1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
#!/usr/bin/env perl
use strict;
use warnings;
use Test::More;
use Math::Prime::Util qw/:all/;
use Math::Prime::Util::PrimeArray;
use List::Util qw/first/;
# Make sure things used as examples in the documentation work.
BEGIN {
unless ($ENV{RELEASE_TESTING}) {
plan( skip_all => 'these tests are for release candidate testing' );
}
}
plan tests => 99;
{
my @nums;
forprimes { push @nums, $_ if is_prime($_+2) } 10000;
is(scalar @nums, twin_prime_count(10000), "twin primes via forprimes");
}
{
my @nums;
forcomposites { push @nums,$_ if is_strong_pseudoprime($_,2) } 10000, 10**6;
is_deeply(\@nums, [qw/15841 29341 42799 49141 52633 65281 74665 80581 85489 88357 90751 104653 130561 196093 220729 233017 252601 253241 256999 271951 280601 314821 357761 390937 458989 476971 486737 489997 514447 580337 635401 647089 741751 800605 818201 838861 873181 877099 916327 976873 983401/], "spsp-2s in range using forcomposites");
}
is( prime_count( 1_000_000 ), 78498, "prime_count(1M)" );
is( prime_count( 10**14, 10**14+1000 ), 30, "prime_count(10^14,10^14+1000)" );
{
my $n = "100000000000000000"; # 10^17
my $approx = prime_count_approx($n);
cmp_ok($approx, '>=', prime_count_lower($n), "10^17: Pi approx >= Pi lower");
cmp_ok($approx, '<=', prime_count_upper($n), "10^17: Pi approx <= Pi upper");
cmp_closeto($approx, 2623557157654233, 0.000001, "10^17: Pi approx within .0001%");
}
is(nth_prime(10000), 104729, "nth_prime(10000)");
{
my $n = "1000000000000"; # 10^12
my $approx = nth_prime_approx($n);
cmp_ok($approx, '>=', nth_prime_lower($n), "10^17: nth approx >= nth lower");
cmp_ok($approx, '<=', nth_prime_upper($n), "10^17: nth approx <= nth upper");
cmp_closeto($approx, 29996224275833, 1e-5, "10^12: nth approx within .001%");
}
is(euler_phi("801294088771394680000412"), "391329671260448564651280", "euler_phi(801294088771394680000412)");
is(jordan_totient(5,1234), "2771963542268536", "jordan_totient(5,1234)");
{
my $sum = 0; $sum += moebius($_) for 1..200;
is($sum, -8, "Mertens(200) via moebius");
}
is(mertens(10_000_000), 1037, "Mertens(10_000_000)");
is(exp_mangoldt(49), 7, "exp_mangoldt(49)");
is(liouville(4292384), -1, "liouville(4292384)");
cmp_closeto(chebyshev_psi(234984), 235070.385453159, 1e-6, "chebyshev_psi(234984)");
cmp_closeto(chebyshev_theta(92384234), 92371752.9943251, 1e-6, "chebyshev_theta(92384234)");
is(partitions(1000), "24061467864032622473692149727991", "partitions(1000)");
{
my($nparts,$nels) = (0,0);
forpart { do { $nparts++; $nels += scalar @_; } unless scalar grep { !is_prime($_) } @_ } 25;
is($nparts, 52, "partions of 25 with all prime elements: 52 found");
is($nels, 333, "partions of 25 with all prime elements: 333 total values");
}
is(primorial(47), "614889782588491410", "primorial(47)");
is(pn_primorial(47), "1645783550795210387735581011435590727981167322669649249414629852197255934130751870910", "pn_primorial(47)");
##############################################################################
{
my $aref = primes( 1_000_000_000_000, 1_000_000_001_000 );
my $eref = [map { "1000000000".$_ } qw/039 061 063 091 121 163 169 177 189 193 211 271 303 331 333 339 459 471 537 543 547 561 609 661 669 721 751 787 789 799 841 903 921 931 933 949 997/];
is_deeply($aref,$eref,"primes(1000M,1000M+1000)");
}
{
my @nums;
forprimes { push @nums, $_ } 100,200;
is_deeply(\@nums, primes(100,200), "forprimes 100,200");
}
{
my $sum = 0; forprimes { $sum += $_ } 100000;
is($sum, 454396537, "forprimes sum primes to 100k");
}
{
my @ecomp = grep { !is_prime($_) } 4..1000;
my @acomp; forcomposites { push @acomp, $_ } 1000;
is_deeply(\@acomp, \@ecomp, "forcomposites to 1000");
}
{
my @ecomp = grep { !is_prime($_) } 2000..2020;
my @acomp; forcomposites { push @acomp, $_ } 2000,2020;
is_deeply(\@acomp, \@ecomp, "forcomposites 2000,2020");
}
{
my $prod = 1;
fordivisors { $prod *= $_ } 1234;
is($prod, 1522756, "fordivisors 1234");
}
{
my $nparts;
is(partitions(25), 1958, "partitions(25)");
$nparts = 0; forpart { $nparts++ } 25;
is($nparts, 1958, "forpart {} 25 generates 1958 partitions");
$nparts = 0; forpart { $nparts++ } 25,{n=>5};
is($nparts, 192, "forpart {} 25,{n=>5} generates 192 partitions");
$nparts = 0; forpart { $nparts++ } 25,{nmax=>5};
is($nparts, 377, "forpart {} 25,{nmax=>5} generates 377 partitions");
}
{
my $it = prime_iterator;
my $sum = 0;
$sum += $it->() for 1..100000;
is($sum, 62260698721, "iterator sums first 100k primes");
}
{
my $it = prime_iterator(200);
is($it->(), 211, "prime_iterator(200)->()");
is($it->(), 223, "prime_iterator(200)->()->()");
}
{
my $sum = 0;
my $it = prime_iterator_object;
while ($it->value < 100) { $sum += $it->value; $it->next; }
is($sum, 1060, "sum primes below 100 with OO iterator");
is(vecsum(@{primes(100)}), 1060, "...with vecsum(primes(100))");
$sum += $it->iterate for 1..100000;
is($sum, 62293195902, "sum first 100k primes larger than 100");
is(vecsum(@{primes(nth_prime(prime_count(100)+100000))}), 62293195902, "...with vecsum");
}
is(prime_count(1000), 168, "prime_count(1000)");
is(prime_count(1000,10000), 1061, "prime_count(1000,10000)");
cmp_closeto(prime_count_approx("1000000000000000000"),24739954287740860,1e-6,"prime_count_approx(1e18)");
is(twin_prime_count(123456), 1457, "twin_prime_count(123456)");
cmp_closeto(twin_prime_count_approx("100000000000000000"),90948839353159,1e-6,"twin_prime_count_approx(1e17)");
is(chinese([14,643], [254,419], [87,733]), 87041638, "chinese([14,643], [254,419], [87,733])");
is(vecsum(euler_phi(0,500_000)), 75991039676, "totient sum 500k");
is(invmod(42,2017),1969, "inverse of 42 mod 2017");
{
my $sum = 0;
$sum += exp_mangoldt($_) for 1..100;
is($sum, 1156, "summatory von Mangoldt 1..100 = log(1156)");
}
{
my $sum = 0;
forprimes { $sum += log($_) } 12345;
cmp_closeto(chebyshev_theta(12345), $sum, 1e-6, "chebyshev_theta(12345) and forprimes");
}
{
my $sum = 0;
for (1..12345) { $sum += log(exp_mangoldt($_)) }
cmp_closeto(chebyshev_psi(12345), $sum, 1e-6, "chebyshev_psi(12345) and forprimes");
}
is(primorial(11), 2310, "primorial(11)");
is(pn_primorial(5), 2310, "pn_primorial(5)");
is(primorial(0), 1, "primorial(0)");
is(pn_primorial(0), 1, "pn_primorial(0)");
is(znorder(2, next_prime("10000000000000000")-6), 40177783100, "znorder(2,10000000000000061)");
is(legendre_phi(1000000000, 41), 106614188, "Legendre phi 1e9,41");
##############################################################################
# Not sure how best to test the random primes.
ok( is_prime(random_prime(1000)), "random_prime(1000)" );
ok( is_prime(random_prime(100,10000)), "random_prime(100,10000)" );
is( length(random_ndigit_prime(4)), 4, "random_ndigit_prime(4) is 4 digits" );
{
my $bigprime;
$bigprime = random_nbit_prime(512);
is( length($bigprime->as_bin), 2+512, "random_nbit_prime(512) is 512 bits" );
$bigprime = random_strong_prime(512);
is( length($bigprime->as_bin), 2+512, "random_strong_prime(512) is 512 bits" );
$bigprime = random_proven_prime(512);
is( length($bigprime->as_bin), 2+512, "random_proven_prime(512) is 512 bits" );
}
# TODO: More of the random primes and certs
##############################################################################
is_deeply([factor("3369738766071892021")], [204518747,16476429743], "factor(3_369_738_766_071_892_021)");
is_deeply([factor_exp(29513484000)], [[2,5], [3,4], [5,3], [7,2], [11,1], [13,2]], "factor_exp(29513484000)");
is_deeply([factor(29513484000)], [2,2,2,2,2,3,3,3,3,5,5,5,7,7,11,13,13], "factor(29513484000)");
is_deeply([divisors(30)], [1, 2, 3, 5, 6, 10, 15, 30], "divisors(30)");
##############################################################################
{
my $sum = 0;
forcomposites { $sum += $_ if is_strong_pseudoprime($_,17) } 1000000;
is($sum, 23206520, "forcomposites looking for base-17 strong probable primes");
}
{
my($start,$end) = ("100000000000000000000", "100000000000000001000");
my $aref = primes($start, $end);
my $eref = [map { "100000000000000000".$_ } qw/039 129 151 193 207 301 349 361 391 393 441 477 547 559 561 721 741 753 757 763 801 853 961 993/];
is_deeply($aref,$eref,"primes(10^20,10^20+1000)");
$aref = [];
forprimes { push @$aref,$_ } "100000000000000000039", "100000000000000000993";
}
{
my @c;
foroddcomposites { push @c,$_ if $_ % carmichael_lambda($_) == 1 } 10000;
is_deeply(\@c,[qw/561 1105 1729 2465 2821 6601 8911/], "carmichael numbers under 10000");
@c=();
foroddcomposites { push @c,$_ if $_ % carmichael_lambda($_) == 1 } 1020000,1085000;
is_deeply(\@c,[qw/1024651 1033669 1050985 1082809/], "carmichael numbers from 1020k to 1085k");
}
{
my $nu3 = sub {
my $n = shift;
my($phix,$v) = (chebyshev_psi($n), 0);
$v += (moebius($_)/$_)*LogarithmicIntegral($phix**(1/$_)) for 1..3;
$v;
};
cmp_closeto($nu3->(1e6), 78498, 1e-4, "η3(1e6) ~ Pi(1e6)");
cmp_closeto($nu3->(1e7), 664579, 1e-4, "η3(1e7) ~ Pi(1e7)");
}
{
my $make_sg_it = sub {
my $p = shift || 2;
my $it = prime_iterator($p);
return sub {
do { $p = $it->() } while !is_prime(2*$p+1);
$p;
};
};
my $sgit = $make_sg_it->();
my $sum = 0;
$sum += $sgit->() for 1..10000;
is($sum, 6171027819, "sum first 10k Sophie-Germain primes using iterator");
}
is( (factor("600851475143"))[-1], 6857, "largest prime factor of 600851475143");
is( nth_prime(10001), 104743, "nth_prime(10001)");
{
my $sum = 0;
forprimes { $sum += $_ } 2_000_000;
is($sum, 142913828922, "sum 2M primes with forprimes");
is(vecsum( @{primes(2_000_000)} ), 142913828922, "sum 2M primes with vecsum(primes())");
}
{
my $sum = 0;
foreach my $x (1..10000) {
my $y = divisor_sum($x)-$x;
$sum += $x + $y if $y > $x && $x == divisor_sum($y)-$y;
}
is($sum, 31626, "sum of amicable numbers using loop");
$sum = vecsum( map { divisor_sum($_) }
grep { my $y = divisor_sum($_)-$_;
$y > $_ && $_==(divisor_sum($y)-$y) }
1 .. 10000 );
is($sum, 31626, "sum of amicable numbers using pipeline");
}
{
my $pd = first { /1/&&/2/&&/3/&&/4/&&/5/&&/6/&&/7/} reverse @{primes(1000000,9999999)};
is($pd, 7652413, "largest 7-digit pandigital prime");
}
{
my $n = pn_primorial(4);
$n++ while (factor_exp($n) != 4 || factor_exp($n+1) != 4 || factor_exp($n+2) != 4 || factor_exp($n+3) != 4);
is($n, 134043, "first number in sequence of four 4-factor numbers");
}
{
my ($maxn, $maxratio) = (0,0);
foreach my $n (1..1000000) {
my $ndivphi = $n / euler_phi($n);
($maxn, $maxratio) = ($n, $ndivphi) if $ndivphi > $maxratio;
}
is($maxn, 510510, "largest ratio of n/phi(n) for n < 1M. Brute force.");
}
{
my $n = 0;
$n++ while pn_primorial($n+1) < 1000000;
my $maxn = pn_primorial($n);
is($maxn, 510510, "largest ratio of n/phi(n) for n < 1M. Smart way.");
}
{
my $n=0;
forcomposites { $n++ if scalar factor($_) == 2; } int(1e5)-1;
is($n, 23378, "Brute force count semiprimes under 1e5");
}
{
my $limit = 1e7;
$limit--;
my ($sum, $pc) = (0, 1);
forprimes {
$sum += prime_count(int($limit/$_)) + 1 - $pc++;
} int(sqrt($limit));
is($sum, 1904324, "Count of semiprimes under 1e7");
}
{
my $matches = sub {
my @d = divisors(shift);
return map { [$d[$_],$d[$#d-$_]] } 1..(@d-1)>>1;
};
is_deeply([$matches->(139650)], [[2,69825],[3,46550],[5,27930],[6,23275],[7,19950],[10,13965],[14,9975],[15,9310],[19,7350],[21,6650],[25,5586],[30,4655],[35,3990],[38,3675],[42,3325],[49,2850],[50,2793],[57,2450],[70,1995],[75,1862],[95,1470],[98,1425],[105,1330],[114,1225],[133,1050],[147,950],[150,931],[175,798],[190,735],[210,665],[245,570],[266,525],[285,490],[294,475],[350,399]], "matches 139650");
}
{
my @nums;
forcomposites { push @nums,$_ if divisor_sum($_)+6==divisor_sum($_+6) } 9,1e5;
is_deeply(\@nums,[qw/104 147 596 1415 4850 5337/], "OEIS A054903");
}
{
my @s;
foreach my $n (1..30) {
if (!znprimroot($n)) {
push @s, "$n -";
} else {
my $phi = euler_phi($n);
my @r = grep { gcd($_,$n) == 1 && znorder($_,$n) == $phi } 1..$n-1;
push @s, "$n " . join(" ", @r);
}
}
my @expect = split(/\|/, "1 -|2 1|3 2|4 3|5 2 3|6 5|7 3 5|8 -|9 2 5|10 3 7|11 2 6 7 8|12 -|13 2 6 7 11|14 3 5|15 -|16 -|17 3 5 6 7 10 11 12 14|18 5 11|19 2 3 10 13 14 15|20 -|21 -|22 7 13 17 19|23 5 7 10 11 14 15 17 19 20 21|24 -|25 2 3 8 12 13 17 22 23|26 7 11 15 19|27 2 5 11 14 20 23|28 -|29 2 3 8 10 11 14 15 18 19 21 26 27|30 -|");
is_deeply(\@s,\@expect,"znprimroot table 1..30");
}
##############################################################################
{
my $checksum = vecreduce { $a ^ $b } @{twin_primes(1000000)};
is($checksum, 630871, "xor of twin primes <= 1M");
}
##############################################################################
{
my @v = (qw/a b c d e/);
my $ps = join " ", map { join("",vecextract(\@v,$_)) } 0..2**scalar(@v)-1;
is($ps, " a b ab c ac bc abc d ad bd abd cd acd bcd abcd e ae be abe ce ace bce abce de ade bde abde cde acde bcde abcde", "power set of 5 elements");
my $word = join "", vecextract(["a".."z"], [15, 17, 8, 12, 4]);
is($word, "prime", "use vecextract with array");
}
##############################################################################
tie my @primes, 'Math::Prime::Util::PrimeArray';
{
my @plist;
for my $n (0..9) { push @plist, $primes[$n]; }
is_deeply(\@plist, primes(nth_prime(10)), "PrimeArray for index loop");
}
{
my @plist;
for my $p (@primes) { last if $p > 79; push @plist, $p; }
is_deeply(\@plist, primes(79), "PrimeArray for primes loop");
}
{
my @plist;
is_deeply([@primes[0..49]], primes(nth_prime(50)), "PrimeArray array slice");
}
SKIP: {
skip "hash each requires 5.12 or newer", 1 if $] < 5.012;
my @plist;
while ( my($index,$value) = each @primes ) {
last if $value > 147;
push @plist, $value;
}
is_deeply(\@plist, primes(147), "PrimeArray each primes loop");
}
{
my @plist;
while ((my $p = shift @primes) < 250) { push @plist, $p; }
is_deeply(\@plist, primes(250), "PrimeArray shift");
unshift @primes, ~0; # put primes back.
is($primes[0], 2, "unshift puts it back");
}
##############################################################################
sub cmp_closeto {
my $got = shift;
my $expect = shift;
my $tolerance = shift;
my $message = shift;
my $error = sprintf("%g", abs($got - $expect) / $expect);
my $errorpr = sprintf "%.2g", $error;
cmp_ok( $error, '<=', $tolerance, "$message ($errorpr)");
}
|