1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
#!perl
use strict;
use warnings;
use Test::More tests => 32;
BEGIN {
use_ok('Math::Symbolic');
use_ok('Math::Symbolic::VectorCalculus');
}
if ($ENV{TEST_YAPP_PARSER}) {
require Math::Symbolic::Parser::Yapp;
$Math::Symbolic::Parser = Math::Symbolic::Parser::Yapp->new();
}
use Math::Symbolic::ExportConstants qw/:all/;
my $var = Math::Symbolic::Variable->new();
ok( ref($var) eq 'Math::Symbolic::Variable', 'Variable prototype' );
my $a = $var->new( 'a' => 2 );
ok(
ref($a) eq 'Math::Symbolic::Variable'
&& $a->value() == 2
&& $a->name() eq 'a',
'Variable creation, value(), and name()'
);
my $b = $var->new( 'b' => 3 );
my $c = $var->new( 'c' => 4 );
print "Vars: a="
. $a->value() . " b="
. $b->value() . " c="
. $c->value()
. " (Values are optional)\n\n";
my $op = Math::Symbolic::Operator->new();
ok( ref($op) eq 'Math::Symbolic::Operator', 'Operator prototype' );
my $add1 = $op->new( '+', $a, $c );
ok( ref($add1) eq 'Math::Symbolic::Operator' && $add1->type() == B_SUM,
'Operator creation, type()' );
my $mult1 = $op->new( '*', $a, $b );
my $div1 = $op->new( '/', $add1, $mult1 );
print "Expression: (a+c)/(a*b)\n\n";
print "prefix notation and evaluation:\n";
eval <<'HERE';
print $div1->to_string('prefix') . " = " . $div1->value() . "\n\n";
HERE
ok( !$@, 'to_string("prefix") did not complain' );
print "Now, we derive this partially to a: (prefix again)\n";
my $n_tree;
eval <<'HERE';
$n_tree = $op->new( {
type => U_P_DERIVATIVE,
operands => [$div1, $a],
} );
HERE
ok( !$@, 'long-form partial derivative did not complain' );
ok(
ref($n_tree) eq 'Math::Symbolic::Operator'
&& $n_tree->type() == U_P_DERIVATIVE,
,
'long-form partial derivative returned derivative'
);
print $n_tree->to_string('prefix') . " = " . $n_tree->value() . "\n\n";
print "Now, we apply the derivative to the term: (infix)\n";
$@ = undef;
my $derived;
eval <<'HERE';
$derived = $n_tree->apply_derivatives();
HERE
ok( !$@, 'apply_derivatives() did not complain' );
print "$derived = " . $derived->value() . "\n\n";
print "Finally, we simplify the derived term as much as possible:\n";
$@ = undef;
my $simplified;
eval <<'HERE';
$simplified = $derived->simplify();
HERE
ok( !$@&&defined($simplified), 'simplify() did not complain' );
print "$simplified = " . $derived->value() . "\n\n";
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 0, 0 ) == 1,
'binomial_coeff(0, 0)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 1, 1 ) == 1,
'binomial_coeff(1, 1)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 4, 2 ) == 6,
'binomial_coeff(4, 2)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 5, 2 ) == 10,
'binomial_coeff(5, 2)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 5, 4 ) == 5,
'binomial_coeff(5, 4)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 2, 4 ) == 0,
'binomial_coeff(2, 4)' );
ok( Math::Symbolic::AuxFunctions::binomial_coeff( 2, -1 ) == 0,
'binomial_coeff(2, -1)' );
ok( !defined( Math::Symbolic::AuxFunctions::bell_number(-1) ),
'bell_number(-1)' );
my @bell_numbers = ( 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 );
ok( Math::Symbolic::AuxFunctions::bell_number($_) == $bell_numbers[$_],
"bell_number($_)" )
for 0 .. $#bell_numbers;
my $special_constant = Math::Symbolic::Constant->zero();
ok(
(
ref $special_constant eq 'Math::Symbolic::Constant'
and $special_constant->{special} eq 'zero'
),
"Special attribute on constants set correctly."
);
$special_constant->value(1);
ok(
(
not defined $special_constant->{special}
or $special_constant->{special} ne 'zero'
),
"Special attribute on constans unset correctly on change of value."
);
|