1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#include <stdio.h>
#include <stdlib.h>
#define FUNC_is_prime_in_sieve 1
#define FUNC_gcd_ui 1
#include "sieve.h"
#include "ptypes.h"
#include "util.h"
#include "primality.h"
#define NSMALLPRIMES 168
static const unsigned short sprimes[NSMALLPRIMES] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997};
typedef struct {
uint32_t nmax;
uint32_t nsize;
UV* list;
} vlist;
#define INIT_VLIST(v) \
v.nsize = 0; \
v.nmax = 100; \
New(0, v.list, v.nmax, UV);
#define PUSH_VLIST(v, n) \
do { \
if (v.nsize >= v.nmax) \
Renew(v.list, v.nmax += 100, UV); \
v.list[v.nsize++] = n; \
} while (0)
#define ADDVAL32(v, n, max, val) \
do { if (n >= max) Renew(v, max += 512, UV); v[n++] = val; } while (0)
#define SWAPL32(l1, n1, m1, l2, n2, m2) \
{ UV t_, *u_ = l1; l1 = l2; l2 = u_; \
t_ = n1; n1 = n2; n2 = t_; \
t_ = m1; m1 = m2; m2 = t_; }
static int is_admissible(uint32_t nc, uint32_t* cl) {
uint32_t i, j, c;
char rset[sprimes[NSMALLPRIMES-1]];
if (nc > NSMALLPRIMES) return 1; /* TODO */
for (i = 0; i < nc; i++) {
uint32_t p = sprimes[i];
memset(rset, 0, p);
for (c = 0; c < nc; c++)
rset[cl[c] % p] = 1;
for (j = 0; j < p; j++)
if (rset[j] == 0)
break;
if (j == p) /* All values were 1 */
return 0;
}
return 1;
}
/* Given p prime, is this a cluster? */
static int is_cluster(UV p, uint32_t nc, uint32_t* cl) {
uint32_t c;
for (c = 1; c < nc; c++)
if (!is_prob_prime(p+cl[c]))
break;
return (c == nc);
}
/* This is fine for small ranges. Low overhead. */
UV* sieve_cluster_simple(UV beg, UV end, uint32_t nc, uint32_t* cl, UV* numret)
{
vlist retlist;
INIT_VLIST(retlist);
if (beg <= 2 && end >= 2 && is_cluster(2, nc, cl)) PUSH_VLIST(retlist, 2);
if (beg <= 3 && end >= 3 && is_cluster(3, nc, cl)) PUSH_VLIST(retlist, 3);
if (beg <= 5 && end >= 5 && is_cluster(5, nc, cl)) PUSH_VLIST(retlist, 5);
if (beg < 7) beg = 7;
/* If not admissible, then don't keep looking. */
if (!is_admissible(nc, cl) && end > sprimes[nc])
end = sprimes[nc];
if (beg <= end) {
uint32_t c;
unsigned char* segment;
UV seg_base, seg_beg, seg_end;
void* ctx = start_segment_primes(beg, end, &segment);
while (next_segment_primes(ctx, &seg_base, &seg_beg, &seg_end)) {
UV sp, last_sieve_cluster = (seg_end >= cl[nc-1]) ? seg_end-cl[nc-1] : 0;
START_DO_FOR_EACH_SIEVE_PRIME( segment, seg_base, seg_beg, seg_end )
if (p <= last_sieve_cluster) {
sp = p - seg_base;
for (c = 1; c < nc; c++)
if (!is_prime_in_sieve(segment, sp+cl[c]))
break;
if (c == nc)
PUSH_VLIST(retlist,p);
} else {
if (is_cluster(p, nc, cl))
PUSH_VLIST(retlist, p);
}
END_DO_FOR_EACH_SIEVE_PRIME
}
end_segment_primes(ctx);
}
*numret = retlist.nsize;
return retlist.list;
}
#define addmodded(r,a,b,n) do { r = a + b; if (r >= n) r -= n; } while(0)
UV* sieve_cluster(UV low, UV high, uint32_t nc, uint32_t* cl, UV* numret)
{
vlist retlist;
UV i, ppr, nres, allocres;
uint32_t const targres = 100000;
UV *residues, *cres, num_mr = 0, num_lucas = 0;
uint32_t pp_0, pp_1, pp_2, *resmod_0, *resmod_1, *resmod_2;
uint32_t rem_0, rem_1, rem_2, remadd_0, remadd_1, remadd_2;
uint32_t pi, startpi = 1, maxpi = 150;
uint32_t lastspr = sprimes[maxpi-1];
uint32_t c, smallnc;
char crem_0[43*47], crem_1[53*59], crem_2[61*67], **VPrem;
if ((UV_MAX - cl[nc-1]) < high) return 0; /* Overflow */
if ( ((high-low) < 10000)
|| (nc == 3 && ((high>>31) >> 16) == 0) /* sieving large vals is slow */
|| (nc == 2 && ((high>>31) >> 27) == 0)
|| (nc < 2) )
return sieve_cluster_simple(low, high, nc, cl, numret);
if (!(low&1)) low++;
if (!(high&1)) high--;
INIT_VLIST(retlist);
if (low < lastspr) {
UV t, chigh = (high > lastspr) ? lastspr : high;
UV* s = sieve_cluster_simple(low, chigh, nc, cl, &t);
for (i = 0; i < t; i++)
PUSH_VLIST(retlist, s[i]);
Safefree(s);
low = chigh + 2;
}
if (low > high) {
*numret = retlist.nsize;
return retlist.list;
}
if (low&1) low--;
/* Determine the primorial size and acceptable residues */
New(0, residues, allocres = 1024, UV);
{
UV remr, *res2, allocres2, nres2, maxppr;
/* Calculate residues for a small primorial */
for (pi = 2, ppr = 1, i = 0; i <= pi; i++) ppr *= sprimes[i];
remr = low % ppr;
nres = 0;
for (i = 1; i <= ppr; i += 2) {
for (c = 0; c < nc; c++) {
UV v = (remr + i + cl[c]) % ppr;
if (gcd_ui(v, ppr) != 1) break;
}
if (c == nc)
ADDVAL32(residues, nres, allocres, i);
}
/* Raise primorial size until we have plenty of residues */
New(0, res2, allocres2 = 1024, UV);
maxppr = high - low;
#if BITS_PER_WORD == 64
while (pi++ < 12) {
#else
while (pi++ < 8) {
#endif
uint32_t j, p = sprimes[pi];
UV r, newppr = ppr * p;
if (nres == 0 || nres > targres/(p/2) || newppr > maxppr) break;
MPUverbose(2, "cluster sieve found %"UVuf" residues mod %"UVuf"\n", nres, ppr);
remr = low % newppr;
nres2 = 0;
for (i = 0; i < p; i++) {
for (j = 0; j < nres; j++) {
r = i*ppr + residues[j];
for (c = 0; c < nc; c++) {
UV v = remr + r + cl[c];
if ((v % p) == 0) break;
}
if (c == nc)
ADDVAL32(res2, nres2, allocres2, r);
}
}
ppr = newppr;
SWAPL32(residues, nres, allocres, res2, nres2, allocres2);
}
startpi = pi;
Safefree(res2);
}
MPUverbose(1, "cluster sieve using %"UVuf" residues mod %"UVuf"\n", nres, ppr);
/* Return if not admissible, maybe with a single small value */
if (nres == 0) {
Safefree(residues);
*numret = retlist.nsize;
return retlist.list;
}
/* Pre-mod the residues with first two primes for fewer modulos every chunk */
{
uint32_t p1 = sprimes[startpi+0], p2 = sprimes[startpi+1];
uint32_t p3 = sprimes[startpi+2], p4 = sprimes[startpi+3];
uint32_t p5 = sprimes[startpi+4], p6 = sprimes[startpi+5];
pp_0 = p1*p2; pp_1 = p3*p4; pp_2 = p5*p6;
memset(crem_0, 1, pp_0);
memset(crem_1, 1, pp_1);
memset(crem_2, 1, pp_2);
/* Mark remainders that indicate a composite for this residue. */
for (i = 0; i < p1; i++) { crem_0[i*p1]=0; crem_0[i*p2]=0; }
for ( ; i < p2; i++) { crem_0[i*p1]=0; }
for (i = 0; i < p3; i++) { crem_1[i*p3]=0; crem_1[i*p4]=0; }
for ( ; i < p4; i++) { crem_1[i*p3]=0; }
for (i = 0; i < p5; i++) { crem_2[i*p5]=0; crem_2[i*p6]=0; }
for ( ; i < p6; i++) { crem_2[i*p5]=0; }
for (c = 1; c < nc; c++) {
uint32_t c1=cl[c], c2=cl[c], c3=cl[c], c4=cl[c], c5=cl[c], c6=cl[c];
if (c1 >= p1) c1 %= p1;
if (c2 >= p2) c2 %= p2;
for (i = 1; i <= p1; i++) { crem_0[i*p1-c1]=0; crem_0[i*p2-c2]=0; }
for ( ; i <= p2; i++) { crem_0[i*p1-c1]=0; }
if (c3 >= p3) c3 %= p3;
if (c4 >= p4) c4 %= p4;
for (i = 1; i <= p3; i++) { crem_1[i*p3-c3]=0; crem_1[i*p4-c4]=0; }
for ( ; i <= p4; i++) { crem_1[i*p3-c3]=0; }
if (c5 >= p5) c5 %= p5;
if (c6 >= p6) c6 %= p6;
for (i = 1; i <= p5; i++) { crem_2[i*p5-c5]=0; crem_2[i*p6-c6]=0; }
for ( ; i <= p6; i++) { crem_2[i*p5-c5]=0; }
}
New(0, resmod_0, nres, uint32_t);
New(0, resmod_1, nres, uint32_t);
New(0, resmod_2, nres, uint32_t);
for (i = 0; i < nres; i++) {
resmod_0[i] = residues[i] % pp_0;
resmod_1[i] = residues[i] % pp_1;
resmod_2[i] = residues[i] % pp_2;
}
}
/* Precalculate acceptable residues for more primes */
New(0, VPrem, maxpi, char*);
memset(VPrem, 0, maxpi);
for (pi = startpi+6; pi < maxpi; pi++) {
uint32_t p = sprimes[pi];
New(0, VPrem[pi], p, char);
memset(VPrem[pi], 1, p);
}
for (pi = startpi+6, smallnc = 0; pi < maxpi; pi++) {
uint32_t p = sprimes[pi];
char* prem = VPrem[pi];
prem[0] = 0;
while (smallnc < nc && cl[smallnc] < p) smallnc++;
for (c = 1; c < smallnc; c++) prem[p-cl[c]] = 0;
for ( ; c < nc; c++) prem[p-(cl[c]%p)] = 0;
}
New(0, cres, nres, UV);
rem_0 = low % pp_0; remadd_0 = ppr % pp_0;
rem_1 = low % pp_1; remadd_1 = ppr % pp_1;
rem_2 = low % pp_2; remadd_2 = ppr % pp_2;
/* Loop over their range in chunks of size 'ppr' */
while (low <= high) {
uint32_t r, nr, remr, ncres;
/* Reduce the allowed residues for this chunk using more primes */
{ /* Start making a list of this chunk's residues using three pairs */
for (r = 0, ncres = 0; r < nres; r++) {
addmodded(remr, rem_0, resmod_0[r], pp_0);
if (crem_0[remr]) {
addmodded(remr, rem_1, resmod_1[r], pp_1);
if (crem_1[remr]) {
addmodded(remr, rem_2, resmod_2[r], pp_2);
if (crem_2[remr]) {
cres[ncres++] = residues[r];
}
}
}
}
addmodded(rem_0, rem_0, remadd_0, pp_0);
addmodded(rem_1, rem_1, remadd_1, pp_1);
addmodded(rem_2, rem_2, remadd_2, pp_2);
}
/* Sieve through more primes one at a time, removing residues. */
for (pi = startpi+6; pi < maxpi && ncres > 0; pi++) {
uint32_t p = sprimes[pi];
uint32_t rem = low % p;
char* prem = VPrem[pi];
/* Check divisibility of each remaining residue with this p */
/* If we extended prem we could remove the add in the loop below */
if (startpi <= 9) { /* Residues are 32-bit */
for (r = 0, nr = 0; r < ncres; r++) {
if (prem[ (rem+(uint32_t)cres[r]) % p ])
cres[nr++] = cres[r];
}
} else { /* Residues are 64-bit */
for (r = 0, nr = 0; r < ncres; r++) {
if (prem[ (rem+cres[r]) % p ])
cres[nr++] = cres[r];
}
}
ncres = nr;
}
MPUverbose(3, "cluster sieve range has %u residues left\n", ncres);
/* Now check each of the remaining residues for inclusion */
for (r = 0; r < ncres; r++) {
UV p = low + cres[r];
if (p > high) break;
/* PRP test. Split to save time. */
for (c = 0; c < nc; c++)
if (num_mr++,!is_euler_plumb_pseudoprime(p+cl[c]))
break;
if (c < nc) continue;
for (c = 0; c < nc; c++)
if (num_lucas++,!is_almost_extra_strong_lucas_pseudoprime(p+cl[c], 1))
break;
if (c < nc) continue;
PUSH_VLIST(retlist, p);
}
low += ppr;
if (low < ppr) low = UV_MAX;
}
MPUverbose(1, "cluster sieve ran %"UVuf" MR and %"UVuf" Lucas tests\n", num_mr, num_lucas);
for (pi = startpi+6; pi < maxpi; pi++)
Safefree(VPrem[pi]);
Safefree(VPrem);
Safefree(resmod_0);
Safefree(resmod_1);
Safefree(resmod_2);
Safefree(cres);
Safefree(residues);
*numret = retlist.nsize;
return retlist.list;
}
|