1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
.\" Automatically generated by Pod::Man v1.3, Pod::Parser v1.13
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used to
.\" do unbreakable dashes and therefore won't be available. \*(C` and \*(C'
.\" expand to `' in nroff, nothing in troff, for use with C<>.
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "Round 3"
.TH Round 3 "2002-04-23" "perl v5.6.1" "User Contributed Perl Documentation"
.UC
.SH "NAME"
Math::Round \- Perl extension for rounding numbers
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& use Math::Round qw(...those desired... or :all);
.Ve
.Vb 4
\& $rounded = round($scalar);
\& @rounded = round(LIST...);
\& $rounded = nearest($target, $scalar);
\& @rounded = nearest($target, LIST...);
.Ve
.Vb 1
\& # and other functions as described below
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
\&\fBMath::Round\fR supplies functions that will round numbers in different
ways. The functions \fBround\fR and \fBnearest\fR are exported by
default; others are available as described below. \*(L"use ... qw(:all)\*(R"
exports all functions.
.SH "FUNCTIONS"
.IX Header "FUNCTIONS"
.IP "\fBround\fR \s-1LIST\s0" 2
.IX Item "round LIST"
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded
\&\*(L"to infinity\*(R"; i.e., positive values are rounded up (e.g., 2.5
becomes 3) and negative values down (e.g., \-2.5 becomes \-3).
.IP "\fBround_even\fR \s-1LIST\s0" 2
.IX Item "round_even LIST"
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest even number; e.g., 2.5 becomes 2, 3.5 becomes 4, and \-2.5
becomes \-2.
.IP "\fBround_odd\fR \s-1LIST\s0" 2
.IX Item "round_odd LIST"
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded to the
nearest odd number; e.g., 3.5 becomes 3, 4.5 becomes 5, and \-3.5
becomes \-3.
.IP "\fBround_rand\fR \s-1LIST\s0" 2
.IX Item "round_rand LIST"
Rounds the number(s) to the nearest integer. In scalar context,
returns a single value; in list context, returns a list of values.
Numbers that are halfway between two integers are rounded up or
down in a random fashion. For example, in a large number of trials,
2.5 will become 2 half the time and 3 half the time.
.IP "\fBnearest\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nearest TARGET, LIST"
Rounds the number(s) to the nearest multiple of the target value.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to infinity. For example:
.Sp
.Vb 6
\& nearest(10, 44) yields 40
\& nearest(10, 46) 50
\& nearest(10, 45) 50
\& nearest(25, 328) 325
\& nearest(.1, 4.567) 4.6
\& nearest(10, -45) -50
.Ve
.IP "\fBnearest_ceil\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nearest_ceil TARGET, LIST"
Rounds the number(s) to the nearest multiple of the target value.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to the ceiling, i.e. the next
algebraically higher multiple. For example:
.Sp
.Vb 3
\& nearest_ceil(10, 44) yields 40
\& nearest_ceil(10, 45) 50
\& nearest_ceil(10, -45) -40
.Ve
.IP "\fBnearest_floor\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nearest_floor TARGET, LIST"
Rounds the number(s) to the nearest multiple of the target value.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded to the floor, i.e. the next
algebraically lower multiple. For example:
.Sp
.Vb 3
\& nearest_floor(10, 44) yields 40
\& nearest_floor(10, 45) 40
\& nearest_floor(10, -45) -50
.Ve
.IP "\fBnearest_rand\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nearest_rand TARGET, LIST"
Rounds the number(s) to the nearest multiple of the target value.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are halfway between two multiples
of the target will be rounded up or down in a random fashion.
For example, in a large number of trials, \f(CW\*(C`nearest(10, 45)\*(C'\fR will
yield 40 half the time and 50 half the time.
.IP "\fBnlowmult\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nlowmult TARGET, LIST"
Returns the next lower multiple of the number(s) in \s-1LIST\s0.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of \s-1LIST\s0 that are
algebraically lower. For example:
.Sp
.Vb 5
\& nlowmult(10, 44) yields 40
\& nlowmult(10, 46) 40
\& nlowmult(25, 328) 325
\& nlowmult(.1, 4.567) 4.5
\& nlowmult(10, -41) -50
.Ve
.IP "\fBnhimult\fR \s-1TARGET\s0, \s-1LIST\s0" 2
.IX Item "nhimult TARGET, LIST"
Returns the next higher multiple of the number(s) in \s-1LIST\s0.
\&\s-1TARGET\s0 must be positive.
In scalar context, returns a single value; in list context, returns
a list of values. Numbers that are between two multiples of the
target will be adjusted to the nearest multiples of \s-1LIST\s0 that are
algebraically higher. For example:
.Sp
.Vb 5
\& nhimult(10, 44) yields 50
\& nhimult(10, 46) 50
\& nhimult(25, 328) 350
\& nhimult(.1, 4.512) 4.6
\& nhimult(10, -49) -40
.Ve
.SH "STANDARD FLOATING-POINT DISCLAIMER"
.IX Header "STANDARD FLOATING-POINT DISCLAIMER"
Floating-point numbers are, of course, a rational subset of the real
numbers, so calculations with them are not always exact. In order to
avoid surprises because of this, these routines use a value for
one-half that is very slightly larger than 0.5. Nevertheless,
if the numbers to be rounded are stored as floating\-point, they will
be subject, as usual, to the mercies of your hardware, your C
compiler, etc. Thus, numbers that are supposed to be halfway between
two others may be stored in a slightly different way and thus behave
surprisingly.
.SH "AUTHOR"
.IX Header "AUTHOR"
Math::Round was written by Geoffrey Rommel <GROMMEL@cpan.org>
in October 2000.
|