File: 12overload.t

package info (click to toggle)
libmath-symbolic-perl 0.613-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,268 kB
  • sloc: perl: 12,638; makefile: 9
file content (196 lines) | stat: -rw-r--r-- 4,689 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!perl
use strict;
use warnings;

use Test::More tests => 34;

BEGIN {
	use_ok('Math::Symbolic');
}

if ($ENV{TEST_YAPP_PARSER}) {
	require Math::Symbolic::Parser::Yapp;
	$Math::Symbolic::Parser = Math::Symbolic::Parser::Yapp->new();
}

use Math::Symbolic::ExportConstants qw/:all/;

my $var = Math::Symbolic::Variable->new();
my $a   = $var->new( 'x' => 10 );

print "Vars: x=" . $a->value() . " (Value is optional)\n\n";

print "Expression: x * 2 + 1, x / 2 - 1, x * (2+1)\n\n";

my ( $first, $second, $third );

$@ = undef;
eval <<'HERE';
$first  = $a * 2 + 1;    # x*2 + 1
HERE
ok( !$@, 'overloaded multiplication and addition' );

my $str = $first->to_string();
$str =~ s/\s+//g;
ok(
    $str eq '(x*2)+1' || $str eq '1+(2*x)',
    'Correct result of overloaded *,+',
);

ok( $first->value() == 21, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$second  = $a / 2 - 1;    # x*2 + 1
HERE
ok( !$@, 'overloaded division and subtraction' );

$str = $second->to_string();
$str =~ s/\s+//g;
ok( $str eq '(x/2)-1', 'Correct result of overloaded /,-', );

ok( $second->value() == 4, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$third = $a * "2 + 1";  # x*3
HERE
ok( !$@, 'overloaded multiplication involving auto-parsing' );

$str = $third->to_string();
$str =~ s/\s+//g;
ok(
    $str      eq 'x*(1+2)'
      || $str eq 'x*(2+1)'
      || $str eq '(2+1)*x'
      || $str eq '(1+2)*x',
    'Correct result of overloaded * involving auto-parsing',
);

ok( $third->value() == 30, 'Result evaluates to the correct number' );

my $fourth;
$@ = undef;
eval <<'HERE';
$fourth = 2 ** ($third/$a);
HERE
ok( !$@, 'overloaded ** w/ constant recognition and M::S::Operators' );

ok( $fourth->value() == 2**3, 'Result evaluates to the correct number' );

my $fifth;
$@ = undef;
eval <<'HERE';
$fifth = $fourth ** $fourth;
HERE
ok( !$@, 'overloaded ** w/ two M::S::Operators' );

ok( $fifth->value() == 8**8, 'Result evaluates to the correct number' );

my $sixth;
$@ = undef;
eval <<'HERE';
$sixth = sqrt($third*$third);
HERE
ok( !$@, 'overloaded sqrt, * w/ M::S::Operators' );
ok( $sixth->value() == 30, 'Result evaluates to the correct number' );

my $seventh;
$@ = undef;
eval <<'HERE';
$seventh = -exp(Math::Symbolic::Constant->zero());
HERE
ok( !$@, 'overloaded unary minus, exp w/ M::S::Constant' );

ok( $seventh->value() == -1, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh = log(Math::Symbolic::Constant->one());
HERE
ok( !$@, 'overloaded log w/ M::S::Constant' );

ok( $seventh->value() == 0, 'Result evaluates to the correct number' );

ok( ( $seventh ? 0 : 1 ), 'automatic boolean conversion (Test1)' );

ok( ( $second ? 1 : 0 ), 'automatic boolean conversion (Test2)' );

$@ = undef;
eval <<'HERE';
$seventh = cos(sin(Math::Symbolic::Constant->zero()));
HERE
ok( !$@, 'overloaded sin, cos w/ M::S::Constant' );

ok( $seventh->value() == 1, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh += 2;
HERE
ok( !$@, 'overloaded += w/ M::S::Constant' );

ok( $seventh->value() == 3, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh -= 2;
HERE
ok( !$@, 'overloaded -= w/ M::S::Constant' );

ok( $seventh->value() == 1, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh *= 2;
HERE
ok( !$@, 'overloaded *= w/ M::S::Constant' );

ok( $seventh->value() == 2, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh /= 2;
HERE
ok( !$@, 'overloaded /= w/ M::S::Constant' );

ok( $seventh->value() == 1, 'Result evaluates to the correct number' );

$@ = undef;
eval <<'HERE';
$seventh += 2;
$seventh **= 2;
HERE
ok( !$@, 'overloaded **= w/ M::S::Constant' );

ok( $seventh->value() == 9, 'Result evaluates to the correct number' );

print "prefix notation and evaluation:\n";
print $first->to_string('prefix') . " = " . $first->value() . "\n\n";
print $second->to_string('prefix') . " = " . $second->value() . "\n\n";

print "Now, we derive this partially to x: (prefix again)\n";

my $n_tree = Math::Symbolic::Operator->new(
    {
        type     => U_P_DERIVATIVE,
        operands => [ $first, $a ],
    }
);
my $n_tree2 = Math::Symbolic::Operator->new(
    {
        type     => U_P_DERIVATIVE,
        operands => [ $second, $a ],
    }
);
my $n_tree3 = Math::Symbolic::Operator->new(
    {
        type     => U_P_DERIVATIVE,
        operands => [ $third, $a ],
    }
);

print $n_tree->to_string('prefix') . " = " . $n_tree->value() . "\n\n";
print $n_tree2->to_string('prefix') . " = " . $n_tree2->value() . "\n\n";
print $n_tree3->to_string('prefix') . " = " . $n_tree3->value() . "\n\n";