU_MAXPARAM => MPU_32BIT ? 4294967295 : 18446744073709551615;
use constant MPU_MAXDIGITS => MPU_32BIT ? 10 : 20;
use constant MPU_USE_XS => prime_get_config->{'xs'};
use constant MPU_USE_GMP => prime_get_config->{'gmp'};
*_bigint_to_int = \&Math::Prime::Util::_bigint_to_int;
}
################################################################################
# These are much faster than straightforward trial division when n is big.
# You'll want to first do a test up to and including 23.
my @_big_gcd;
my $_big_gcd_top = 20046;
my $_big_gcd_use = -1;
sub _make_big_gcds {
return if $_big_gcd_use >= 0;
if (prime_get_config->{'gmp'}) {
$_big_gcd_use = 0;
return;
}
if (Math::BigInt->config()->{lib} !~ /^Math::BigInt::(GMP|Pari)/) {
$_big_gcd_use = 0;
return;
}
$_big_gcd_use = 1;
my $p0 = primorial(Math::BigInt->new( 520));
my $p1 = primorial(Math::BigInt->new(2052));
my $p2 = primorial(Math::BigInt->new(6028));
my $p3 = primorial(Math::BigInt->new($_big_gcd_top));
$_big_gcd[0] = $p0->bdiv(223092870)->bfloor->as_int;
$_big_gcd[1] = $p1->bdiv($p0)->bfloor->as_int;
$_big_gcd[2] = $p2->bdiv($p1)->bfloor->as_int;
$_big_gcd[3] = $p3->bdiv($p2)->bfloor->as_int;
}
################################################################################
################################################################################
# For random primes, there are two good papers that should be examined:
#
# "Fast Generation of Prime Numbers and Secure Public-Key
# Cryptographic Parameters" by Ueli M. Maurer, 1995
# http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2151
# related discussions:
# http://www.daimi.au.dk/~ivan/provableprimesproject.pdf
# Handbook of Applied Cryptography by Menezes, et al.
#
# "Close to Uniform Prime Number Generation With Fewer Random Bits"
# by Pierre-Alain Fouque and Mehdi Tibouchi, 2011
# http://eprint.iacr.org/2011/481
#
# Some things to note:
#
# 1) Joye and Paillier have patents on their methods. Never use them.
#
# 2) The easy method of next_prime(random number), known as PRIMEINC, is
# fast but gives a terrible distribution. It has a positive bias and
# most importantly the probability for a prime is proportional to its
# gap, meaning some numbers in the range will be thousands of times
# more likely than others). On the contrary however, nobody has a way
# to exploit this, and it's not-uncommon to see used.
#
# We use:
# TRIVIAL range within native integer size (2^32 or 2^64)
# FTA1 random_nbit_prime with 65+ bits
# INVA1 other ranges with 65+ bit range
# where
# TRIVIAL = monte-carlo method or equivalent, perfect uniformity.
# FTA1 = Fouque/Tibouchi A1, very close to uniform
# INVA1 = inverted FTA1, less uniform but works with arbitrary ranges
#
# The random_maurer_prime function uses Maurer's FastPrime algorithm.
#
# If Math::Prime::Util::GMP is installed, these functions will be many times
# faster than other methods (e.g. Math::Pari monte-carlo or Crypt::Primes).
#
# Timings on Macbook.
# The "with GMP" numbers use Math::Prime::Util::GMP 0.44.
# The "no GMP" numbers are with no Math::BigInt backend, so very slow in comparison.
# If another backend was used (GMP, Pari, LTM) it would be more comparable.
#
# random_nbit_prime random_maurer_prime
# n-bits no GMP w/ MPU::GMP no GMP w/ MPU::GMP
# ---------- -------- ----------- -------- -----------
# 24-bit 1uS same same same
# 64-bit 5uS same same same
# 128-bit 0.12s 70uS 0.29s 166uS
# 256-bit 0.66s 379uS 1.82s 800uS
# 512-bit 7.8s 0.0022s 16.2s 0.0044s
# 1024-bit ---- 0.019s ---- 0.037s
# 2048-bit ---- 0.23s ---- 0.35s
# 4096-bit ---- 2.4s ---- 5.2s
#
# Random timings for 10M calls on i4770K:
# 0.39 Math::Random::MTwist 0.13
# 0.41 ntheory <==== us
# 0.89 system rand
# 1.76 Math::Random::MT::Auto
# 5.35 Bytes::Random::Secure OO w/ISAAC::XS
# 7.43 Math::Random::Secure w/ISAAC::XS
# 12.40 Math::Random::Secure
# 12.78 Bytes::Random::Secure OO
# 13.86 Bytes::Random::Secure function w/ISAAC::XS
# 21.95 Bytes::Random::Secure function
# 822.1 Crypt::Random
#
# time perl -E 'use Math::Random::MTwist "irand32"; irand32() for 1..10000000;'
# time perl -E 'sub irand {int(rand(4294967296));} irand() for 1..10000000;'
# time perl -E 'use Math::Random::MT::Auto; sub irand { Math::Random::MT::Auto::irand() & 0xFFFFFFFF } irand() for 1..10000000;'
# time perl -E 'use Math::Random::Secure qw/irand/; irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure qw/random_bytes/; sub irand {return unpack("L",random_bytes(4));} irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure; my $rng = Bytes::Random::Secure->new(); sub irand {return $rng->irand;} irand() for 1..10000000;'
# time perl -E 'use Crypt::Random qw/makerandom/; sub irand {makerandom(Size=>32, Uniform=>1, Strength=>0)} irand() for 1..100_000;'
# > haveged daemon running to stop /dev/random blocking
# > Both BRS and CR have more features that this isn't measuring.
#
# To verify distribution:
# perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_nbit_prime(6)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'
# perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_prime(1260437,1260733)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'
# Sub to call with low and high already primes and verified range.
my $_random_prime = sub {
my($low,$high) = @_;
my $prime;
#{ my $bsize = 100; my @bins; my $counts = 10000000;
# for my $c (1..$counts) { $bins[ $_IRANDF->($bsize-1) ]++; }
# for my $b (0..$bsize) {printf("%4d %8.5f%%\n", $b, $bins[$b]/$counts);} }
# low and high are both odds, and low < high.
# This is fast for small values, low memory, perfectly uniform, and
# consumes the minimum amount of randomness needed. But it isn't feasible
# with large values. Also note that low must be a prime.
if ($high <= 262144 && MPU_USE_XS) {
my $li = prime_count(2, $low);
my $irange = prime_count($low, $high);
my $rand = urandomm($irange);
return nth_prime($li + $rand);
}
$low-- if $low == 2; # Low of 2 becomes 1 for our program.
# Math::BigInt::GMP's RT 71548 will wreak havoc if we don't do this.
$low = Math::BigInt->new("$low") if ref($high) eq 'Math::BigInt';
confess "Invalid _random_prime parameters: $low, $high" if ($low % 2) == 0 || ($high % 2) == 0;
# We're going to look at the odd numbers only.
my $oddrange = (($high - $low) >> 1) + 1;
croak "Large random primes not supported on old Perl"
if OLD_PERL_VERSION && MPU_64BIT && $oddrange > 4294967295;
# If $low is large (e.g. >10 digits) and $range is small (say ~10k), it
# would be fastest to call primes in the range and randomly pick one. I'm
# not implementing it now because it seems like a rare case.
# If the range is reasonably small, generate using simple Monte Carlo
# method (aka the 'trivial' method). Completely uniform.
if ($oddrange < MPU_MAXPARAM) {
my $loop_limit = 2000 * 1000; # To protect against broken rand
if ($low > 11) {
while ($loop_limit-- > 0) {
$prime = $low + 2 * urandomm($oddrange);
next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
return $prime if is_prob_prime($prime);
}
} else {
while ($loop_limit-- > 0) {
$prime = $low + 2 * urandomm($oddrange);
next if $prime > 11 && (!($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11));
return 2 if $prime == 1; # Remember the special case for 2.
return $prime if is_prob_prime($prime);
}
}
croak "Random function broken?";
}
# We have an ocean of range, and a teaspoon to hold randomness.
# Since we have an arbitrary range and not a power of two, I don't see how
# Fouque's algorithm A1 could be used (where we generate lower bits and
# generate random sets of upper). Similarly trying to simply generate
# upper bits is full of ways to trip up and get non-uniform results.
#
# What I'm doing here is:
#
# 1) divide the range into semi-evenly sized partitions, where each part
# is as close to $rand_max_val as we can.
# 2) randomly select one of the partitions.
# 3) iterate choosing random values within the partition.
#
# The downside is that we're skewing a _lot_ farther from uniformity than
# we'd like. Imagine we started at 0 with 1e18 partitions of size 100k
# each.
# Probability of '5' being returned =
# 1.04e-22 = 1e-18 (chose first partition) * 1/9592 (chose '5')
# Probability of '100003' being returned =
# 1.19e-22 = 1e-18 (chose second partition) * 1/8392 (chose '100003')
# Probability of '99999999999999999999977' being returned =
# 5.20e-22 = 1e-18 (chose last partition) * 1/1922 (chose '99...77')
# So the primes in the last partition will show up 5x more often.
# The partitions are selected uniformly, and the primes within are selected
# uniformly, but the number of primes in each bucket is _not_ uniform.
# Their individual probability of being selected is the probability of the
# partition (uniform) times the probability of being selected inside the
# partition (uniform with respect to all other primes in the same
# partition, but each partition is different and skewed).
#
# Partitions are typically much larger than 100k, but with a huge range
# we still see this (e.g. ~3x from 0-10^30, ~10x from 0-10^100).
#
# When selecting n-bit or n-digit primes, this effect is MUCH smaller, as
# the skew becomes approx lg(2^n) / lg(2^(n-1)) which is pretty close to 1.
#
#
# Another idea I'd like to try sometime is:
# pclo = prime_count_lower(low);
# pchi = prime_count_upper(high);
# do {
# $nth = random selection between pclo and pchi
# $prguess = nth_prime_approx($nth);
# } while ($prguess >= low) && ($prguess <= high);
# monte carlo select a prime in $prguess-2**24 to $prguess+2**24
# which accounts for the prime distribution.
my($binsize, $nparts);
my $rand_part_size = 1 << (MPU_64BIT ? 32 : 31);
if (ref($oddrange) eq 'Math::BigInt') {
# Go to some trouble here because some systems are wonky, such as
# giving us +a/+b = -r. Also note the quotes for the bigint argument.
# Without that, Math::BigInt::GMP can return garbage.
my($nbins, $rem);
($nbins, $rem) = $oddrange->copy->bdiv( "$rand_part_size" );
$nbins++ if $rem > 0;
$nbins = $nbins->as_int();
($binsize,$rem) = $oddrange->copy->bdiv($nbins);
$binsize++ if $rem > 0;
$binsize = $binsize->as_int();
$nparts = $oddrange->copy->bdiv($binsize)->as_int();
$low = $high->copy->bzero->badd($low) if ref($low) ne 'Math::BigInt';
} else {
my $nbins = int($oddrange / $rand_part_size);
$nbins++ if $nbins * $rand_part_size != $oddrange;
$binsize = int($oddrange / $nbins);
$binsize++ if $binsize * $nbins != $oddrange;
$nparts = int($oddrange/$binsize);
}
$nparts-- if ($nparts * $binsize) == $oddrange;
my $rpart = urandomm($nparts+1);
my $primelow = $low + 2 * $binsize * $rpart;
my $partsize = ($rpart < $nparts) ? $binsize
: $oddrange - ($nparts * $binsize);
$partsize = _bigint_to_int($partsize) if ref($partsize) eq 'Math::BigInt';
#warn "range $oddrange = $nparts * $binsize + ", $oddrange - ($nparts * $binsize), "\n";
#warn " chose part $rpart size $partsize\n";
#warn " primelow is $low + 2 * $binsize * $rpart = $primelow\n";
#die "Result could be too large" if ($primelow + 2*($partsize-1)) > $high;
# Generate random numbers in the interval until one is prime.
my $loop_limit = 2000 * 1000; # To protect against broken rand
# Simply things for non-bigints.
if (ref($low) ne 'Math::BigInt') {
while ($loop_limit-- > 0) {
my $rand = urandomm($partsize);
$prime = $primelow + $rand + $rand;
croak "random prime failure, $prime > $high" if $prime > $high;
if ($prime <= 23) {
$prime = 2 if $prime == 1; # special case for low = 2
next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
return $prime;
}
next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
# It looks promising. Check it.
next unless is_prob_prime($prime);
return $prime;
}
croak "Random function broken?";
}
# By checking a wheel 30 mod, we can skip anything that would be a multiple
# of 2, 3, or 5, without even having to create the bigint prime.
my @w30 = (1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0);
my $primelow30 = $primelow % 30;
$primelow30 = _bigint_to_int($primelow30) if ref($primelow30) eq 'Math::BigInt';
# Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
_make_big_gcds() if $_big_gcd_use < 0;
while ($loop_limit-- > 0) {
my $rand = urandomm($partsize);
# Check wheel-30 mod
my $rand30 = $rand % 30;
next if $w30[($primelow30 + 2*$rand30) % 30]
&& ($rand > 3 || $primelow > 5);
# Construct prime
$prime = $primelow + $rand + $rand;
croak "random prime failure, $prime > $high" if $prime > $high;
if ($prime <= 23) {
$prime = 2 if $prime == 1; # special case for low = 2
next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
return $prime;
}
# With GMP, the fastest thing to do is check primality.
if (MPU_USE_GMP) {
next unless Math::Prime::Util::GMP::is_prime($prime);
return $prime;
}
# No MPU:GMP, so primality checking is slow. Skip some composites here.
next unless Math::BigInt::bgcd($prime, 7436429) == 1;
if ($_big_gcd_use && $prime > $_big_gcd_top) {
next unless Math::BigInt::bgcd($prime, $_big_gcd[0]) == 1;
next unless Math::BigInt::bgcd($prime, $_big_gcd[1]) == 1;
next unless Math::BigInt::bgcd($prime, $_big_gcd[2]) == 1;
next unless Math::BigInt::bgcd($prime, $_big_gcd[3]) == 1;
}
# It looks promising. Check it.
next unless is_prob_prime($prime);
return $prime;
}
croak "Random function broken?";
};
# Cache of tight bounds for each digit. Helps performance a lot.
my @_random_ndigit_ranges = (undef, [2,7], [11,97] );
my @_random_nbit_ranges = (undef, undef, [2,3],[5,7] );
my %_random_cache_small;
# For fixed small ranges with XS, e.g. 6-digit, 18-bit
sub _random_xscount_prime {
my($low,$high) = @_;
my($istart, $irange);
my $cachearef = $_random_cache_small{$low,$high};
if (defined $cachearef) {
($istart, $irange) = @$cachearef;
} else {
my $beg = ($low <= 2) ? 2 : next_prime($low-1);
my $end = ($high < ~0) ? prev_prime($high + 1) : prev_prime($high);
($istart, $irange) = ( prime_count(2, $beg), prime_count($beg, $end) );
$_random_cache_small{$low,$high} = [$istart, $irange];
}
my $rand = urandomm($irange);
return nth_prime($istart + $rand);
}
sub random_prime {
my($low,$high) = @_;
return if $high < 2 || $low > $high;
if ($high-$low > 1000000000) {
# Range is large, just make them odd if needed.
$low = 2 if $low < 2;
$low++ if $low > 2 && ($low % 2) == 0;
$high-- if ($high % 2) == 0;
} else {
# Tighten the range to the nearest prime.
$low = ($low <= 2) ? 2 : next_prime($low-1);
$high = ($high == ~0) ? prev_prime($high) : prev_prime($high + 1);
return $low if ($low == $high) && is_prob_prime($low);
return if $low >= $high;
# At this point low and high are both primes, and low < high.
}
# At this point low and high are both primes, and low < high.
return $_random_prime->($low, $high);
}
sub random_ndigit_prime {
my($digits) = @_;
croak "random_ndigit_prime, digits must be >= 1" unless $digits >= 1;
return _random_xscount_prime( int(10 ** ($digits-1)), int(10 ** $digits) )
if $digits <= 6 && MPU_USE_XS;
my $bigdigits = $digits >= MPU_MAXDIGITS;
if ($bigdigits && prime_get_config->{'nobigint'}) {
croak "random_ndigit_prime with -nobigint, digits out of range"
if $digits > MPU_MAXDIGITS;
# Special case for nobigint and threshold digits
if (!defined $_random_ndigit_ranges[$digits]) {
my $low = int(10 ** ($digits-1));
my $high = ~0;
$_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
}
}
if (!defined $_random_ndigit_ranges[$digits]) {
if ($bigdigits) {
my $low = Math::BigInt->new('10')->bpow($digits-1);
my $high = Math::BigInt->new('10')->bpow($digits);
# Just pull the range in to the nearest odd.
$_random_ndigit_ranges[$digits] = [$low+1, $high-1];
} else {
my $low = int(10 ** ($digits-1));
my $high = int(10 ** $digits);
# Note: Perl 5.6.2 cannot represent 10**15 as an integer, so things
# will crash all over the place if you try. We can stringify it, but
# will just fail tests later.
$_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
}
}
my ($low, $high) = @{$_random_ndigit_ranges[$digits]};
return $_random_prime->($low, $high);
}
my @_random_nbit_m;
my @_random_nbit_lambda;
my @_random_nbit_arange;
sub random_nbit_prime {
my($bits) = @_;
croak "random_nbit_prime, bits must be >= 2" unless $bits >= 2;
$bits = int("$bits");
# Very small size, use the nth-prime method
if ($bits <= 20 && MPU_USE_XS) {
if ($bits <= 4) {
return (2,3)[urandomb(1)] if $bits == 2;
return (5,7)[urandomb(1)] if $bits == 3;
return (11,13)[urandomb(1)] if $bits == 4;
}
return _random_xscount_prime( 1 << ($bits-1), 1 << $bits );
}
croak "Mid-size random primes not supported on broken old Perl"
if OLD_PERL_VERSION && MPU_64BIT && $bits > 49 && $bits <= 64;
# Fouque and Tibouchi (2011) Algorithm 1 (basic)
# Modified to make sure the nth bit is always set.
#
# Example for random_nbit_prime(512) on 64-bit Perl:
# p: 1aaaaaaaabbbbbbbbbbbbbbbbbbbb1
# ^^ ^ ^--- Trailing 1 so p is odd
# || +--- 512-63-2 = 447 lower bits selected before loop
# |+--- 63 upper bits selected in loop, repeated until p is prime
# +--- upper bit is 1 so we generate an n-bit prime
# total: 1 + 63 + 447 + 1 = 512 bits
#
# Algorithm 2 is implemented in a previous commit on github. The problem
# is that it doesn't set the nth bit, and making that change requires a
# modification of the algorithm. It was not a lot faster than this A1
# with the native int trial division. If the irandf function was very
# slow, then A2 would look more promising.
#
if (1 && $bits > 64) {
my $l = (MPU_64BIT && $bits > 79) ? 63 : 31;
$l = 49 if $l == 63 && OLD_PERL_VERSION; # Fix for broken Perl 5.6
$l = $bits-2 if $bits-2 < $l;
my $brand = urandomb($bits-$l-2);
$brand = Math::BigInt->new("$brand") unless ref($brand) eq 'Math::BigInt';
my $b = $brand->blsft(1)->binc();
# Precalculate some modulii so we can do trial division on native int
# 9699690 = 2*3*5*7*11*13*17*19, so later operations can be native ints
my @premod;
my $bpremod = _bigint_to_int($b->copy->bmod(9699690));
my $twopremod = _bigint_to_int(Math::BigInt->new(2)->bmodpow($bits-$l-1, 9699690));
foreach my $zi (0 .. 19-1) {
foreach my $pm (3, 5, 7, 11, 13, 17, 19) {
next if $zi >= $pm || defined $premod[$pm];
$premod[$pm] = $zi if ( ($twopremod*$zi+$bpremod) % $pm) == 0;
}
}
_make_big_gcds() if $_big_gcd_use < 0;
if (!MPU_USE_GMP) { require Math::Prime::Util::PP; }
my $loop_limit = 1_000_000;
while ($loop_limit-- > 0) {
my $a = (1 << $l) + urandomb($l);
# $a % s == $premod[s] => $p % s == 0 => p will be composite
next if $a % 3 == $premod[ 3] || $a % 5 == $premod[ 5]
|| $a % 7 == $premod[ 7] || $a % 11 == $premod[11]
|| $a % 13 == $premod[13] || $a % 17 == $premod[17]
|| $a % 19 == $premod[19];
my $p = Math::BigInt->new("$a")->blsft($bits-$l-1)->badd($b);
#die " $a $b $p" if $a % 11 == $premod[11] && $p % 11 != 0;
#die "!$a $b $p" if $a % 11 != $premod[11] && $p % 11 == 0;
if (MPU_USE_GMP) {
next unless Math::Prime::Util::GMP::is_prime($p);
} else {
next unless Math::BigInt::bgcd($p, 1348781387) == 1; # 23-43
if ($_big_gcd_use && $p > $_big_gcd_top) {
next unless Math::BigInt::bgcd($p, $_big_gcd[0]) == 1;
next unless Math::BigInt::bgcd($p, $_big_gcd[1]) == 1;
next unless Math::BigInt::bgcd($p, $_big_gcd[2]) == 1;
next unless Math::BigInt::bgcd($p, $_big_gcd[3]) == 1;
}
# We know we don't have GMP and are > 2^64, so go directly to this.
next unless Math::Prime::Util::PP::is_bpsw_prime($p);
}
return $p;
}
croak "Random function broken?";
}
# The Trivial method. Great uniformity, and fine for small sizes. It
# gets very slow as the bit size increases, but that is why we have the
# method above for bigints.
if (1) {
my $loop_limit = 2_000_000;
if ($bits > MPU_MAXBITS) {
my $p = Math::BigInt->bone->blsft($bits-1)->binc();
while ($loop_limit-- > 0) {
my $n = Math::BigInt->new(''.urandomb($bits-2))->blsft(1)->badd($p);
return $n if is_prob_prime($n);
}
} else {
my $p = (1 << ($bits-1)) + 1;
while ($loop_limit-- > 0) {
my $n = $p + (urandomb($bits-2) << 1);
return $n if is_prob_prime($n);
}
}
croak "Random function broken?";
} else {
# Send through the generic random_prime function. Decently fast, but
# quite a bit slower than the F&T A1 method above.
if (!defined $_random_nbit_ranges[$bits]) {
if ($bits > MPU_MAXBITS) {
my $low = Math::BigInt->new('2')->bpow($bits-1);
my $high = Math::BigInt->new('2')->bpow($bits);
# Don't pull the range in to primes, just odds
$_random_nbit_ranges[$bits] = [$low+1, $high-1];
} else {
my $low = 1 << ($bits-1);
my $high = ($bits == MPU_MAXBITS)
? ~0-1
: ~0 >> (MPU_MAXBITS - $bits);
$_random_nbit_ranges[$bits] = [next_prime($low-1),prev_prime($high+1)];
# Example: bits = 7.
# low = 1<<6 = 64. next_prime(64-1) = 67
# high = ~0 >> (64-7) = 127. prev_prime(127+1) = 127
}
}
my ($low, $high) = @{$_random_nbit_ranges[$bits]};
return $_random_prime->($low, $high);
}
}
# For stripping off the header on certificates so they can be combined.
sub _strip_proof_header {
my $proof = shift;
$proof =~ s/^\[MPU - Primality Certificate\]\nVersion \S+\n+Proof for:\nN (\d+)\n+//ms;
return $proof;
}
sub random_maurer_prime {
my $k = shift;
croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
$k = int("$k");
return random_nbit_prime($k) if $k <= MPU_MAXBITS && !OLD_PERL_VERSION;
my ($n, $cert) = random_maurer_prime_with_cert($k);
croak "maurer prime $n failed certificate verification!"
unless verify_prime($cert);
return $n;
}
sub random_maurer_prime_with_cert {
my $k = shift;
croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
$k = int("$k");
# This should never happen. Trap now to prevent infinite loop.
croak "number of bits must not be a bigint" if ref($k) eq 'Math::BigInt';
# Results for random_nbit_prime are proven for all native bit sizes.
my $p0 = MPU_MAXBITS;
$p0 = 49 if OLD_PERL_VERSION && MPU_MAXBITS > 49;
if ($k <= $p0) {
my $n = random_nbit_prime($k);
my ($isp, $cert) = is_provable_prime_with_cert($n);
croak "small nbit prime could not be proven" if $isp != 2;
return ($n, $cert);
}
# Set verbose to 3 to get pretty output like Crypt::Primes
my $verbose = prime_get_config->{'verbose'};
local $| = 1 if $verbose > 2;
do { require Math::BigFloat; Math::BigFloat->import(); }
if !defined $Math::BigFloat::VERSION;
# Ignore Maurer's g and c that controls how much trial division is done.
my $r = Math::BigFloat->new("0.5"); # relative size of the prime q
my $m = 20; # makes sure R is big enough
# Generate a random prime q of size $r*$k, where $r >= 0.5. Try to
# cleverly select r to match the size of a typical random factor.
if ($k > 2*$m) {
do {
my $s = Math::Prime::Util::drand();
$r = Math::BigFloat->new(2)->bpow($s-1);
} while ($k*$r >= $k-$m);
}
# I've seen +0, +1, and +2 here. Maurer uses +0. Menezes uses +1.
# We can use +1 because we're using BLS75 theorem 3 later.
my $smallk = int(($r * $k)->bfloor->bstr) + 1;
my ($q, $qcert) = random_maurer_prime_with_cert($smallk);
$q = Math::BigInt->new("$q") unless ref($q) eq 'Math::BigInt';
my $I = Math::BigInt->new(2)->bpow($k-2)->bdiv($q)->bfloor->as_int();
print "r = $r k = $k q = $q I = $I\n" if $verbose && $verbose != 3;
$qcert = ($q < Math::BigInt->new("18446744073709551615"))
? "" : _strip_proof_header($qcert);
# Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
_make_big_gcds() if $_big_gcd_use < 0;
my $ONE = Math::BigInt->bone;
my $TWO = $ONE->copy->binc;
my $loop_limit = 1_000_000 + $k * 1_000;
while ($loop_limit-- > 0) {
# R is a random number between $I+1 and 2*$I
#my $R = $I + 1 + urandomm( $I );
my $R = $I->copy->binc->badd( urandomm($I) );
#my $n = 2 * $R * $q + 1;
my $nm1 = $TWO->copy->bmul($R)->bmul($q);
my $n = $nm1->copy->binc;
# We constructed a promising looking $n. Now test it.
print "." if $verbose > 2;
if (MPU_USE_GMP) {
# MPU::GMP::is_prob_prime has fast tests built in.
next unless Math::Prime::Util::GMP::is_prob_prime($n);
} else {
# No GMP, so first do trial divisions, then a SPSP test.
next unless Math::BigInt::bgcd($n, 111546435)->is_one;
if ($_big_gcd_use && $n > $_big_gcd_top) {
next unless Math::BigInt::bgcd($n, $_big_gcd[0])->is_one;
next unless Math::BigInt::bgcd($n, $_big_gcd[1])->is_one;
next unless Math::BigInt::bgcd($n, $_big_gcd[2])->is_one;
next unless Math::BigInt::bgcd($n, $_big_gcd[3])->is_one;
}
print "+" if $verbose > 2;
next unless is_strong_pseudoprime($n, 3);
}
print "*" if $verbose > 2;
# We could pick a random generator by doing:
# Step 1: pick a random r
# Step 2: compute g = r^((n-1)/q) mod p
# Step 3: if g == 1, goto Step 1.
# Note that n = 2*R*q+1, hence the exponent is 2*R.
# We could set r = 0.3333 earlier, then use BLS75 theorem 5 here.
# The chain would be shorter, requiring less overall work for
# large inputs. Maurer's paper discusses the idea.
# Use BLS75 theorem 3. This is easier and possibly faster than
# BLS75 theorem 4 (Pocklington) used by Maurer's paper.
# Check conditions -- these should be redundant.
my $m = $TWO * $R;
if (! ($q->is_odd && $q > 2 && $m > 0 &&
$m * $q + $ONE == $n && $TWO*$q+$ONE > $n->copy->bsqrt()) ) {
carp "Maurer prime failed BLS75 theorem 3 conditions. Retry.";
next;
}
# Find a suitable a. Move on if one isn't found quickly.
foreach my $trya (2, 3, 5, 7, 11, 13) {
my $a = Math::BigInt->new($trya);
# m/2 = R (n-1)/2 = (2*R*q)/2 = R*q
next unless $a->copy->bmodpow($R, $n) != $nm1;
next unless $a->copy->bmodpow($R*$q, $n) == $nm1;
print "($k)" if $verbose > 2;
croak "Maurer prime $n=2*$R*$q+1 failed BPSW" unless is_prob_prime($n);
my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
"Proof for:\nN $n\n\n" .
"Type BLS3\nN $n\nQ $q\nA $a\n" .
$qcert;
return ($n, $cert);
}
# Didn't pass the selected a values. Try another R.
}
croak "Failure in random_maurer_prime, could not find a prime\n";
} # End of random_maurer_prime
sub random_shawe_taylor_prime_with_cert {
my $k = shift;
my $seed = random_bytes(512/8);
my($status,$prime,$prime_seed,$prime_gen_counter,$cert)
= _ST_Random_prime($k, $seed);
croak "Shawe-Taylor random prime failure" unless $status;
croak "Shawe-Taylor random prime failure: prime $prime failed certificate verification!" unless verify_prime($cert);
return ($prime,$cert);
}
sub _seed_plus_one {
my($s) = @_;
for (my $i = length($s)-1; $i >= 0; $i--) {
vec($s, $i, 8)++;
last unless vec($s, $i, 8) == 0;
}
return $s;
}
sub _ST_Random_prime { # From FIPS 186-4
my($k, $input_seed) = @_;
croak "Shawe-Taylor random prime must have length >= 2" if $k < 2;
$k = int("$k");
croak "Shawe-Taylor random prime, invalid input seed"
unless defined $input_seed && length($input_seed) >= 32;
if (!defined $Digest::SHA::VERSION) {
eval { require Digest::SHA;
my $version = $Digest::SHA::VERSION;
$version =~ s/[^\d.]//g;
$version >= 4.00; }
or do { croak "Must have Digest::SHA 4.00 or later"; };
}
my $k2 = Math::BigInt->new(2)->bpow($k-1);
if ($k < 33) {
my $seed = $input_seed;
my $prime_gen_counter = 0;
my $kmask = 0xFFFFFFFF >> (32-$k); # Does the mod operation
my $kstencil = (1 << ($k-1)) | 1; # Sets high and low bits
while (1) {
my $seedp1 = _seed_plus_one($seed);
my $cvec = Digest::SHA::sha256($seed) ^ Digest::SHA::sha256($seedp1);
# my $c = Math::BigInt->from_hex('0x' . unpack("H*", $cvec));
# $c = $k2 + ($c % $k2);
# $c = (2 * ($c >> 1)) + 1;
my($c) = unpack("N*", substr($cvec,-4,4));
$c = ($c & $kmask) | $kstencil;
$prime_gen_counter++;
$seed = _seed_plus_one($seedp1);
my ($isp, $cert) = is_provable_prime_with_cert($c);
return (1,$c,$seed,$prime_gen_counter,$cert) if $isp;
return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k;
}
}
my($status,$c0,$seed,$prime_gen_counter,$cert)
= _ST_Random_prime( (($k+1)>>1)+1, $input_seed);
return (0,0,0,0) unless $status;
$cert = ($c0 < Math::BigInt->new("18446744073709551615"))
? "" : _strip_proof_header($cert);
my $iterations = int(($k + 255) / 256) - 1; # SHA256 generates 256 bits
my $old_counter = $prime_gen_counter;
my $xstr = '';
for my $i (0 .. $iterations) {
$xstr = Digest::SHA::sha256_hex($seed) . $xstr;
$seed = _seed_plus_one($seed);
}
my $x = Math::BigInt->from_hex('0x'.$xstr);
$x = $k2 + ($x % $k2);
my $t = ($x + 2*$c0 - 1) / (2*$c0);
_make_big_gcds() if $_big_gcd_use < 0;
while (1) {
if (2*$t*$c0 + 1 > 2*$k2) { $t = ($k2 + 2*$c0 - 1) / (2*$c0); }
my $c = 2*$t*$c0 + 1;
$prime_gen_counter++;
# Don't do the Pocklington check unless the candidate looks prime
my $looks_prime = 0;
if (MPU_USE_GMP) {
# MPU::GMP::is_prob_prime has fast tests built in.
$looks_prime = Math::Prime::Util::GMP::is_prob_prime($c);
} else {
# No GMP, so first do trial divisions, then a SPSP test.
$looks_prime = Math::BigInt::bgcd($c, 111546435)->is_one;
if ($looks_prime && $_big_gcd_use && $c > $_big_gcd_top) {
$looks_prime = Math::BigInt::bgcd($c, $_big_gcd[0])->is_one &&
Math::BigInt::bgcd($c, $_big_gcd[1])->is_one &&
Math::BigInt::bgcd($c, $_big_gcd[2])->is_one &&
Math::BigInt::bgcd($c, $_big_gcd[3])->is_one;
}
$looks_prime = 0 if $looks_prime && !is_strong_pseudoprime($c, 3);
}
if ($looks_prime) {
# We could use a in (2,3,5,7,11,13), but pedantically use FIPS 186-4.
my $astr = '';
for my $i (0 .. $iterations) {
$astr = Digest::SHA::sha256_hex($seed) . $astr;
$seed = _seed_plus_one($seed);
}
my $a = Math::BigInt->from_hex('0x'.$astr);
$a = ($a % ($c-3)) + 2;
my $z = $a->copy->bmodpow(2*$t,$c);
if (Math::BigInt::bgcd($z-1,$c)->is_one && $z->copy->bmodpow($c0,$c)->is_one) {
croak "Shawe-Taylor random prime failure at ($k): $c not prime"
unless is_prob_prime($c);
$cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
"Proof for:\nN $c\n\n" .
"Type Pocklington\nN $c\nQ $c0\nA $a\n" .
$cert;
return (1, $c, $seed, $prime_gen_counter, $cert);
}
} else {
# Update seed "as if" we performed the Pocklington check from FIPS 186-4
for my $i (0 .. $iterations) {
$seed = _seed_plus_one($seed);
}
}
return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k + $old_counter;
$t++;
}
}
# Gordon's algorithm for generating a strong prime.
sub random_strong_prime {
my $t = shift;
croak "random_strong_prime, bits must be >= 128" unless $t >= 128;
$t = int("$t");
croak "Random strong primes must be >= 173 bits on old Perl"
if OLD_PERL_VERSION && MPU_64BIT && $t < 173;
my $l = (($t+1) >> 1) - 2;
my $lp = int($t/2) - 20;
my $lpp = $l - 20;
while (1) {
my $qp = random_nbit_prime($lp);
my $qpp = random_nbit_prime($lpp);
$qp = Math::BigInt->new("$qp") unless ref($qp) eq 'Math::BigInt';
$qpp = Math::BigInt->new("$qpp") unless ref($qpp) eq 'Math::BigInt';
my ($il, $rem) = Math::BigInt->new(2)->bpow($l-1)->bdec()->bdiv(2*$qpp);
$il++ if $rem > 0;
$il = $il->as_int();
my $iu = Math::BigInt->new(2)->bpow($l)->bsub(2)->bdiv(2*$qpp)->as_int();
my $istart = $il + urandomm($iu - $il + 1);
for (my $i = $istart; $i <= $iu; $i++) { # Search for q
my $q = 2 * $i * $qpp + 1;
next unless is_prob_prime($q);
my $pp = $qp->copy->bmodpow($q-2, $q)->bmul(2)->bmul($qp)->bdec();
my ($jl, $rem) = Math::BigInt->new(2)->bpow($t-1)->bsub($pp)->bdiv(2*$q*$qp);
$jl++ if $rem > 0;
$jl = $jl->as_int();
my $ju = Math::BigInt->new(2)->bpow($t)->bdec()->bsub($pp)->bdiv(2*$q*$qp)->as_int();
my $jstart = $jl + urandomm($ju - $jl + 1);
for (my $j = $jstart; $j <= $ju; $j++) { # Search for p
my $p = $pp + 2 * $j * $q * $qp;
return $p if is_prob_prime($p);
}
}
}
}
sub random_proven_prime {
my $k = shift;
my ($n, $cert) = random_proven_prime_with_cert($k);
croak "random_proven_prime $n failed certificate verification!"
unless verify_prime($cert);
return $n;
}
sub random_proven_prime_with_cert {
my $k = shift;
if (prime_get_config->{'gmp'} && $k <= 450) {
my $n = random_nbit_prime($k);
my ($isp, $cert) = is_provable_prime_with_cert($n);
croak "small nbit prime could not be proven" if $isp != 2;
return ($n, $cert);
}
return random_maurer_prime_with_cert($k);
}
1;
__END__
# ABSTRACT: Generate random primes
=pod
=encoding utf8
=head1 NAME
Math::Prime::Util::RandomPrimes - Generate random primes
=head1 VERSION
Version 0.73
=head1 SYNOPSIS
=head1 DESCRIPTION
Routines to generate random primes, including constructing proven primes.
=head1 RANDOM PRIME FUNCTIONS
=head2 random_prime
Generate a random prime between C<low> and C<high>. If given one argument,
C<low> will be 2.
=head2 random_ndigit_prime
Generate a random prime with C<n> digits. C<n> must be at least 1.
=head2 random_nbit_prime
Generate a random prime with C<n> bits. C<n> must be at least 2.
=head2 random_maurer_prime
Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm. C<n> must be at least 2.
=head2 random_maurer_prime_with_cert
Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm. C<n> must be at least 2. Returns a list of two items: the
prime and the certificate.
=head2 random_shawe_taylor_prime
Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm. C<n> must be at least 2. The implementation is from
FIPS 186-4 and uses SHA-256 with 512 bits of randomness.
=head2 random_shawe_taylor_prime_with_cert
Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm. C<n> must be at least 2. Returns a list of two items: the
prime and the certificate.
=head2 random_strong_prime
Construct a random strong prime of C<n> bits. C<n> must be at least 128.
=head2 random_proven_prime
Generate or construct a random provable prime of C<n> bits. C<n> must
be at least 2.
=head2 random_proven_prime_with_cert
Generate or construct a random provable prime of C<n> bits. C<n> must
be at least 2. Returns a list of two items: the prime and the certificate.
=head1 SEE ALSO
L<Math::Prime::Util>
=head1 AUTHORS
Dana Jacobsen E<lt>dana@acm.orgE<gt>
=head1 COPYRIGHT
Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt>
This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.
=cut
|