File: 34-random.t

package info (click to toggle)
libmath-prime-util-perl 0.73-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,796 kB
  • sloc: perl: 24,676; ansic: 11,471; makefile: 26; python: 24
file content (244 lines) | stat: -rw-r--r-- 7,353 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/env perl
use strict;
use warnings;

use Test::More;
use Math::Prime::Util qw/irand irand64 drand urandomb urandomm
                         random_bytes entropy_bytes
                         srand csrand
                         mulmod addmod vecmin vecmax vecall/;

my $use64 = (~0 > 4294967295);
my $extra = defined $ENV{EXTENDED_TESTING} && $ENV{EXTENDED_TESTING};
my $maxbits = $use64 ? 64 : 32;

my $samples = $extra ? 100000 :  10000;

plan tests => 1
            + 2
            + 2
            + 2
            + 5  # drand range
            + 4  # identify rng and test srand/csrand
            + 4  # 0 / undef arguments to urandom*
            + 1  # urandomb
            + 3  # urandomm
            + 4  # entropy_bytes
            + 0;

########

ok( Math::Prime::Util::_is_csprng_well_seeded(), "CSPRNG is being seeded properly" );

########

{
  my @s = map { irand } 1 .. $samples;
  is( scalar(grep { $_ > 4294967295 } @s), 0, "irand values are 32-bit" );
  is( scalar(grep { $_ != int($_) } @s), 0, "irand values are integers" );
}

########

SKIP: {
  skip "Skipping irand64 on 32-bit Perl", 2 if !$use64;
  my $bits_on  = 0;
  my $bits_off = 0;
  my $iter = 0;
  for (1 .. 6400) {
    $iter++;
    my $v = irand64;
    $bits_on |= $v;
    $bits_off |= (~$v);
    last if ~$bits_on == 0 && ~$bits_off == 0;
  }
  is( ~$bits_on,  0, "irand64 all bits on in $iter iterations" );
  is( ~$bits_off, 0, "irand64 all bits off in $iter iterations" );
}

########

# This is really brute force, but it doesn't take too long.
{
  my $mask = 0;
  my $v;
  for (1..1024) {
    $v = drand;
    last if $v >= 1;
    next if $v < .5;
    for my $b (0..127) {
      last unless $v;
      $v *= 2;
      if ($v >= 1) {
        $mask |= (1 << $b);
        $v -= 1;
      }
    }
  }
  ok($v < 1, "drand values between 0 and 1-eps");
  my $k = 0; while ($mask) { $k++; $mask >>= 1; }
  # Assuming drand is working properly:
  #   k = 24   NV is float
  #   k = 53   NV is double
  #   k = 64   NV is long double
  # If we used drand48 we'd get 48 with double or long double.
  ok($k >= 21, "drand supplies at least 21 bits (got $k)");
}

sub check_float_range {
  my($name, $lo, $hi, $v) = @_;
  if ($lo <= $hi) {
    ok( vecall(sub{ $_ >= $lo && $_ < $hi },@$v), "$name: all in range [$lo,$hi)" );
  } else {
    ok( vecall(sub{ $_ >= $hi && $_ < $lo },@$v), "$name: all in range ($hi,$lo]" );
  }
}
my $num = $extra ? 1000 : 100;
check_float_range('drand(10)',0,10,[map{ drand(10) } 1..$num]);
check_float_range('drand()',0,1,[map{ drand() } 1..$num]);
check_float_range('drand(-10)',0,-10,[map{ drand(-10) } 1..$num]);
check_float_range('drand(0)',0,1,[map{ drand(0) } 1..$num]);
{
  # Skip warnings these give, worry about the behavior
  no warnings;
  check_float_range('drand(undef)',0,1,[map{ drand(undef) } 1..$num]);
}
# We can't easily supress the warning here, but we'd like to check the
# result.  Math::Random::Secure fails this, for instance.
#check_float_range('drand("foo")',0,1,[map{ drand("foo") } 1..$num]);

########

my $core_rand = "not drand48";
if (1) {
  my @r = map { CORE::rand() } 0..8;
  if (try_lcg(25214903917,11,2**48,@r)) {
    $core_rand = "drand48 (yech)";
  } elsif (try_16bit(@r)) {
    $core_rand = "16-bit (ack)";
  }
}

sub try_lcg {
  my($a,$c,$m,@r) = @_;
  @r = map { int($m * $_) } @r;
  my @g = ($r[0]);
  $g[$_] = addmod(mulmod($a,$g[$_-1],$m),$c,$m) for 1..$#r;
  for (1..$#r) {
    return unless $r[$_] == $g[$_];
  }
  1;
}
# We could try to predict Windows truncated LCG:
#   http://crypto.stackexchange.com/questions/10608/how-to-attack-a-fixed-lcg-with-partial-output

sub try_16bit {
  my(@r) = @_;

  for my $r (@r) {
    my $rem = $r - int(32768*$r);
    return if $rem > 1e-6;
  }
  for my $r (map { CORE::rand() } 1..120) {
    my $rem = $r - int(32768*$r);
    return if $rem > 1e-6;
  }
  1;
}

########

# Quick check to identify the RNG being used.  Should be ChaCha20.
srand(42);
my $rb42 = irand();
my $csprng = 'something I do not know';
if    ($rb42 ==  445265827) { $csprng = 'ChaCha20'; }
elsif ($rb42 == 3626765506) { $csprng = 'ChaCha12'; }
elsif ($rb42 ==  266717191) { $csprng = 'ChaCha8'; }
elsif ($rb42 == 4274346485) { $csprng = 'ISAAC'; }
elsif ($rb42 == 3197710526) { $csprng = 'drand48'; }
elsif ($rb42 == 2209484588) { $csprng = 'Math::Random::Xorshift'; }
elsif ($rb42 == 1608637542) { $csprng = 'Math::Random::MT'; }
elsif ($rb42 == 2746317213) { $csprng = 'Math::Random::MT::Auto (32)'; }
elsif ($rb42 == 6909045637428952499) { $csprng = 'Math::Random::MTwist (64)'; }
elsif (sprintf("%.1lf",$rb42) eq '6909045637428952064.0') { $csprng = 'Math::Random::MTwist (32)'; }
elsif ($rb42 == 9507361240820437267) { $csprng = 'Math::Random::MT::Auto (64)'; }
diag "CORE::rand: $core_rand. Our PRNG: $csprng";

SKIP: {
  if ($csprng eq 'ChaCha20') {
    srand(15);
    is(unpack("H8",random_bytes(4)), "546d6108", "random_bytes after srand");
    csrand("BLAKEGrostlJHKeccakSkein--RijndaelSerpentTwofishRC6MARS");
    is(unpack("H14",random_bytes(7)), "b302e671601bce", "random_bytes after manual seed");
    is(irand(), 88564645, "irand after seed");
    my $d = drand();  my $dexp = 0.0459118340827543;
    ok($d > $dexp-1e-6 && $d < $dexp+1e-6,"drand after seed $d ~ $dexp");
  } elsif ($csprng eq 'ISAAC') {
    srand(15);
    is(unpack("H8",random_bytes(4)), "36cd2d21", "random_bytes after srand");
    csrand("BLAKEGrostlJHKeccakSkein--RijndaelSerpentTwofishRC6MARS");
    is(unpack("H14",random_bytes(7)), "a0644ad1e00324", "random_bytes after manual seed");
    is(irand(), 2526495644, "irand after seed");
    my $d = drand();  my $dexp = 0.490707771279301221;
    ok($d > $dexp-1e-6 && $d < $dexp+1e-6,"drand after seed $d ~ $dexp");
  } else {
    skip "Unknown random number generator!  Skipping deterministic tests.",4;
  }
}

srand;

#######

is(random_bytes(0),'',"random_bytes(0) returns empty string");
is(urandomb(0),0,"urandomb(0) returns 0");
is(urandomm(0),0,"urandomm(0) returns 0");
is(urandomm(1),0,"urandomm(1) returns 0");

#######

{
  my @failb;
  for my $bits (1..$maxbits) {
    my $lim = (1<<($bits-1)) + ((1<<($bits-1))-1);
    my $r = urandomb($bits);
    push @failb, $bits unless !ref($r) && $r <= $lim;
  }
  is_deeply(\@failb, [], "urandomb returns native int within range for 1..$maxbits");
}

#######

{
  my @failm;
  for my $m (1..50) {
    my $r = urandomm($m);
    push @failm, $m unless !ref($r) && $r < $m;
  }
  is_deeply(\@failm, [], "urandomm returns native int within range for 1..50");
}

{
  my %dv;
  for my $t (1..10000) {
    $dv{urandomm(10)}++;
    last if $t > 100 && scalar(keys(%dv)) >= 10;
  }
  my @k = sort { $a<=>$b} keys(%dv);
  is(scalar(@k), 10, "urandomm(10) generated 10 distinct values");
  ok( vecmin(@k) == 0 && vecmax(@k) == 9, "urandomm(10) values between 0 and 9 (@k)" );
}

#######

# If the functions work, these tests fail with chance less than 2^-128.
my $ebytes = 17;
my $eb1 = entropy_bytes($ebytes);
my $eb2 = entropy_bytes($ebytes);
is(length($eb1), $ebytes, "entropy_bytes gave us the right number of bytes");
$eb1 = unpack("H*",$eb1);
$eb2 = unpack("H*",$eb2);
isnt($eb1, '00' x $ebytes, "entropy_bytes didn't return all zeros once");
isnt($eb2, '00' x $ebytes, "entropy_bytes didn't return all zeros twice");
isnt($eb1, $eb2, "entropy_bytes returned two different binary strings");