File: 33-examples.t

package info (click to toggle)
libmath-prime-util-perl 0.73-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,796 kB
  • sloc: perl: 24,676; ansic: 11,471; makefile: 26; python: 24
file content (390 lines) | stat: -rw-r--r-- 14,607 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#!/usr/bin/env perl
use strict;
use warnings;
use Test::More;
use Math::Prime::Util qw/:all/;
use Math::Prime::Util::PrimeArray;
use List::Util qw/first/;

# Make sure things used as examples in the documentation work.

BEGIN {
  unless ($ENV{RELEASE_TESTING}) {
    plan( skip_all => 'these tests are for release candidate testing' );
  }
}

plan tests => 99;

{
  my @nums;
  forprimes { push @nums, $_  if is_prime($_+2) } 10000;
  is(scalar @nums, twin_prime_count(10000), "twin primes via forprimes");
}
{
  my @nums;
  forcomposites { push @nums,$_  if is_strong_pseudoprime($_,2) } 10000, 10**6;
  is_deeply(\@nums, [qw/15841 29341 42799 49141 52633 65281 74665 80581 85489 88357 90751 104653 130561 196093 220729 233017 252601 253241 256999 271951 280601 314821 357761 390937 458989 476971 486737 489997 514447 580337 635401 647089 741751 800605 818201 838861 873181 877099 916327 976873 983401/], "spsp-2s in range using forcomposites");
}
is( prime_count( 1_000_000 ), 78498, "prime_count(1M)" );
is( prime_count( 10**14, 10**14+1000 ), 30, "prime_count(10^14,10^14+1000)" );
{
  my $n = "100000000000000000";   # 10^17
  my $approx = prime_count_approx($n);
  cmp_ok($approx, '>=', prime_count_lower($n), "10^17: Pi approx >= Pi lower");
  cmp_ok($approx, '<=', prime_count_upper($n), "10^17: Pi approx <= Pi upper");
  cmp_closeto($approx, 2623557157654233, 0.000001, "10^17: Pi approx within .0001%");
}
is(nth_prime(10000), 104729, "nth_prime(10000)");
{
  my $n = "1000000000000";   # 10^12
  my $approx = nth_prime_approx($n);
  cmp_ok($approx, '>=', nth_prime_lower($n), "10^17: nth approx >= nth lower");
  cmp_ok($approx, '<=', nth_prime_upper($n), "10^17: nth approx <= nth upper");
  cmp_closeto($approx, 29996224275833, 1e-5, "10^12: nth approx within .001%");
}
is(euler_phi("801294088771394680000412"), "391329671260448564651280", "euler_phi(801294088771394680000412)");
is(jordan_totient(5,1234), "2771963542268536", "jordan_totient(5,1234)");
{
  my $sum = 0;  $sum += moebius($_) for 1..200;
  is($sum, -8, "Mertens(200) via moebius");
}
is(mertens(10_000_000), 1037, "Mertens(10_000_000)");
is(exp_mangoldt(49), 7, "exp_mangoldt(49)");
is(liouville(4292384), -1, "liouville(4292384)");
cmp_closeto(chebyshev_psi(234984), 235070.385453159, 1e-6, "chebyshev_psi(234984)");
cmp_closeto(chebyshev_theta(92384234), 92371752.9943251, 1e-6, "chebyshev_theta(92384234)");
is(partitions(1000), "24061467864032622473692149727991", "partitions(1000)");
{
  my($nparts,$nels) = (0,0);
  forpart { do { $nparts++; $nels += scalar @_; } unless scalar grep { !is_prime($_) } @_ } 25;
  is($nparts, 52, "partions of 25 with all prime elements: 52 found");
  is($nels, 333, "partions of 25 with all prime elements: 333 total values");
}
is(primorial(47), "614889782588491410", "primorial(47)");
is(pn_primorial(47), "1645783550795210387735581011435590727981167322669649249414629852197255934130751870910", "pn_primorial(47)");

##############################################################################

{
  my $aref = primes( 1_000_000_000_000, 1_000_000_001_000 );
  my $eref = [map { "1000000000".$_ } qw/039 061 063 091 121 163 169 177 189 193 211 271 303 331 333 339 459 471 537 543 547 561 609 661 669 721 751 787 789 799 841 903 921 931 933 949 997/];
  is_deeply($aref,$eref,"primes(1000M,1000M+1000)");
}

{
  my @nums;
  forprimes { push @nums, $_ } 100,200;
  is_deeply(\@nums, primes(100,200), "forprimes 100,200");
}
{
  my $sum = 0;  forprimes { $sum += $_ } 100000;
  is($sum, 454396537, "forprimes sum primes to 100k");
}
{
  my @ecomp = grep { !is_prime($_) } 4..1000;
  my @acomp;  forcomposites { push @acomp, $_ } 1000;
  is_deeply(\@acomp, \@ecomp, "forcomposites to 1000");
}
{
  my @ecomp = grep { !is_prime($_) } 2000..2020;
  my @acomp;  forcomposites { push @acomp, $_ } 2000,2020;
  is_deeply(\@acomp, \@ecomp, "forcomposites 2000,2020");
}
{
  my $prod = 1;
  fordivisors { $prod *= $_ } 1234;
  is($prod, 1522756, "fordivisors 1234");
}

{
  my $nparts;
  is(partitions(25), 1958, "partitions(25)");
  $nparts = 0; forpart { $nparts++ } 25;
  is($nparts, 1958, "forpart {} 25 generates 1958 partitions");
  $nparts = 0; forpart { $nparts++ } 25,{n=>5};
  is($nparts, 192, "forpart {} 25,{n=>5} generates 192 partitions");
  $nparts = 0; forpart { $nparts++ } 25,{nmax=>5};
  is($nparts, 377, "forpart {} 25,{nmax=>5} generates 377 partitions");
}

{
  my $it = prime_iterator;
  my $sum = 0;
  $sum += $it->() for 1..100000;
  is($sum, 62260698721, "iterator sums first 100k primes");
}

{
  my $it = prime_iterator(200);
  is($it->(), 211, "prime_iterator(200)->()");
  is($it->(), 223, "prime_iterator(200)->()->()");
}

{
  my $sum = 0;
  my $it = prime_iterator_object;
  while ($it->value < 100) { $sum += $it->value; $it->next; }
  is($sum, 1060, "sum primes below 100 with OO iterator");
  is(vecsum(@{primes(100)}), 1060, "...with vecsum(primes(100))");
  $sum += $it->iterate for 1..100000;
  is($sum, 62293195902, "sum first 100k primes larger than 100");
  is(vecsum(@{primes(nth_prime(prime_count(100)+100000))}), 62293195902, "...with vecsum");
}

is(prime_count(1000), 168, "prime_count(1000)");
is(prime_count(1000,10000), 1061, "prime_count(1000,10000)");

cmp_closeto(prime_count_approx("1000000000000000000"),24739954287740860,1e-6,"prime_count_approx(1e18)");

is(twin_prime_count(123456), 1457, "twin_prime_count(123456)");
cmp_closeto(twin_prime_count_approx("100000000000000000"),90948839353159,1e-6,"twin_prime_count_approx(1e17)");

is(chinese([14,643], [254,419], [87,733]), 87041638, "chinese([14,643], [254,419], [87,733])");
is(vecsum(euler_phi(0,500_000)), 75991039676, "totient sum 500k");
is(invmod(42,2017),1969, "inverse of 42 mod 2017");

{
  my $sum = 0;
  $sum += exp_mangoldt($_) for 1..100;
  is($sum, 1156, "summatory von Mangoldt 1..100 = log(1156)");
}

{
  my $sum = 0;
  forprimes { $sum += log($_) } 12345;
  cmp_closeto(chebyshev_theta(12345), $sum, 1e-6, "chebyshev_theta(12345) and forprimes");
}
{
  my $sum = 0;
  for (1..12345) { $sum += log(exp_mangoldt($_)) }
  cmp_closeto(chebyshev_psi(12345), $sum, 1e-6, "chebyshev_psi(12345) and forprimes");
}

is(primorial(11), 2310, "primorial(11)");
is(pn_primorial(5), 2310, "pn_primorial(5)");
is(primorial(0), 1, "primorial(0)");
is(pn_primorial(0), 1, "pn_primorial(0)");

is(znorder(2, next_prime("10000000000000000")-6), 40177783100, "znorder(2,10000000000000061)");
is(legendre_phi(1000000000, 41), 106614188, "Legendre phi 1e9,41");

##############################################################################

# Not sure how best to test the random primes.
ok( is_prime(random_prime(1000)), "random_prime(1000)" );
ok( is_prime(random_prime(100,10000)), "random_prime(100,10000)" );
is( length(random_ndigit_prime(4)), 4, "random_ndigit_prime(4) is 4 digits" );
{
  my $bigprime;
  $bigprime = random_nbit_prime(512);
  is( length($bigprime->as_bin), 2+512, "random_nbit_prime(512) is 512 bits" );
  $bigprime = random_strong_prime(512);
  is( length($bigprime->as_bin), 2+512, "random_strong_prime(512) is 512 bits" );
  $bigprime = random_proven_prime(512);
  is( length($bigprime->as_bin), 2+512, "random_proven_prime(512) is 512 bits" );
}
# TODO: More of the random primes and certs

##############################################################################

is_deeply([factor("3369738766071892021")], [204518747,16476429743], "factor(3_369_738_766_071_892_021)");
is_deeply([factor_exp(29513484000)], [[2,5], [3,4], [5,3], [7,2], [11,1], [13,2]], "factor_exp(29513484000)");
is_deeply([factor(29513484000)], [2,2,2,2,2,3,3,3,3,5,5,5,7,7,11,13,13], "factor(29513484000)");
is_deeply([divisors(30)], [1, 2, 3, 5, 6, 10, 15, 30], "divisors(30)");

##############################################################################

{
  my $sum = 0;
  forcomposites { $sum += $_ if is_strong_pseudoprime($_,17) } 1000000;
  is($sum, 23206520, "forcomposites looking for base-17 strong probable primes");
}
{
  my($start,$end) = ("100000000000000000000", "100000000000000001000");
  my $aref = primes($start, $end);
  my $eref = [map { "100000000000000000".$_ } qw/039 129 151 193 207 301 349 361 391 393 441 477 547 559 561 721 741 753 757 763 801 853 961 993/];
  is_deeply($aref,$eref,"primes(10^20,10^20+1000)");
  $aref = [];
  forprimes { push @$aref,$_ } "100000000000000000039", "100000000000000000993";
}
{
  my @c;
  foroddcomposites { push @c,$_ if $_ % carmichael_lambda($_) == 1 } 10000;
  is_deeply(\@c,[qw/561 1105 1729 2465 2821 6601 8911/], "carmichael numbers under 10000");
  @c=();
  foroddcomposites { push @c,$_ if $_ % carmichael_lambda($_) == 1 } 1020000,1085000;
  is_deeply(\@c,[qw/1024651 1033669 1050985 1082809/], "carmichael numbers from 1020k to 1085k");
}
{
  my $nu3 = sub {
    my $n = shift;
    my($phix,$v) = (chebyshev_psi($n), 0);
    $v += (moebius($_)/$_)*LogarithmicIntegral($phix**(1/$_)) for 1..3;
    $v;
  };
  cmp_closeto($nu3->(1e6),  78498, 1e-4, "η3(1e6) ~ Pi(1e6)");
  cmp_closeto($nu3->(1e7), 664579, 1e-4, "η3(1e7) ~ Pi(1e7)");
}
{
  my $make_sg_it = sub {
    my $p = shift || 2;
    my $it = prime_iterator($p);
    return sub {
      do { $p = $it->() } while !is_prime(2*$p+1);
      $p;
    };
  };
  my $sgit = $make_sg_it->();
  my $sum = 0;
  $sum += $sgit->() for 1..10000;
  is($sum, 6171027819, "sum first 10k Sophie-Germain primes using iterator");
}
is( (factor("600851475143"))[-1], 6857, "largest prime factor of 600851475143");
is( nth_prime(10001), 104743, "nth_prime(10001)");
{
  my $sum = 0;
  forprimes { $sum += $_ } 2_000_000;
  is($sum, 142913828922, "sum 2M primes with forprimes");
  is(vecsum( @{primes(2_000_000)} ), 142913828922, "sum 2M primes with vecsum(primes())");
}
{
  my $sum = 0;
  foreach my $x (1..10000) {
    my $y = divisor_sum($x)-$x;
    $sum += $x + $y if $y > $x && $x == divisor_sum($y)-$y;
  }
  is($sum, 31626, "sum of amicable numbers using loop");
  $sum = vecsum( map { divisor_sum($_) }
                 grep { my $y = divisor_sum($_)-$_;
                        $y > $_ && $_==(divisor_sum($y)-$y) }
                 1 .. 10000 );
  is($sum, 31626, "sum of amicable numbers using pipeline");
}
{
  my $pd = first { /1/&&/2/&&/3/&&/4/&&/5/&&/6/&&/7/} reverse @{primes(1000000,9999999)};
  is($pd, 7652413, "largest 7-digit pandigital prime");
}
{
  my $n = pn_primorial(4);
  $n++ while (factor_exp($n) != 4 || factor_exp($n+1) != 4 || factor_exp($n+2) != 4 || factor_exp($n+3) != 4);
  is($n, 134043, "first number in sequence of four 4-factor numbers");
}
{
  my ($maxn, $maxratio) = (0,0);
  foreach my $n (1..1000000) {
    my $ndivphi = $n / euler_phi($n);
    ($maxn, $maxratio) = ($n, $ndivphi) if $ndivphi > $maxratio;
  }
  is($maxn, 510510, "largest ratio of n/phi(n) for n < 1M.  Brute force.");
}
{
  my $n = 0;
  $n++ while pn_primorial($n+1) < 1000000;
  my $maxn = pn_primorial($n);
  is($maxn, 510510, "largest ratio of n/phi(n) for n < 1M.  Smart way.");
}
{
  my $n=0;
  forcomposites { $n++ if scalar factor($_) == 2; } int(1e5)-1;
  is($n, 23378, "Brute force count semiprimes under 1e5");
}
{
  my $limit = 1e7;
  $limit--;
  my ($sum, $pc) = (0, 1);
  forprimes {
    $sum += prime_count(int($limit/$_)) + 1 - $pc++;
  } int(sqrt($limit));
  is($sum, 1904324, "Count of semiprimes under 1e7");
}
{
  my $matches = sub {
    my @d = divisors(shift);
    return map { [$d[$_],$d[$#d-$_]] } 1..(@d-1)>>1;
  };
  is_deeply([$matches->(139650)], [[2,69825],[3,46550],[5,27930],[6,23275],[7,19950],[10,13965],[14,9975],[15,9310],[19,7350],[21,6650],[25,5586],[30,4655],[35,3990],[38,3675],[42,3325],[49,2850],[50,2793],[57,2450],[70,1995],[75,1862],[95,1470],[98,1425],[105,1330],[114,1225],[133,1050],[147,950],[150,931],[175,798],[190,735],[210,665],[245,570],[266,525],[285,490],[294,475],[350,399]], "matches 139650");
}
{
  my @nums;
  forcomposites { push @nums,$_ if divisor_sum($_)+6==divisor_sum($_+6) } 9,1e5;
  is_deeply(\@nums,[qw/104 147 596 1415 4850 5337/], "OEIS A054903");
}
{
  my @s;
  foreach my $n (1..30) {
    if (!znprimroot($n)) {
      push @s, "$n -";
    } else {
      my $phi = euler_phi($n);
      my @r = grep { gcd($_,$n) == 1 && znorder($_,$n) == $phi } 1..$n-1;
      push @s, "$n " . join(" ", @r);
    }
  }
  my @expect = split(/\|/, "1 -|2 1|3 2|4 3|5 2 3|6 5|7 3 5|8 -|9 2 5|10 3 7|11 2 6 7 8|12 -|13 2 6 7 11|14 3 5|15 -|16 -|17 3 5 6 7 10 11 12 14|18 5 11|19 2 3 10 13 14 15|20 -|21 -|22 7 13 17 19|23 5 7 10 11 14 15 17 19 20 21|24 -|25 2 3 8 12 13 17 22 23|26 7 11 15 19|27 2 5 11 14 20 23|28 -|29 2 3 8 10 11 14 15 18 19 21 26 27|30 -|");
  is_deeply(\@s,\@expect,"znprimroot table 1..30");
}

##############################################################################

{
  my $checksum = vecreduce { $a ^ $b } @{twin_primes(1000000)};
  is($checksum, 630871, "xor of twin primes <= 1M");
}

##############################################################################

{
  my @v = (qw/a b c d e/);
  my $ps = join " ", map { join("",vecextract(\@v,$_)) } 0..2**scalar(@v)-1;
  is($ps, " a b ab c ac bc abc d ad bd abd cd acd bcd abcd e ae be abe ce ace bce abce de ade bde abde cde acde bcde abcde", "power set of 5 elements");

  my $word = join "", vecextract(["a".."z"], [15, 17, 8, 12, 4]);
  is($word, "prime", "use vecextract with array");
}

##############################################################################

tie my @primes, 'Math::Prime::Util::PrimeArray';
{
  my @plist;
  for my $n (0..9) { push @plist, $primes[$n]; }
  is_deeply(\@plist, primes(nth_prime(10)), "PrimeArray for index loop");
}
{
  my @plist;
  for my $p (@primes) { last if $p > 79; push @plist, $p; }
  is_deeply(\@plist, primes(79), "PrimeArray for primes loop");
}
{
  my @plist;
  is_deeply([@primes[0..49]], primes(nth_prime(50)), "PrimeArray array slice");
}
SKIP: {
  skip "hash each requires 5.12 or newer", 1 if $] < 5.012;
  my @plist;
  while (  my($index,$value) = each @primes ) {
    last if $value > 147;
    push @plist, $value;
  }
  is_deeply(\@plist, primes(147), "PrimeArray each primes loop");
}
{
  my @plist;
  while ((my $p = shift @primes) < 250) { push @plist, $p; }
  is_deeply(\@plist, primes(250), "PrimeArray shift");
  unshift @primes, ~0;  # put primes back.
  is($primes[0], 2, "unshift puts it back");
}

##############################################################################

sub cmp_closeto {
  my $got = shift;
  my $expect = shift;
  my $tolerance = shift;
  my $message = shift;
  my $error = sprintf("%g", abs($got - $expect) / $expect);
  my $errorpr = sprintf "%.2g", $error;
  cmp_ok( $error, '<=', $tolerance, "$message ($errorpr)");
}