File: RandomPrimes.pm

package info (click to toggle)
libmath-prime-util-perl 0.73-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,796 kB
  • sloc: perl: 24,676; ansic: 11,471; makefile: 26; python: 24
file content (1005 lines) | stat: -rw-r--r-- 38,865 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
package Math::Prime::Util::RandomPrimes;
use strict;
use warnings;
use Carp qw/carp croak confess/;
use Math::Prime::Util qw/ prime_get_config
                          verify_prime
                          is_provable_prime_with_cert
                          primorial prime_count nth_prime
                          is_prob_prime is_strong_pseudoprime
                          next_prime prev_prime
                          urandomb urandomm random_bytes
                        /;

BEGIN {
  $Math::Prime::Util::RandomPrimes::AUTHORITY = 'cpan:DANAJ';
  $Math::Prime::Util::RandomPrimes::VERSION = '0.73';
}

BEGIN {
  do { require Math::BigInt;  Math::BigInt->import(try=>"GMP,Pari"); }
    unless defined $Math::BigInt::VERSION;

  use constant OLD_PERL_VERSION=> $] < 5.008;
  use constant MPU_MAXBITS     => (~0 == 4294967295) ? 32 : 64;
  use constant MPU_64BIT       => MPU_MAXBITS == 64;
  use constant MPU_32BIT       => MPU_MAXBITS == 32;
  use constant MPU_MAXPARAM    => MPU_32BIT ? 4294967295 : 18446744073709551615;
  use constant MPU_MAXDIGITS   => MPU_32BIT ?         10 : 20;
  use constant MPU_USE_XS      => prime_get_config->{'xs'};
  use constant MPU_USE_GMP     => prime_get_config->{'gmp'};

  *_bigint_to_int = \&Math::Prime::Util::_bigint_to_int;
}

################################################################################

# These are much faster than straightforward trial division when n is big.
# You'll want to first do a test up to and including 23.
my @_big_gcd;
my $_big_gcd_top = 20046;
my $_big_gcd_use = -1;
sub _make_big_gcds {
  return if $_big_gcd_use >= 0;
  if (prime_get_config->{'gmp'}) {
    $_big_gcd_use = 0;
    return;
  }
  if (Math::BigInt->config()->{lib} !~ /^Math::BigInt::(GMP|Pari)/) {
    $_big_gcd_use = 0;
    return;
  }
  $_big_gcd_use = 1;
  my $p0 = primorial(Math::BigInt->new( 520));
  my $p1 = primorial(Math::BigInt->new(2052));
  my $p2 = primorial(Math::BigInt->new(6028));
  my $p3 = primorial(Math::BigInt->new($_big_gcd_top));
  $_big_gcd[0] = $p0->bdiv(223092870)->bfloor->as_int;
  $_big_gcd[1] = $p1->bdiv($p0)->bfloor->as_int;
  $_big_gcd[2] = $p2->bdiv($p1)->bfloor->as_int;
  $_big_gcd[3] = $p3->bdiv($p2)->bfloor->as_int;
}

################################################################################


################################################################################



# For random primes, there are two good papers that should be examined:
#
#  "Fast Generation of Prime Numbers and Secure Public-Key
#   Cryptographic Parameters" by Ueli M. Maurer, 1995
#  http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2151
#  related discussions:
#      http://www.daimi.au.dk/~ivan/provableprimesproject.pdf
#      Handbook of Applied Cryptography by Menezes, et al.
#
#  "Close to Uniform Prime Number Generation With Fewer Random Bits"
#   by Pierre-Alain Fouque and Mehdi Tibouchi, 2011
#   http://eprint.iacr.org/2011/481
#
#  Some things to note:
#
#    1) Joye and Paillier have patents on their methods.  Never use them.
#
#    2) The easy method of next_prime(random number), known as PRIMEINC, is
#       fast but gives a terrible distribution.  It has a positive bias and
#       most importantly the probability for a prime is proportional to its
#       gap, meaning some numbers in the range will be thousands of times
#       more likely than others).  On the contrary however, nobody has a way
#       to exploit this, and it's not-uncommon to see used.
#
# We use:
#   TRIVIAL range within native integer size (2^32 or 2^64)
#   FTA1    random_nbit_prime with 65+ bits
#   INVA1   other ranges with 65+ bit range
# where
#   TRIVIAL = monte-carlo method or equivalent, perfect uniformity.
#   FTA1    = Fouque/Tibouchi A1, very close to uniform
#   INVA1   = inverted FTA1, less uniform but works with arbitrary ranges
#
# The random_maurer_prime function uses Maurer's FastPrime algorithm.
#
# If Math::Prime::Util::GMP is installed, these functions will be many times
# faster than other methods (e.g. Math::Pari monte-carlo or Crypt::Primes).
#
# Timings on Macbook.
# The "with GMP" numbers use Math::Prime::Util::GMP 0.44.
# The "no GMP" numbers are with no Math::BigInt backend, so very slow in comparison.
# If another backend was used (GMP, Pari, LTM) it would be more comparable.
#
#                   random_nbit_prime         random_maurer_prime
#    n-bits       no GMP   w/ MPU::GMP        no GMP   w/ MPU::GMP
#    ----------  --------  -----------       --------  -----------
#       24-bit        1uS      same             same       same
#       64-bit        5uS      same             same       same
#      128-bit     0.12s          70uS         0.29s         166uS
#      256-bit     0.66s         379uS         1.82s         800uS
#      512-bit     7.8s        0.0022s        16.2s        0.0044s
#     1024-bit    ----         0.019s        ----          0.037s
#     2048-bit    ----         0.23s         ----          0.35s
#     4096-bit    ----         2.4s          ----          5.2s
#
# Random timings for 10M calls on i4770K:
#    0.39   Math::Random::MTwist 0.13
#    0.41   ntheory                                      <==== us
#    0.89   system rand
#    1.76   Math::Random::MT::Auto
#    5.35   Bytes::Random::Secure OO       w/ISAAC::XS
#    7.43   Math::Random::Secure           w/ISAAC::XS
#   12.40   Math::Random::Secure
#   12.78   Bytes::Random::Secure OO
#   13.86   Bytes::Random::Secure function w/ISAAC::XS
#   21.95   Bytes::Random::Secure function
#  822.1    Crypt::Random
#
# time perl -E 'use Math::Random::MTwist "irand32"; irand32() for 1..10000000;'
# time perl -E 'sub irand {int(rand(4294967296));} irand() for 1..10000000;'
# time perl -E 'use Math::Random::MT::Auto; sub irand { Math::Random::MT::Auto::irand() & 0xFFFFFFFF } irand() for 1..10000000;'
# time perl -E 'use Math::Random::Secure qw/irand/; irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure qw/random_bytes/; sub irand {return unpack("L",random_bytes(4));} irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure; my $rng = Bytes::Random::Secure->new(); sub irand {return $rng->irand;} irand() for 1..10000000;'
# time perl -E 'use Crypt::Random qw/makerandom/; sub irand {makerandom(Size=>32, Uniform=>1, Strength=>0)} irand() for 1..100_000;'
# > haveged daemon running to stop /dev/random blocking
# > Both BRS and CR have more features that this isn't measuring.
#
# To verify distribution:
#   perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_nbit_prime(6)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'
#   perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_prime(1260437,1260733)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'

# Sub to call with low and high already primes and verified range.
my $_random_prime = sub {
    my($low,$high) = @_;
    my $prime;

    #{ my $bsize = 100; my @bins; my $counts = 10000000;
    #  for my $c (1..$counts) { $bins[ $_IRANDF->($bsize-1) ]++; }
    #  for my $b (0..$bsize) {printf("%4d %8.5f%%\n", $b, $bins[$b]/$counts);} }

    # low and high are both odds, and low < high.

    # This is fast for small values, low memory, perfectly uniform, and
    # consumes the minimum amount of randomness needed.  But it isn't feasible
    # with large values.  Also note that low must be a prime.
    if ($high <= 262144 && MPU_USE_XS) {
      my $li     = prime_count(2, $low);
      my $irange = prime_count($low, $high);
      my $rand = urandomm($irange);
      return nth_prime($li + $rand);
    }

    $low-- if $low == 2;  # Low of 2 becomes 1 for our program.
    # Math::BigInt::GMP's RT 71548 will wreak havoc if we don't do this.
    $low = Math::BigInt->new("$low") if ref($high) eq 'Math::BigInt';
    confess "Invalid _random_prime parameters: $low, $high" if ($low % 2) == 0 || ($high % 2) == 0;

    # We're going to look at the odd numbers only.
    my $oddrange = (($high - $low) >> 1) + 1;

    croak "Large random primes not supported on old Perl"
      if OLD_PERL_VERSION && MPU_64BIT && $oddrange > 4294967295;

    # If $low is large (e.g. >10 digits) and $range is small (say ~10k), it
    # would be fastest to call primes in the range and randomly pick one.  I'm
    # not implementing it now because it seems like a rare case.

    # If the range is reasonably small, generate using simple Monte Carlo
    # method (aka the 'trivial' method).  Completely uniform.
    if ($oddrange < MPU_MAXPARAM) {
      my $loop_limit = 2000 * 1000;  # To protect against broken rand
      if ($low > 11) {
        while ($loop_limit-- > 0) {
          $prime = $low + 2 * urandomm($oddrange);
          next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
          return $prime if is_prob_prime($prime);
        }
      } else {
        while ($loop_limit-- > 0) {
          $prime = $low + 2 * urandomm($oddrange);
          next if $prime > 11 && (!($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11));
          return 2 if $prime == 1;  # Remember the special case for 2.
          return $prime if is_prob_prime($prime);
        }
      }
      croak "Random function broken?";
    }

    # We have an ocean of range, and a teaspoon to hold randomness.

    # Since we have an arbitrary range and not a power of two, I don't see how
    # Fouque's algorithm A1 could be used (where we generate lower bits and
    # generate random sets of upper).  Similarly trying to simply generate
    # upper bits is full of ways to trip up and get non-uniform results.
    #
    # What I'm doing here is:
    #
    #   1) divide the range into semi-evenly sized partitions, where each part
    #      is as close to $rand_max_val as we can.
    #   2) randomly select one of the partitions.
    #   3) iterate choosing random values within the partition.
    #
    # The downside is that we're skewing a _lot_ farther from uniformity than
    # we'd like.  Imagine we started at 0 with 1e18 partitions of size 100k
    # each.
    # Probability of '5' being returned =
    #   1.04e-22 = 1e-18 (chose first partition) * 1/9592 (chose '5')
    # Probability of '100003' being returned =
    #   1.19e-22 = 1e-18 (chose second partition) * 1/8392 (chose '100003')
    # Probability of '99999999999999999999977' being returned =
    #   5.20e-22 = 1e-18 (chose last partition)  *  1/1922 (chose '99...77')
    # So the primes in the last partition will show up 5x more often.
    # The partitions are selected uniformly, and the primes within are selected
    # uniformly, but the number of primes in each bucket is _not_ uniform.
    # Their individual probability of being selected is the probability of the
    # partition (uniform) times the probability of being selected inside the
    # partition (uniform with respect to all other primes in the same
    # partition, but each partition is different and skewed).
    #
    # Partitions are typically much larger than 100k, but with a huge range
    # we still see this (e.g. ~3x from 0-10^30, ~10x from 0-10^100).
    #
    # When selecting n-bit or n-digit primes, this effect is MUCH smaller, as
    # the skew becomes approx lg(2^n) / lg(2^(n-1)) which is pretty close to 1.
    #
    #
    # Another idea I'd like to try sometime is:
    #  pclo = prime_count_lower(low);
    #  pchi = prime_count_upper(high);
    #  do {
    #    $nth = random selection between pclo and pchi
    #    $prguess = nth_prime_approx($nth);
    #  } while ($prguess >= low) && ($prguess <= high);
    #  monte carlo select a prime in $prguess-2**24 to $prguess+2**24
    # which accounts for the prime distribution.

    my($binsize, $nparts);
    my $rand_part_size = 1 << (MPU_64BIT ? 32 : 31);
    if (ref($oddrange) eq 'Math::BigInt') {
      # Go to some trouble here because some systems are wonky, such as
      # giving us +a/+b = -r.  Also note the quotes for the bigint argument.
      # Without that, Math::BigInt::GMP can return garbage.
      my($nbins, $rem);
      ($nbins, $rem) = $oddrange->copy->bdiv( "$rand_part_size" );
      $nbins++ if $rem > 0;
      $nbins = $nbins->as_int();
      ($binsize,$rem) = $oddrange->copy->bdiv($nbins);
      $binsize++ if $rem > 0;
      $binsize = $binsize->as_int();
      $nparts  = $oddrange->copy->bdiv($binsize)->as_int();
      $low = $high->copy->bzero->badd($low) if ref($low) ne 'Math::BigInt';
    } else {
      my $nbins = int($oddrange / $rand_part_size);
      $nbins++ if $nbins * $rand_part_size != $oddrange;
      $binsize = int($oddrange / $nbins);
      $binsize++ if $binsize * $nbins != $oddrange;
      $nparts = int($oddrange/$binsize);
    }
    $nparts-- if ($nparts * $binsize) == $oddrange;

    my $rpart = urandomm($nparts+1);

    my $primelow = $low + 2 * $binsize * $rpart;
    my $partsize = ($rpart < $nparts) ? $binsize
                                      : $oddrange - ($nparts * $binsize);
    $partsize = _bigint_to_int($partsize) if ref($partsize) eq 'Math::BigInt';
    #warn "range $oddrange  = $nparts * $binsize + ", $oddrange - ($nparts * $binsize), "\n";
    #warn "  chose part $rpart size $partsize\n";
    #warn "  primelow is $low + 2 * $binsize * $rpart = $primelow\n";
    #die "Result could be too large" if ($primelow + 2*($partsize-1)) > $high;

    # Generate random numbers in the interval until one is prime.
    my $loop_limit = 2000 * 1000;  # To protect against broken rand

    # Simply things for non-bigints.
    if (ref($low) ne 'Math::BigInt') {
      while ($loop_limit-- > 0) {
        my $rand = urandomm($partsize);
        $prime = $primelow + $rand + $rand;
        croak "random prime failure, $prime > $high" if $prime > $high;
        if ($prime <= 23) {
          $prime = 2 if $prime == 1;  # special case for low = 2
          next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
          return $prime;
        }
        next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
        # It looks promising.  Check it.
        next unless is_prob_prime($prime);
        return $prime;
      }
      croak "Random function broken?";
    }

    # By checking a wheel 30 mod, we can skip anything that would be a multiple
    # of 2, 3, or 5, without even having to create the bigint prime.
    my @w30 = (1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0);
    my $primelow30 = $primelow % 30;
    $primelow30 = _bigint_to_int($primelow30) if ref($primelow30) eq 'Math::BigInt';

    # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
    _make_big_gcds() if $_big_gcd_use < 0;

    while ($loop_limit-- > 0) {
      my $rand = urandomm($partsize);
      # Check wheel-30 mod
      my $rand30 = $rand % 30;
      next if $w30[($primelow30 + 2*$rand30) % 30]
              && ($rand > 3 || $primelow > 5);
      # Construct prime
      $prime = $primelow + $rand + $rand;
      croak "random prime failure, $prime > $high" if $prime > $high;
      if ($prime <= 23) {
        $prime = 2 if $prime == 1;  # special case for low = 2
        next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
        return $prime;
      }
      # With GMP, the fastest thing to do is check primality.
      if (MPU_USE_GMP) {
        next unless Math::Prime::Util::GMP::is_prime($prime);
        return $prime;
      }
      # No MPU:GMP, so primality checking is slow.  Skip some composites here.
      next unless Math::BigInt::bgcd($prime, 7436429) == 1;
      if ($_big_gcd_use && $prime > $_big_gcd_top) {
        next unless Math::BigInt::bgcd($prime, $_big_gcd[0]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[1]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[2]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[3]) == 1;
      }
      # It looks promising.  Check it.
      next unless is_prob_prime($prime);
      return $prime;
    }
    croak "Random function broken?";
};

# Cache of tight bounds for each digit.  Helps performance a lot.
my @_random_ndigit_ranges = (undef, [2,7], [11,97] );
my @_random_nbit_ranges   = (undef, undef, [2,3],[5,7] );
my %_random_cache_small;

# For fixed small ranges with XS, e.g. 6-digit, 18-bit
sub _random_xscount_prime {
  my($low,$high) = @_;
  my($istart, $irange);
  my $cachearef = $_random_cache_small{$low,$high};
  if (defined $cachearef) {
    ($istart, $irange) = @$cachearef;
  } else {
    my $beg = ($low <= 2)  ?  2  :  next_prime($low-1);
    my $end = ($high < ~0)  ?  prev_prime($high + 1)  :  prev_prime($high);
    ($istart, $irange) = ( prime_count(2, $beg), prime_count($beg, $end) );
    $_random_cache_small{$low,$high} = [$istart, $irange];
  }
  my $rand = urandomm($irange);
  return nth_prime($istart + $rand);
}

sub random_prime {
  my($low,$high) = @_;
  return if $high < 2 || $low > $high;

  if ($high-$low > 1000000000) {
    # Range is large, just make them odd if needed.
    $low = 2 if $low < 2;
    $low++ if $low > 2 && ($low % 2) == 0;
    $high-- if ($high % 2) == 0;
  } else {
    # Tighten the range to the nearest prime.
    $low = ($low <= 2)  ?  2  :  next_prime($low-1);
    $high = ($high == ~0) ? prev_prime($high) : prev_prime($high + 1);
    return $low if ($low == $high) && is_prob_prime($low);
    return if $low >= $high;
    # At this point low and high are both primes, and low < high.
  }

  # At this point low and high are both primes, and low < high.
  return $_random_prime->($low, $high);
}

sub random_ndigit_prime {
  my($digits) = @_;
  croak "random_ndigit_prime, digits must be >= 1" unless $digits >= 1;

  return _random_xscount_prime( int(10 ** ($digits-1)), int(10 ** $digits) )
    if $digits <= 6 && MPU_USE_XS;

  my $bigdigits = $digits >= MPU_MAXDIGITS;
  if ($bigdigits && prime_get_config->{'nobigint'}) {
    croak "random_ndigit_prime with -nobigint, digits out of range"
      if $digits > MPU_MAXDIGITS;
    # Special case for nobigint and threshold digits
    if (!defined $_random_ndigit_ranges[$digits]) {
      my $low  = int(10 ** ($digits-1));
      my $high = ~0;
      $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
    }
  }

  if (!defined $_random_ndigit_ranges[$digits]) {
    if ($bigdigits) {
      my $low  = Math::BigInt->new('10')->bpow($digits-1);
      my $high = Math::BigInt->new('10')->bpow($digits);
      # Just pull the range in to the nearest odd.
      $_random_ndigit_ranges[$digits] = [$low+1, $high-1];
    } else {
      my $low  = int(10 ** ($digits-1));
      my $high = int(10 ** $digits);
      # Note: Perl 5.6.2 cannot represent 10**15 as an integer, so things
      # will crash all over the place if you try.  We can stringify it, but
      # will just fail tests later.
      $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
    }
  }
  my ($low, $high) = @{$_random_ndigit_ranges[$digits]};
  return $_random_prime->($low, $high);
}

my @_random_nbit_m;
my @_random_nbit_lambda;
my @_random_nbit_arange;

sub random_nbit_prime {
  my($bits) = @_;
  croak "random_nbit_prime, bits must be >= 2" unless $bits >= 2;
  $bits = int("$bits");

  # Very small size, use the nth-prime method
  if ($bits <= 20 && MPU_USE_XS) {
    if ($bits <= 4) {
      return (2,3)[urandomb(1)] if $bits == 2;
      return (5,7)[urandomb(1)] if $bits == 3;
      return (11,13)[urandomb(1)] if $bits == 4;
    }
    return _random_xscount_prime( 1 << ($bits-1), 1 << $bits );
  }

  croak "Mid-size random primes not supported on broken old Perl"
    if OLD_PERL_VERSION && MPU_64BIT && $bits > 49 && $bits <= 64;

  # Fouque and Tibouchi (2011) Algorithm 1 (basic)
  # Modified to make sure the nth bit is always set.
  #
  # Example for random_nbit_prime(512) on 64-bit Perl:
  # p:  1aaaaaaaabbbbbbbbbbbbbbbbbbbb1
  #     ^^       ^                   ^--- Trailing 1 so p is odd
  #     ||       +--- 512-63-2 = 447 lower bits selected before loop
  #     |+--- 63 upper bits selected in loop, repeated until p is prime
  #     +--- upper bit is 1 so we generate an n-bit prime
  # total: 1 + 63 + 447 + 1 = 512 bits
  #
  # Algorithm 2 is implemented in a previous commit on github.  The problem
  # is that it doesn't set the nth bit, and making that change requires a
  # modification of the algorithm.  It was not a lot faster than this A1
  # with the native int trial division.  If the irandf function was very
  # slow, then A2 would look more promising.
  #
  if (1 && $bits > 64) {
    my $l = (MPU_64BIT && $bits > 79)  ?  63  :  31;
    $l = 49 if $l == 63 && OLD_PERL_VERSION;  # Fix for broken Perl 5.6
    $l = $bits-2 if $bits-2 < $l;

    my $brand = urandomb($bits-$l-2);
    $brand = Math::BigInt->new("$brand") unless ref($brand) eq 'Math::BigInt';
    my $b = $brand->blsft(1)->binc();

    # Precalculate some modulii so we can do trial division on native int
    # 9699690 = 2*3*5*7*11*13*17*19, so later operations can be native ints
    my @premod;
    my $bpremod = _bigint_to_int($b->copy->bmod(9699690));
    my $twopremod = _bigint_to_int(Math::BigInt->new(2)->bmodpow($bits-$l-1, 9699690));
    foreach my $zi (0 .. 19-1) {
      foreach my $pm (3, 5, 7, 11, 13, 17, 19) {
        next if $zi >= $pm || defined $premod[$pm];
        $premod[$pm] = $zi if ( ($twopremod*$zi+$bpremod) % $pm) == 0;
      }
    }
    _make_big_gcds() if $_big_gcd_use < 0;
    if (!MPU_USE_GMP) { require Math::Prime::Util::PP; }

    my $loop_limit = 1_000_000;
    while ($loop_limit-- > 0) {
      my $a = (1 << $l) + urandomb($l);
      # $a % s == $premod[s]  =>  $p % s == 0  =>  p will be composite
      next if $a %  3 == $premod[ 3] || $a %  5 == $premod[ 5]
           || $a %  7 == $premod[ 7] || $a % 11 == $premod[11]
           || $a % 13 == $premod[13] || $a % 17 == $premod[17]
           || $a % 19 == $premod[19];
      my $p = Math::BigInt->new("$a")->blsft($bits-$l-1)->badd($b);
      #die " $a $b $p" if $a % 11 == $premod[11] && $p % 11 != 0;
      #die "!$a $b $p" if $a % 11 != $premod[11] && $p % 11 == 0;
      if (MPU_USE_GMP) {
        next unless Math::Prime::Util::GMP::is_prime($p);
      } else {
        next unless Math::BigInt::bgcd($p, 1348781387) == 1; # 23-43
        if ($_big_gcd_use && $p > $_big_gcd_top) {
          next unless Math::BigInt::bgcd($p, $_big_gcd[0]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[1]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[2]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[3]) == 1;
        }
        # We know we don't have GMP and are > 2^64, so go directly to this.
        next unless Math::Prime::Util::PP::is_bpsw_prime($p);
      }
      return $p;
    }
    croak "Random function broken?";
  }

  # The Trivial method.  Great uniformity, and fine for small sizes.  It
  # gets very slow as the bit size increases, but that is why we have the
  # method above for bigints.
  if (1) {

    my $loop_limit = 2_000_000;
    if ($bits > MPU_MAXBITS) {
      my $p = Math::BigInt->bone->blsft($bits-1)->binc();
      while ($loop_limit-- > 0) {
        my $n = Math::BigInt->new(''.urandomb($bits-2))->blsft(1)->badd($p);
        return $n if is_prob_prime($n);
      }
    } else {
      my $p = (1 << ($bits-1)) + 1;
      while ($loop_limit-- > 0) {
        my $n = $p + (urandomb($bits-2) << 1);
        return $n if is_prob_prime($n);
      }
    }
    croak "Random function broken?";

  } else {

    # Send through the generic random_prime function.  Decently fast, but
    # quite a bit slower than the F&T A1 method above.
    if (!defined $_random_nbit_ranges[$bits]) {
      if ($bits > MPU_MAXBITS) {
        my $low  = Math::BigInt->new('2')->bpow($bits-1);
        my $high = Math::BigInt->new('2')->bpow($bits);
        # Don't pull the range in to primes, just odds
        $_random_nbit_ranges[$bits] = [$low+1, $high-1];
      } else {
        my $low  = 1 << ($bits-1);
        my $high = ($bits == MPU_MAXBITS)
                   ? ~0-1
                   : ~0 >> (MPU_MAXBITS - $bits);
        $_random_nbit_ranges[$bits] = [next_prime($low-1),prev_prime($high+1)];
        # Example: bits = 7.
        #    low = 1<<6 = 64.            next_prime(64-1)  = 67
        #    high = ~0 >> (64-7) = 127.  prev_prime(127+1) = 127
      }
    }
    my ($low, $high) = @{$_random_nbit_ranges[$bits]};
    return $_random_prime->($low, $high);

  }
}


# For stripping off the header on certificates so they can be combined.
sub _strip_proof_header {
  my $proof = shift;
  $proof =~ s/^\[MPU - Primality Certificate\]\nVersion \S+\n+Proof for:\nN (\d+)\n+//ms;
  return $proof;
}


sub random_maurer_prime {
  my $k = shift;
  croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
  $k = int("$k");

  return random_nbit_prime($k)  if $k <= MPU_MAXBITS && !OLD_PERL_VERSION;

  my ($n, $cert) = random_maurer_prime_with_cert($k);
  croak "maurer prime $n failed certificate verification!"
        unless verify_prime($cert);
  return $n;
}

sub random_maurer_prime_with_cert {
  my $k = shift;
  croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
  $k = int("$k");

  # This should never happen.  Trap now to prevent infinite loop.
  croak "number of bits must not be a bigint" if ref($k) eq 'Math::BigInt';

  # Results for random_nbit_prime are proven for all native bit sizes.
  my $p0 = MPU_MAXBITS;
  $p0 = 49 if OLD_PERL_VERSION && MPU_MAXBITS > 49;

  if ($k <= $p0) {
    my $n = random_nbit_prime($k);
    my ($isp, $cert) = is_provable_prime_with_cert($n);
    croak "small nbit prime could not be proven" if $isp != 2;
    return ($n, $cert);
  }

  # Set verbose to 3 to get pretty output like Crypt::Primes
  my $verbose = prime_get_config->{'verbose'};
  local $| = 1 if $verbose > 2;

  do { require Math::BigFloat; Math::BigFloat->import(); }
    if !defined $Math::BigFloat::VERSION;

  # Ignore Maurer's g and c that controls how much trial division is done.
  my $r = Math::BigFloat->new("0.5");   # relative size of the prime q
  my $m = 20;                           # makes sure R is big enough

  # Generate a random prime q of size $r*$k, where $r >= 0.5.  Try to
  # cleverly select r to match the size of a typical random factor.
  if ($k > 2*$m) {
    do {
      my $s = Math::Prime::Util::drand();
      $r = Math::BigFloat->new(2)->bpow($s-1);
    } while ($k*$r >= $k-$m);
  }

  # I've seen +0, +1, and +2 here.  Maurer uses +0.  Menezes uses +1.
  # We can use +1 because we're using BLS75 theorem 3 later.
  my $smallk = int(($r * $k)->bfloor->bstr) + 1;
  my ($q, $qcert) = random_maurer_prime_with_cert($smallk);
  $q = Math::BigInt->new("$q") unless ref($q) eq 'Math::BigInt';
  my $I = Math::BigInt->new(2)->bpow($k-2)->bdiv($q)->bfloor->as_int();
  print "r = $r  k = $k  q = $q  I = $I\n" if $verbose && $verbose != 3;
  $qcert = ($q < Math::BigInt->new("18446744073709551615"))
           ? "" : _strip_proof_header($qcert);

  # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
  _make_big_gcds() if $_big_gcd_use < 0;
  my $ONE = Math::BigInt->bone;
  my $TWO = $ONE->copy->binc;

  my $loop_limit = 1_000_000 + $k * 1_000;
  while ($loop_limit-- > 0) {
    # R is a random number between $I+1 and 2*$I
    #my $R = $I + 1 + urandomm( $I );
    my $R = $I->copy->binc->badd( urandomm($I) );
    #my $n = 2 * $R * $q + 1;
    my $nm1 = $TWO->copy->bmul($R)->bmul($q);
    my $n = $nm1->copy->binc;
    # We constructed a promising looking $n.  Now test it.
    print "." if $verbose > 2;
    if (MPU_USE_GMP) {
      # MPU::GMP::is_prob_prime has fast tests built in.
      next unless Math::Prime::Util::GMP::is_prob_prime($n);
    } else {
      # No GMP, so first do trial divisions, then a SPSP test.
      next unless Math::BigInt::bgcd($n, 111546435)->is_one;
      if ($_big_gcd_use && $n > $_big_gcd_top) {
        next unless Math::BigInt::bgcd($n, $_big_gcd[0])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[1])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[2])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[3])->is_one;
      }
      print "+" if $verbose > 2;
      next unless is_strong_pseudoprime($n, 3);
    }
    print "*" if $verbose > 2;

    # We could pick a random generator by doing:
    #   Step 1: pick a random r
    #   Step 2: compute g = r^((n-1)/q) mod p
    #   Step 3: if g == 1, goto Step 1.
    # Note that n = 2*R*q+1, hence the exponent is 2*R.

    # We could set r = 0.3333 earlier, then use BLS75 theorem 5 here.
    # The chain would be shorter, requiring less overall work for
    # large inputs.  Maurer's paper discusses the idea.

    # Use BLS75 theorem 3.  This is easier and possibly faster than
    # BLS75 theorem 4 (Pocklington) used by Maurer's paper.

    # Check conditions -- these should be redundant.
    my $m = $TWO * $R;
    if (! ($q->is_odd && $q > 2 && $m > 0 &&
           $m * $q + $ONE == $n && $TWO*$q+$ONE > $n->copy->bsqrt()) ) {
      carp "Maurer prime failed BLS75 theorem 3 conditions.  Retry.";
      next;
    }
    # Find a suitable a.  Move on if one isn't found quickly.
    foreach my $trya (2, 3, 5, 7, 11, 13) {
      my $a = Math::BigInt->new($trya);
      # m/2 = R    (n-1)/2 = (2*R*q)/2 = R*q
      next unless $a->copy->bmodpow($R, $n) != $nm1;
      next unless $a->copy->bmodpow($R*$q, $n) == $nm1;
      print "($k)" if $verbose > 2;
      croak "Maurer prime $n=2*$R*$q+1 failed BPSW" unless is_prob_prime($n);
      my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
                 "Proof for:\nN $n\n\n" .
                 "Type BLS3\nN $n\nQ $q\nA $a\n" .
                 $qcert;
      return ($n, $cert);
    }
    # Didn't pass the selected a values.  Try another R.
  }
  croak "Failure in random_maurer_prime, could not find a prime\n";
} # End of random_maurer_prime


sub random_shawe_taylor_prime_with_cert {
  my $k = shift;

  my $seed = random_bytes(512/8);

  my($status,$prime,$prime_seed,$prime_gen_counter,$cert)
     = _ST_Random_prime($k, $seed);
  croak "Shawe-Taylor random prime failure" unless $status;
  croak "Shawe-Taylor random prime failure: prime $prime failed certificate verification!" unless verify_prime($cert);

  return ($prime,$cert);
}

sub _seed_plus_one {
    my($s) = @_;
    for (my $i = length($s)-1; $i >= 0; $i--) {
        vec($s, $i, 8)++;
        last unless vec($s, $i, 8) == 0;
    }
    return $s;
}

sub _ST_Random_prime {  # From FIPS 186-4
  my($k, $input_seed) = @_;
  croak "Shawe-Taylor random prime must have length >= 2"  if $k < 2;
  $k = int("$k");

  croak "Shawe-Taylor random prime, invalid input seed"
     unless defined $input_seed && length($input_seed) >= 32;

  if (!defined $Digest::SHA::VERSION) {
    eval { require Digest::SHA;
           my $version = $Digest::SHA::VERSION;
           $version =~ s/[^\d.]//g;
           $version >= 4.00; }
      or do { croak "Must have Digest::SHA 4.00 or later"; };
  }

  my $k2 = Math::BigInt->new(2)->bpow($k-1);

  if ($k < 33) {
    my $seed = $input_seed;
    my $prime_gen_counter = 0;
    my $kmask    = 0xFFFFFFFF >> (32-$k);    # Does the mod operation
    my $kstencil = (1 << ($k-1)) | 1;        # Sets high and low bits
    while (1) {
      my $seedp1 = _seed_plus_one($seed);
      my $cvec = Digest::SHA::sha256($seed) ^ Digest::SHA::sha256($seedp1);
      # my $c = Math::BigInt->from_hex('0x' . unpack("H*", $cvec));
      # $c = $k2 + ($c % $k2);
      # $c = (2 * ($c >> 1)) + 1;
      my($c) = unpack("N*", substr($cvec,-4,4));
      $c = ($c & $kmask) | $kstencil;
      $prime_gen_counter++;
      $seed = _seed_plus_one($seedp1);
      my ($isp, $cert) = is_provable_prime_with_cert($c);
      return (1,$c,$seed,$prime_gen_counter,$cert) if $isp;
      return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k;
    }
  }
  my($status,$c0,$seed,$prime_gen_counter,$cert)
     = _ST_Random_prime( (($k+1)>>1)+1, $input_seed);
  return (0,0,0,0) unless $status;
  $cert = ($c0 < Math::BigInt->new("18446744073709551615"))
          ? "" : _strip_proof_header($cert);
  my $iterations = int(($k + 255) / 256) - 1;  # SHA256 generates 256 bits
  my $old_counter = $prime_gen_counter;
  my $xstr = '';
  for my $i (0 .. $iterations) {
    $xstr = Digest::SHA::sha256_hex($seed) . $xstr;
    $seed = _seed_plus_one($seed);
  }
  my $x = Math::BigInt->from_hex('0x'.$xstr);
  $x = $k2 + ($x % $k2);
  my $t = ($x + 2*$c0 - 1) / (2*$c0);
  _make_big_gcds() if $_big_gcd_use < 0;
  while (1) {
    if (2*$t*$c0 + 1 > 2*$k2) { $t = ($k2 + 2*$c0 - 1) / (2*$c0); }
    my $c = 2*$t*$c0 + 1;
    $prime_gen_counter++;

    # Don't do the Pocklington check unless the candidate looks prime
    my $looks_prime = 0;
    if (MPU_USE_GMP) {
      # MPU::GMP::is_prob_prime has fast tests built in.
      $looks_prime = Math::Prime::Util::GMP::is_prob_prime($c);
    } else {
      # No GMP, so first do trial divisions, then a SPSP test.
      $looks_prime = Math::BigInt::bgcd($c, 111546435)->is_one;
      if ($looks_prime && $_big_gcd_use && $c > $_big_gcd_top) {
        $looks_prime = Math::BigInt::bgcd($c, $_big_gcd[0])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[1])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[2])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[3])->is_one;
      }
      $looks_prime = 0 if $looks_prime && !is_strong_pseudoprime($c, 3);
    }

    if ($looks_prime) {
      # We could use a in (2,3,5,7,11,13), but pedantically use FIPS 186-4.
      my $astr = '';
      for my $i (0 .. $iterations) {
        $astr = Digest::SHA::sha256_hex($seed) . $astr;
        $seed = _seed_plus_one($seed);
      }
      my $a = Math::BigInt->from_hex('0x'.$astr);
      $a = ($a % ($c-3)) + 2;
      my $z = $a->copy->bmodpow(2*$t,$c);
      if (Math::BigInt::bgcd($z-1,$c)->is_one && $z->copy->bmodpow($c0,$c)->is_one) {
        croak "Shawe-Taylor random prime failure at ($k): $c not prime"
          unless is_prob_prime($c);
        $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
                 "Proof for:\nN $c\n\n" .
                 "Type Pocklington\nN $c\nQ $c0\nA $a\n" .
                 $cert;
        return (1, $c, $seed, $prime_gen_counter, $cert);
      }
    } else {
      # Update seed "as if" we performed the Pocklington check from FIPS 186-4
      for my $i (0 .. $iterations) {
        $seed = _seed_plus_one($seed);
      }
    }
    return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k + $old_counter;
    $t++;
  }
}


# Gordon's algorithm for generating a strong prime.
sub random_strong_prime {
  my $t = shift;
  croak "random_strong_prime, bits must be >= 128" unless $t >= 128;
  $t = int("$t");

  croak "Random strong primes must be >= 173 bits on old Perl"
    if OLD_PERL_VERSION && MPU_64BIT && $t < 173;

  my $l   = (($t+1) >> 1) - 2;
  my $lp  = int($t/2) - 20;
  my $lpp = $l - 20;
  while (1) {
    my $qp  = random_nbit_prime($lp);
    my $qpp = random_nbit_prime($lpp);
    $qp  = Math::BigInt->new("$qp")  unless ref($qp)  eq 'Math::BigInt';
    $qpp = Math::BigInt->new("$qpp") unless ref($qpp) eq 'Math::BigInt';
    my ($il, $rem) = Math::BigInt->new(2)->bpow($l-1)->bdec()->bdiv(2*$qpp);
    $il++ if $rem > 0;
    $il = $il->as_int();
    my $iu = Math::BigInt->new(2)->bpow($l)->bsub(2)->bdiv(2*$qpp)->as_int();
    my $istart = $il + urandomm($iu - $il + 1);
    for (my $i = $istart; $i <= $iu; $i++) {  # Search for q
      my $q = 2 * $i * $qpp + 1;
      next unless is_prob_prime($q);
      my $pp = $qp->copy->bmodpow($q-2, $q)->bmul(2)->bmul($qp)->bdec();
      my ($jl, $rem) = Math::BigInt->new(2)->bpow($t-1)->bsub($pp)->bdiv(2*$q*$qp);
      $jl++ if $rem > 0;
      $jl = $jl->as_int();
      my $ju = Math::BigInt->new(2)->bpow($t)->bdec()->bsub($pp)->bdiv(2*$q*$qp)->as_int();
      my $jstart = $jl + urandomm($ju - $jl + 1);
      for (my $j = $jstart; $j <= $ju; $j++) {  # Search for p
        my $p = $pp + 2 * $j * $q * $qp;
        return $p if is_prob_prime($p);
      }
    }
  }
}

sub random_proven_prime {
  my $k = shift;
  my ($n, $cert) = random_proven_prime_with_cert($k);
  croak "random_proven_prime $n failed certificate verification!"
        unless verify_prime($cert);
  return $n;
}

sub random_proven_prime_with_cert {
  my $k = shift;

  if (prime_get_config->{'gmp'} && $k <= 450) {
    my $n = random_nbit_prime($k);
    my ($isp, $cert) = is_provable_prime_with_cert($n);
    croak "small nbit prime could not be proven" if $isp != 2;
    return ($n, $cert);
  }
  return random_maurer_prime_with_cert($k);
}

1;

__END__


# ABSTRACT:  Generate random primes

=pod

=encoding utf8

=head1 NAME

Math::Prime::Util::RandomPrimes - Generate random primes


=head1 VERSION

Version 0.73


=head1 SYNOPSIS

=head1 DESCRIPTION

Routines to generate random primes, including constructing proven primes.


=head1 RANDOM PRIME FUNCTIONS

=head2 random_prime

Generate a random prime between C<low> and C<high>.  If given one argument,
C<low> will be 2.

=head2 random_ndigit_prime

Generate a random prime with C<n> digits.  C<n> must be at least 1.

=head2 random_nbit_prime

Generate a random prime with C<n> bits.  C<n> must be at least 2.

=head2 random_maurer_prime

Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm.  C<n> must be at least 2.

=head2 random_maurer_prime_with_cert

Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm.  C<n> must be at least 2.  Returns a list of two items: the
prime and the certificate.

=head2 random_shawe_taylor_prime

Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm.  C<n> must be at least 2.  The implementation is from
FIPS 186-4 and uses SHA-256 with 512 bits of randomness.

=head2 random_shawe_taylor_prime_with_cert

Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm.  C<n> must be at least 2.  Returns a list of two items: the
prime and the certificate.

=head2 random_strong_prime

Construct a random strong prime of C<n> bits.  C<n> must be at least 128.

=head2 random_proven_prime

Generate or construct a random provable prime of C<n> bits.  C<n> must
be at least 2.

=head2 random_proven_prime_with_cert

Generate or construct a random provable prime of C<n> bits.  C<n> must
be at least 2.  Returns a list of two items: the prime and the certificate.


=head1 SEE ALSO

L<Math::Prime::Util>

=head1 AUTHORS

Dana Jacobsen E<lt>dana@acm.orgE<gt>


=head1 COPYRIGHT

Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

=cut