1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
#!/usr/bin/env perl
use strict;
use warnings;
use Test::More;
use Math::Prime::Util qw/irand irand64 drand urandomb urandomm
random_bytes entropy_bytes
srand csrand
mulmod addmod vecmin vecmax vecall/;
my $use64 = (~0 > 4294967295);
my $extra = defined $ENV{EXTENDED_TESTING} && $ENV{EXTENDED_TESTING};
my $maxbits = $use64 ? 64 : 32;
my $samples = $extra ? 100000 : 10000;
plan tests => 1
+ 2
+ 2
+ 2
+ 5 # drand range
+ 4 # identify rng and test srand/csrand
+ 4 # 0 / undef arguments to urandom*
+ 1 # urandomb
+ 3 # urandomm
+ 4 # entropy_bytes
+ 0;
########
ok( Math::Prime::Util::_is_csprng_well_seeded(), "CSPRNG is being seeded properly" );
########
{
my @s = map { irand } 1 .. $samples;
is( scalar(grep { $_ > 4294967295 } @s), 0, "irand values are 32-bit" );
is( scalar(grep { $_ != int($_) } @s), 0, "irand values are integers" );
}
########
SKIP: {
skip "Skipping irand64 on 32-bit Perl", 2 if !$use64;
my $bits_on = 0;
my $bits_off = 0;
my $iter = 0;
for (1 .. 6400) {
$iter++;
my $v = irand64;
$bits_on |= $v;
$bits_off |= (~$v);
last if ~$bits_on == 0 && ~$bits_off == 0;
}
is( ~$bits_on, 0, "irand64 all bits on in $iter iterations" );
is( ~$bits_off, 0, "irand64 all bits off in $iter iterations" );
}
########
# This is really brute force, but it doesn't take too long.
{
my $mask = 0;
my $v;
for (1..1024) {
$v = drand;
last if $v >= 1;
next if $v < .5;
for my $b (0..127) {
last unless $v;
$v *= 2;
if ($v >= 1) {
$mask |= (1 << $b);
$v -= 1;
}
}
}
ok($v < 1, "drand values between 0 and 1-eps");
my $k = 0; while ($mask) { $k++; $mask >>= 1; }
# Assuming drand is working properly:
# k = 24 NV is float
# k = 53 NV is double
# k = 64 NV is long double
# If we used drand48 we'd get 48 with double or long double.
ok($k >= 21, "drand supplies at least 21 bits (got $k)");
}
sub check_float_range {
my($name, $lo, $hi, $v) = @_;
if ($lo <= $hi) {
ok( vecall(sub{ $_ >= $lo && $_ < $hi },@$v), "$name: all in range [$lo,$hi)" );
} else {
ok( vecall(sub{ $_ >= $hi && $_ < $lo },@$v), "$name: all in range ($hi,$lo]" );
}
}
my $num = $extra ? 1000 : 100;
check_float_range('drand(10)',0,10,[map{ drand(10) } 1..$num]);
check_float_range('drand()',0,1,[map{ drand() } 1..$num]);
check_float_range('drand(-10)',0,-10,[map{ drand(-10) } 1..$num]);
check_float_range('drand(0)',0,1,[map{ drand(0) } 1..$num]);
{
# Skip warnings these give, worry about the behavior
no warnings;
check_float_range('drand(undef)',0,1,[map{ drand(undef) } 1..$num]);
}
# We can't easily supress the warning here, but we'd like to check the
# result. Math::Random::Secure fails this, for instance.
#check_float_range('drand("foo")',0,1,[map{ drand("foo") } 1..$num]);
########
my $core_rand = "not drand48";
if (1) {
my @r = map { CORE::rand() } 0..8;
if (try_lcg(25214903917,11,2**48,@r)) {
$core_rand = "drand48 (yech)";
} elsif (try_16bit(@r)) {
$core_rand = "16-bit (ack)";
}
}
sub try_lcg {
my($a,$c,$m,@r) = @_;
@r = map { int($m * $_) } @r;
my @g = ($r[0]);
$g[$_] = addmod(mulmod($a,$g[$_-1],$m),$c,$m) for 1..$#r;
for (1..$#r) {
return unless $r[$_] == $g[$_];
}
1;
}
# We could try to predict Windows truncated LCG:
# http://crypto.stackexchange.com/questions/10608/how-to-attack-a-fixed-lcg-with-partial-output
sub try_16bit {
my(@r) = @_;
for my $r (@r) {
my $rem = $r - int(32768*$r);
return if $rem > 1e-6;
}
for my $r (map { CORE::rand() } 1..120) {
my $rem = $r - int(32768*$r);
return if $rem > 1e-6;
}
1;
}
########
# Quick check to identify the RNG being used. Should be ChaCha20.
srand(42);
my $rb42 = irand();
my $csprng = 'something I do not know';
if ($rb42 == 445265827) { $csprng = 'ChaCha20'; }
elsif ($rb42 == 3626765506) { $csprng = 'ChaCha12'; }
elsif ($rb42 == 266717191) { $csprng = 'ChaCha8'; }
elsif ($rb42 == 4274346485) { $csprng = 'ISAAC'; }
elsif ($rb42 == 3197710526) { $csprng = 'drand48'; }
elsif ($rb42 == 2209484588) { $csprng = 'Math::Random::Xorshift'; }
elsif ($rb42 == 1608637542) { $csprng = 'Math::Random::MT'; }
elsif ($rb42 == 2746317213) { $csprng = 'Math::Random::MT::Auto (32)'; }
elsif ($rb42 == 6909045637428952499) { $csprng = 'Math::Random::MTwist (64)'; }
elsif (sprintf("%.1lf",$rb42) eq '6909045637428952064.0') { $csprng = 'Math::Random::MTwist (32)'; }
elsif ($rb42 == 9507361240820437267) { $csprng = 'Math::Random::MT::Auto (64)'; }
diag "CORE::rand: $core_rand. Our PRNG: $csprng";
SKIP: {
if ($csprng eq 'ChaCha20') {
srand(15);
is(unpack("H8",random_bytes(4)), "546d6108", "random_bytes after srand");
csrand("BLAKEGrostlJHKeccakSkein--RijndaelSerpentTwofishRC6MARS");
is(unpack("H14",random_bytes(7)), "b302e671601bce", "random_bytes after manual seed");
is(irand(), 88564645, "irand after seed");
my $d = drand(); my $dexp = 0.0459118340827543;
ok($d > $dexp-1e-6 && $d < $dexp+1e-6,"drand after seed $d ~ $dexp");
} elsif ($csprng eq 'ISAAC') {
srand(15);
is(unpack("H8",random_bytes(4)), "36cd2d21", "random_bytes after srand");
csrand("BLAKEGrostlJHKeccakSkein--RijndaelSerpentTwofishRC6MARS");
is(unpack("H14",random_bytes(7)), "a0644ad1e00324", "random_bytes after manual seed");
is(irand(), 2526495644, "irand after seed");
my $d = drand(); my $dexp = 0.490707771279301221;
ok($d > $dexp-1e-6 && $d < $dexp+1e-6,"drand after seed $d ~ $dexp");
} else {
skip "Unknown random number generator! Skipping deterministic tests.",4;
}
}
srand;
#######
is(random_bytes(0),'',"random_bytes(0) returns empty string");
is(urandomb(0),0,"urandomb(0) returns 0");
is(urandomm(0),0,"urandomm(0) returns 0");
is(urandomm(1),0,"urandomm(1) returns 0");
#######
{
my @failb;
for my $bits (1..$maxbits) {
my $lim = (1<<($bits-1)) + ((1<<($bits-1))-1);
my $r = urandomb($bits);
push @failb, $bits unless !ref($r) && $r <= $lim;
}
is_deeply(\@failb, [], "urandomb returns native int within range for 1..$maxbits");
}
#######
{
my @failm;
for my $m (1..50) {
my $r = urandomm($m);
push @failm, $m unless !ref($r) && $r < $m;
}
is_deeply(\@failm, [], "urandomm returns native int within range for 1..50");
}
{
my %dv;
for my $t (1..10000) {
$dv{urandomm(10)}++;
last if $t > 100 && scalar(keys(%dv)) >= 10;
}
my @k = sort { $a<=>$b} keys(%dv);
is(scalar(@k), 10, "urandomm(10) generated 10 distinct values");
ok( vecmin(@k) == 0 && vecmax(@k) == 9, "urandomm(10) values between 0 and 9 (@k)" );
}
#######
# If the functions work, these tests fail with chance less than 2^-128.
my $ebytes = 17;
my $eb1 = entropy_bytes($ebytes);
my $eb2 = entropy_bytes($ebytes);
is(length($eb1), $ebytes, "entropy_bytes gave us the right number of bytes");
$eb1 = unpack("H*",$eb1);
$eb2 = unpack("H*",$eb2);
isnt($eb1, '00' x $ebytes, "entropy_bytes didn't return all zeros once");
isnt($eb2, '00' x $ebytes, "entropy_bytes didn't return all zeros twice");
isnt($eb1, $eb2, "entropy_bytes returned two different binary strings");
|