1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#!/usr/bin/env perl
use strict;
use warnings;
use Math::Prime::Util qw/:all/;
use Time::HiRes qw(gettimeofday tv_interval);
$| = 1; # fast pipes
my $nprimes = shift || 50_000_000;
# 1. forprimes does a segmented sieve and calls us for each prime. This is
# independent of is_prime and the main sieve. So for each entry let's
# compare next_prime and prev_prime.
{
print "Using MPU forprimes to $nprimes\n";
my $start_time = [gettimeofday];
my $nextprint = 5000000;
my $n = 0;
forprimes {
die "next $n not $_" unless next_prime($n) == $_;
die "prev $n" unless $n == 0 || prev_prime($_) == $n;
$n = $_;
if ($n > $nextprint) { print "$n.."; $nextprint += 5000000; }
} $nprimes;
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*prime_count($nprimes));
printf "Success using forprimes to $nprimes. %6.2f uSec/call\n", $micro_per_call;
}
print "\n";
# 2. Just like before, but now we'll call prime_precalc first. This makes the
# prev_prime and next_prime functions really fast since they just look in
# the cached sieve.
{
print "Using MPU forprimes to $nprimes with prime_precalc\n";
my $start_time = [gettimeofday];
prime_precalc($nprimes);
my $nextprint = 5000000;
my $n = 0;
forprimes {
die "next $n not $_" unless next_prime($n) == $_;
die "prev $n" unless $n==0 || prev_prime($_) == $n;
$n = $_;
if ($n > $nextprint) { print "$n.."; $nextprint += 5000000; }
} $nprimes;
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*prime_count($nprimes));
printf "Success using forprimes/precalc to $nprimes. %6.2f uSec/call\n", $micro_per_call;
}
print "\n\n";
# Now do some more comparative timing.
my @pr = @{primes($nprimes)};
my $numpr = scalar @pr;
prime_memfree();
{
print "MPU forprimes...";
my $start_time = [gettimeofday];
my $i = 0;
forprimes {
die "next $_ not ", $pr[$i-1] unless $pr[$i++] == $_;
} $nprimes;
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (1*prime_count($nprimes));
printf "%8.2f uSec/call\n", $micro_per_call;
prime_memfree();
}
{
print "MPU prev/next...";
my $start_time = [gettimeofday];
my $n = 0;
foreach my $p (@pr) {
my $next = next_prime($n);
my $prev = prev_prime($p);
die "MPU next($n) is not $p\n" unless $next == $p;
die "MPU prev($p) is not $n\n" unless $n==0 || $prev == $n;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*$numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
}
{
print "MPU precalc prev/next...";
my $start_time = [gettimeofday];
prime_precalc($pr[-1]+1000);
my $n = 0;
foreach my $p (@pr) {
my $next = next_prime($n);
my $prev = prev_prime($p);
die "MPU next($n) is not $p\n" unless $next == $p;
die "MPU prev($p) is not $n\n" unless $n==0 || $prev == $n;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*$numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
prime_memfree();
}
# Math::Prime::FastSieve
if (eval { require Math::Prime::FastSieve; Math::Prime::FastSieve->import(); Inline->init(); 1; }) {
print "Math::Prime::FastSieve......";
my $start_time = [gettimeofday];
my $sieve = Math::Prime::FastSieve::Sieve->new( $pr[-1]+1000 );
my $n = 0;
foreach my $p (@pr) {
my $next = $sieve->nearest_ge($n+1);
my $prev = $sieve->nearest_le($p-1);
die "MPFS next($n) is not $p\n" unless $next == $p;
die "MPFS prev($p) is not $n\n" unless $n==0 || $prev == $n;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*$numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
} else {
print "Math::Prime::FastSieve not installed. Skipping\n";
}
# Math::Pari.
if (eval { require Math::Pari; 1; }) {
print "Math::Pari prec/next...";
my @pari_pr = grep { $_ < 5_000_000 } @pr;
my $pari_numpr = scalar @pari_pr;
my $start_time = [gettimeofday];
my $n = 0;
foreach my $p (@pari_pr) {
my $next = Math::Pari::nextprime($n+1);
my $prev = Math::Pari::precprime($p-1);
die "Pari next($n) is not $p\n" unless $next == $p;
die "Pari prec($p) is not $n\n" unless $n==0 || $prev == $n;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*$pari_numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
} else {
print "Math::Pari not installed. Skipping\n";
}
# Math::NumSeq::Primes
if (eval { require Math::NumSeq::Primes; 1; }) {
print "Math::NumSeq::Primes next...";
my $start_time = [gettimeofday];
my $seq = Math::NumSeq::Primes->new();
my $n = 0;
foreach my $p (@pr) {
my $next = ($seq->next)[1];
die "MNP next($n) is not $p\n" unless $next == $p;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (1*$numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
} else {
print "Math::NumSeq::Primes not installed. Skipping\n";
}
# Math::Primality
if (eval { require Math::Primality; 1; }) {
print "Math::Primality prev/next...";
my @mp_pr = grep { $_ < 100_000 } @pr;
my $mp_numpr = scalar @mp_pr;
my $start_time = [gettimeofday];
my $n = 0;
foreach my $p (@mp_pr) {
my $next = Math::Primality::next_prime($n);
my $prev = ($p == 2) ? 0 : Math::Primality::prev_prime($p);
die "MP next($n) is not $p\n" unless $next == $p;
die "MP prev($p) is not $n\n" unless $n==0 || $prev == $n;
$n = $next;
}
my $seconds = tv_interval($start_time);
my $micro_per_call = ($seconds * 1000000) / (2*$mp_numpr);
printf "%8.2f uSec/call\n", $micro_per_call;
} else {
print "Math::Primality not installed. Skipping\n";
}
|