File: Utils.pm

package info (click to toggle)
libmath-utils-perl 1.14-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 252 kB
  • sloc: perl: 937; makefile: 8
file content (1068 lines) | stat: -rwxr-xr-x 23,984 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
package Math::Utils;

use 5.010001;
use strict;
use warnings;
use Carp;

use Exporter;
our @ISA = qw(Exporter);

our %EXPORT_TAGS = (
	compare => [ qw(generate_fltcmp generate_relational) ],
	fortran => [ qw(log10 copysign) ],
	utility => [ qw(log10 log2 copysign flipsign
			sign floor ceil fsum
			gcd hcf lcm moduli softmax
			uniform_scaling uniform_01scaling) ],
	polynomial => [ qw(pl_evaluate pl_dxevaluate pl_translate
			pl_add pl_sub pl_div pl_mult
			pl_derivative pl_antiderivative) ],
);

our @EXPORT_OK = (
	@{ $EXPORT_TAGS{compare} },
	@{ $EXPORT_TAGS{utility} },
	@{ $EXPORT_TAGS{polynomial} },
);

#
# Add an :all tag automatically.
#
$EXPORT_TAGS{all} = [@EXPORT_OK];

our $VERSION = '1.14';

=head1 NAME

Math::Utils - Useful mathematical functions not in Perl.

=head1 SYNOPSIS

    use Math::Utils qw(:utility);    # Useful functions

    #
    # Base 10 and base 2 logarithms.
    #
    $scale = log10($pagewidth);
    $bits = log2(1/$probability);

    #
    # Two uses of sign().
    #
    $d = sign($z - $w);

    @ternaries = sign(@coefficients);

    #
    # Using copysign(), $dist will be doubled negative or
    # positive $offest, depending upon whether ($from - $to)
    # is positive or negative.
    #
    my $dist = copysign(2 * $offset, $from - $to);

    #
    # Change increment direction if goal is negative.
    #
    $incr = flipsign($incr, $goal);

    #
    # floor() and ceil() functions.
    #
    $point = floor($goal);
    $limit = ceil($goal);

    #
    # gcd() and lcm() functions.
    #
    $divisor = gcd(@multipliers);
    $numerator = lcm(@multipliers);

    #
    # Safer summation.
    #
    $tot = fsum(@inputs);

    #
    # The remainders of n after successive divisions of b, or
    # remainders after a set of divisions.
    #
    @rems = moduli($n, $b);

or

    use Math::Utils qw(:compare);    # Make comparison functions with tolerance.

    #
    # Floating point comparison function.
    #
    my $fltcmp = generate_fltmcp(1.0e-7);

    if (&$fltcmp($x0, $x1) < 0)
    {
        add_left($data);
    }
    else
    {
        add_right($data);
    }

    #
    # Or we can create single-operation comparison functions.
    #
    # Here we are only interested in the greater than and less than
    # comparison functions.
    #
    my(undef, undef,
        $approx_gt, undef, $approx_lt) = generate_relational(1.5e-5);

or

    use Math::Utils qw(:polynomial);    # Basic polynomial ops

    #
    # Coefficient lists run from 0th degree upward, left to right.
    #
    my @c1 = (1, 3, 5, 7, 11, 13, 17, 19);
    my @c2 = (1, 3, 1, 7);
    my @c3 = (1, -1, 1)

    my $c_ref = pl_mult(\@c1, \@c2);
    $c_ref = pl_add($c_ref, \@c3);

=head1 EXPORT

All functions can be exported by name, or by using the tag that they're
grouped under.

=cut

=head2 utility tag

Useful, general-purpose functions, including those that originated in
FORTRAN and were implemented in Perl in the module L<Math::Fortran>,
by J. A. R. Williams.

There is a name change -- copysign() was known as sign()
in Math::Fortran.

=head3 log10()

    $xlog10 = log10($x);
    @xlog10 = log10(@x);

Return the log base ten of the argument. A list form of the function
is also provided.

=cut

sub log10
{
	my $log10 = log(10);
	return wantarray? map(log($_)/$log10, @_): log($_[0])/$log10;
}

=head3 log2()

    $xlog2 = log2($x);
    @xlog2 = log2(@x);

Return the log base two of the argument. A list form of the function
is also provided.

=cut

sub log2
{
	my $log2 = log(2);
	return wantarray? map(log($_)/$log2, @_): log($_[0])/$log2;
}

=head3 sign()

    $s = sign($x);
    @valsigns = sign(@values);

Returns -1 if the argument is negative, 0 if the argument is zero, and 1
if the argument is positive.

In list form it applies the same operation to each member of the list.

=cut

sub sign
{
	return wantarray? map{($_ < 0)? -1: (($_ > 0)? 1: 0)} @_:
		($_[0] < 0)? -1: (($_[0] > 0)? 1: 0);
}

=head3 copysign()

    $ms = copysign($m, $n);
    $s = copysign($x);

Take the sign of the second argument and apply it to the first. Zero
is considered part of the positive signs.

    copysign(-5, 0);  # Returns 5.
    copysign(-5, 7);  # Returns 5.
    copysign(-5, -7); # Returns -5.
    copysign(5, -7);  # Returns -5.

If there is only one argument, return -1 if the argument is negative,
otherwise return 1. For example, copysign(1, -4) and copysign(-4) both
return -1.

=cut

sub copysign
{
	return ($_[1] < 0)? -abs($_[0]): abs($_[0]) if (@_ == 2);
	return ($_[0] < 0)? -1: 1;
}

=head3 flipsign()

    $ms = flipsign($m, $n);

Multiply the signs of the arguments and apply it to the first. As
with copysign(), zero is considered part of the positive signs.

Effectively this means change the sign of the first argument if
the second argument is negative.

    flipsign(-5, 0);  # Returns -5.
    flipsign(-5, 7);  # Returns -5.
    flipsign(-5, -7); # Returns 5.
    flipsign(5, -7);  # Returns -5.

If for some reason flipsign() is called with a single argument,
that argument is returned unchanged.

=cut

sub flipsign
{
	return -$_[0] if (@_ == 2 and $_[1] < 0);
	return $_[0];
}

=head3 floor()

    $b = floor($a/2);

    @ilist = floor(@numbers);

Returns the greatest integer less than or equal to its argument.
A list form of the function also exists.

    floor(1.5, 1.87, 1);        # Returns (1, 1, 1)
    floor(-1.5, -1.87, -1);     # Returns (-2, -2, -1)

=cut

sub floor
{
	return wantarray? map(($_ < 0 and int($_) != $_)? int($_ - 1): int($_), @_):
		($_[0] < 0 and int($_[0]) != $_[0])? int($_[0] - 1): int($_[0]);
}

=head3 ceil()

    $b = ceil($a/2);

    @ilist = ceil(@numbers);

Returns the lowest integer greater than or equal to its argument.
A list form of the function also exists.

    ceil(1.5, 1.87, 1);        # Returns (2, 2, 1)
    ceil(-1.5, -1.87, -1);     # Returns (-1, -1, -1)

=cut

sub ceil
{
	return wantarray? map(($_ > 0 and int($_) != $_)? int($_ + 1): int($_), @_):
		($_[0] > 0 and int($_[0]) != $_[0])? int($_[0] + 1): int($_[0]);
}

=head3 fsum()

Return a sum of the values in the list, done in a manner to avoid rounding
and cancellation errors. Currently this is done via
L<Kahan's summation algorithm|https://en.wikipedia.org/wiki/Kahan_summation_algorithm>.

=cut

sub fsum
{
	my($sum, $c) = (0, 0);

	for my $v (@_)
	{
		my $y = $v - $c;
		my $t = $sum + $y;

		#
		# If we lost low-order bits of $y (usually because
		# $sum is much larger than $y), save them in $c
		# for the next loop iteration.
		#
		$c = ($t - $sum) - $y;
		$sum = $t;
	}

	return $sum;
}

=head3 softmax()

Return a list of values as probabilities.

The function takes the list, and creates a new list by raising I<e> to
each value. The function then returns each value divided by the sum of
the list. Each value in the new list is now a set of probabilities that
sum to 1.0.

The summation is performed using I<fsum()> above.

See L<Softmax function|https://en.wikipedia.org/wiki/Softmax_function> at
Wikipedia.

=cut

sub softmax
{
	my @nlist = @_;

	#
	# There's a nice trick where you find the maximum value in
	# the list, and subtract it from every number in the list.
	# This renders everything zero or negative, which makes
	# exponentation safe from overflow, but doesn't affect
	# the end result.
	#
	# If we weren't using this trick, then we'd start with
	# the 'my @explist' line, feeding it '@_' instead.
	#
	my $listmax = $nlist[0];
	for (@nlist[1 .. $#nlist])
	{
		$listmax = $_ if ($_ > $listmax);
	}
	@nlist = map{$_ - $listmax} @nlist if ($listmax > 0);

	my @explist = map{exp($_)} @nlist;
	my $sum = fsum(@explist);
	return map{$_/$sum} @explist;
}

=head3 uniform_scaling

=head3 uniform_01scaling

Uniformly, or linearly, scale a number either from one range to another range
(C<uniform_scaling()>), or to a default range of [0 .. 1]
(C<uniform_01scaling()>).

    @v = uniform_scaling(\@original_range, \@new_range, @oldvalues);

For example, these two lines are equivalent, and both return 0:

    $y = uniform_scaling([50, 100], [0, 1], 50);

    $y = uniform_01scaling([50, 100], 50);

They may also be called with a list or array of numbers:

    @cm_measures = uniform_scaling([0, 10000], [0, 25400], @in_measures);

    @melt_centigrade = uniform_scaling([0, 2000], [-273.15, 1726.85], \@melting_points);

A number that is outside the original bounds will be proportionally changed
to be outside of the new bounds, but then again having a number outside the
original bounds is probably an error that should be checked before calling
this function.

L<https://stats.stackexchange.com/q/281164>

=cut

sub uniform_scaling
{
	my @fromrange = @{$_[0]};
	my @torange = @{$_[1]};

	#
	# The remaining parameters are the numbers to rescale.
	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @xvalues = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} @_[2 .. $#_];

	return map{($_ - $fromrange[0])/($fromrange[1] - $fromrange[0]) * ($torange[1] - $torange[0]) + $torange[0]} @xvalues;
}

sub uniform_01scaling
{
	my @fromrange = @{$_[0]};

	#
	# The remaining parameters are the numbers to rescale.
	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @xvalues = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} @_[1 .. $#_];

	return map{($_ - $fromrange[0]) / ($fromrange[1] - $fromrange[0])} @xvalues;
}

=head3 gcd

=head3 hcf

Return the greatest common divisor (also known as the highest
common factor) of a list of integers. These are simply synomyms:

    $factor = gcd(@numbers);
    $factor = hcf(@numbers);

=cut

sub gcd
{
	use integer;
	my($x, $y, $r);

	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @values = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} grep {$_} @_;

	return 0 if (scalar @values == 0);

	$y = abs pop @values;
	$x = abs pop @values;

	while (1)
	{
		($x, $y) = ($y, $x) if ($y < $x);

		$r = $y % $x;
		$y = $x;

		if ($r == 0)
		{
			return $x if (scalar @values == 0);
			$r = abs pop @values;
		}

		$x = $r;
	}

	return $y;
}

#
#sub bgcd
#{
#	my($x, $y) = map(abs($_), @_);
#
#	return $y if ($x == 0);
#	return $x if ($y == 0);
#
#	my $lsbx = low_set_bit($x);
#	my $lsby = low_set_bit($y);
#	$x >>= $lsbx;
#	$y >>= $lsby;
#
#	while ($x != $y)
#	{
#		($x, $y) = ($y, $x) if ($x > $y);
#
#		$y -= $x;
#		$y >>= low_set_bit($y);
#	}
#	return ($x << (($lsbx > $lsby)? $lsby: $lsbx));
#}

*hcf = \&gcd;

=head3 lcm

Return the least common multiple of a list of integers.

    $factor = lcm(@values);

=cut

sub lcm
{
	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @values = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} @_;

	my $x = pop @values;

	for my $m (@values)
	{
		$x *= $m/gcd($m, $x);
	}

	return abs $x;
}

=head3 moduli()

Return the moduli of an integer after repeated divisions. The remainders are
returned in a list from left to right.

    @digits = moduli(1899, 10);   # Returns (9, 9, 8, 1)
    @rems = moduli(29, 3);        # Returns (2, 0, 0, 1)

=cut

sub moduli
{
	my($n, $b) = (abs($_[0]), abs($_[1]));
	my @mlist;
	use integer;

	for (;;)
	{
		push @mlist, $n % $b;
		$n /= $b;
		return @mlist if ($n == 0);
	}
	return ();
}

=head2 compare tag

Create comparison functions for floating point (non-integer) numbers.

Since exact comparisons of floating point numbers tend to be iffy,
the comparison functions use a tolerance chosen by you. You may
then use those functions from then on confident that comparisons
will be consistent.

If you do not provide a tolerance, a default tolerance of 1.49012e-8
(approximately the square root of an Intel Pentium's
L<machine epsilon|https://en.wikipedia.org/wiki/Machine_epsilon>)
will be used.

=head3 generate_fltcmp()

Returns a comparison function that will compare values using a tolerance
that you supply. The generated function will return -1 if the first
argument compares as less than the second, 0 if the two arguments
compare as equal, and 1 if the first argument compares as greater than
the second.

    my $fltcmp = generate_fltcmp(1.5e-7);

    my(@xpos) = grep {&$fltcmp($_, 0) == 1} @xvals;

=cut

my $default_tolerance = 1.49012e-8;

sub generate_fltcmp
{
	my $tol = $_[0] // $default_tolerance;

	return sub {
		my($x, $y) = @_;
		return 0 if (abs($x - $y) <= $tol);
		return -1 if ($x < $y);
		return 1;
	}
}

=head3 generate_relational()

Returns a list of comparison functions that will compare values using a
tolerance that you supply. The generated functions will be the equivalent
of the equal, not equal, greater than, greater than or equal, less than,
and less than or equal operators.

    my($eq, $ne, $gt, $ge, $lt, $le) = generate_relational(1.5e-7);

    my(@approx_5) = grep {&$eq($_, 5)} @xvals;

Of course, if you were only interested in not equal, you could use:

    my(undef, $ne) = generate_relational(1.5e-7);

    my(@not_around5) = grep {&$ne($_, 5)} @xvals;

=cut

sub generate_relational
{
	my $tol = $_[0] // $default_tolerance;

	#
	# In order: eq, ne, gt, ge, lt, le.
	#
	return (
		sub {return (abs($_[0] - $_[1]) <= $tol)? 1: 0;},	# eq
		sub {return (abs($_[0] - $_[1]) >  $tol)? 1: 0;},	# ne

		sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] > $_[1]))? 1: 0;},	# gt
		sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] > $_[1]))? 1: 0;},	# ge

		sub {return ((abs($_[0] - $_[1]) > $tol) and ($_[0] < $_[1]))? 1: 0;},	# lt
		sub {return ((abs($_[0] - $_[1]) <= $tol) or ($_[0] < $_[1]))? 1: 0;}	# le
	);
}

=head2 polynomial tag

Perform some polynomial operations on plain lists of coefficients.

    #
    # The coefficient lists are presumed to go from low order to high:
    #
    @coefficients = (1, 2, 4, 8);    # 1 + 2x + 4x**2 + 8x**3

In all functions the coeffcient list is passed by reference to the function,
and the functions that return coefficients all return references to a
coefficient list.

B<It is assumed that any leading zeros in the coefficient lists have
already been removed before calling these functions, and that any leading
zeros found in the returned lists will be handled by the caller.> This caveat
is particularly important to note in the case of C<pl_div()>.

Although these functions are convenient for simple polynomial operations,
for more advanced polynonial operations L<Math::Polynomial> is recommended.

=head3 pl_evaluate()

Returns either a y-value for a corresponding x-value, or a list of
y-values on the polynomial for a corresponding list of x-values,
using Horner's method.

    $y = pl_evaluate(\@coefficients, $x);
    @yvalues = pl_evaluate(\@coefficients, @xvalues);

    @ctemperatures = pl_evaluate([-160/9, 5/9], @ftemperatures);

The list of X values may also include X array references:

    @yvalues = pl_evaluate(\@coefficients, @xvalues, \@primes, $x, [-1, -10, -100]);

=cut

sub pl_evaluate
{
	my @coefficients = @{$_[0]};

	#
	# It could happen. Someone might type \$x instead of $x.
	#
	my @xvalues = map{(ref $_ eq "ARRAY")? @$_:
			((ref $_ eq "SCALAR")? $$_: $_)} @_[1 .. $#_];

	#
	# Move the leading coefficient off the polynomial list
	# and use it as our starting value(s).
	#
	my @results = (pop @coefficients) x scalar @xvalues;

	for my $c (reverse @coefficients)
	{
		for my $j (0..$#xvalues)
		{
			$results[$j] = $results[$j] * $xvalues[$j] + $c;
		}
	}

	return wantarray? @results: $results[0];
}

=head3 pl_dxevaluate()

    ($y, $dy, $ddy) = pl_dxevaluate(\@coefficients, $x);

Returns p(x), p'(x), and p"(x) of the polynomial for an
x-value, using Horner's method. Note that unlike C<pl_evaluate()>
above, the function can only use one x-value.

If the polynomial is a linear equation, the second derivative value
will be zero.  Similarly, if the polynomial is a simple constant,
the first derivative value will be zero.

=cut

sub pl_dxevaluate
{
	my($coef_ref, $x) = @_;
	my(@coefficients) = @$coef_ref;
	my $n = $#coefficients;
	my $val = pop @coefficients;
	my $d1val = $val * $n;
	my $d2val = 0;

	#
	# Special case for the linear eq'n (the y = constant eq'n
	# takes care of itself).
	#
	if ($n == 1)
	{
		$val = $val * $x + $coefficients[0];
	}
	elsif ($n >= 2)
	{
		my $lastn = --$n;
		$d2val = $d1val * $n;

		#
		# Loop through the coefficients, except for
		# the linear and constant terms.
		#
		for my $c (reverse @coefficients[2..$lastn])
		{
			$val = $val * $x + $c;
			$d1val = $d1val * $x + ($c *= $n--);
			$d2val = $d2val * $x + ($c * $n);
		}

		#
		# Handle the last two coefficients.
		#
		$d1val = $d1val * $x + $coefficients[1];
		$val = ($val * $x + $coefficients[1]) * $x + $coefficients[0];
	}

	return ($val, $d1val, $d2val);
}

=head3 pl_translate()

    $x = [8, 3, 1];
    $y = [3, 1];

    #
    # Translating C<x**2 + 3*x + 8> by C<x + 3> returns [26, 9, 1]
    #
    $z = pl_translate($x, $y);

Returns a polynomial transformed by substituting a polynomial variable with another polynomial.
For example, a simple linear translation by 1 to the polynomial C<x**3 + x**2 + 4*x + 4>
would be accomplished by setting x = (y - 1); resulting in C<x**3 - 2*x**2 + 5*x>.

    $x = [4, 4, 1, 1];
    $y = [-1, 1];
    $z = pl_translate($x, $y);         # Becomes [0, 5, -2, 1]

=cut

sub pl_translate
{
	my($x, $y) = @_;

	my @x_arr = @$x;
	my @z = pop @x_arr;

	for my $c (reverse @x_arr)
	{
		@z = @{ pl_mult(\@z, $y) };
		$z[0] += $c;
	}

	return [@z];
}

=head3 pl_add()

    $polyn_ref = pl_add(\@m, \@n);

Add two lists of numbers as though they were polynomial coefficients.

=cut

sub pl_add
{
	my(@av) = @{$_[0]};
	my(@bv) = @{$_[1]};
	my $ldiff = scalar @av - scalar @bv;

	my @result = ($ldiff < 0)?
		splice(@bv, scalar @bv + $ldiff, -$ldiff):
		splice(@av, scalar @av - $ldiff, $ldiff);

	unshift @result, map($av[$_] + $bv[$_], 0.. $#av);

	return \@result;
}

=head3 pl_sub()

    $polyn_ref = pl_sub(\@m, \@n);

Subtract the second list of numbers from the first as though they
were polynomial coefficients.

=cut

sub pl_sub
{
	my(@av) = @{$_[0]};
	my(@bv) = @{$_[1]};
	my $ldiff = scalar @av - scalar @bv;

	my @result = ($ldiff < 0)?
		map {-$_} splice(@bv, scalar @bv + $ldiff, -$ldiff):
		splice(@av, scalar @av - $ldiff, $ldiff);

	unshift @result, map($av[$_] - $bv[$_], 0.. $#av);

	return \@result;
}

=head3 pl_div()

    ($q_ref, $r_ref) = pl_div(\@numerator, \@divisor);

Synthetic division for polynomials. Divides the first list of coefficients
by the second list.

Returns references to the quotient and the remainder.

Remember to check for leading zeros (which are rightmost in the list) in
the returned values. For example,

    my @n = (4, 12, 9, 3);
    my @d = (1, 3, 3, 1);

    my($q_ref, $r_ref) = pl_div(\@n, \@d);

After division you will have returned C<(3)> as the quotient,
and C<(1, 3, 0)> as the remainder. In general, you will want to remove
the leading zero, or for that matter values within epsilon of zero, in
the remainder.

    my($q_ref, $r_ref) = pl_div($f1, $f2);

    #
    # Remove any leading zeros (i.e., numbers smaller in
    # magnitude than machine epsilon) in the remainder.
    #
    my @remd = @{$r_ref};
    pop @remd while (@remd and abs($remd[$#remd]) < $epsilon);

    $f1 = $f2;
    $f2 = [@remd];

If C<$f1> and C<$f2> were to go through that bit of code again, not
removing the leading zeros would lead to a divide-by-zero error.

If either list of coefficients is empty, pl_div() returns undefs for
both quotient and remainder.

=cut

sub pl_div
{
	my @numerator = @{$_[0]};
	my @divisor = @{$_[1]};

	my @quotient;

	my $n_degree = $#numerator;
	my $d_degree = $#divisor;

	#
	# Sanity checks: a numerator less than the divisor
	# is automatically the remainder; and return a pair
	# of undefs if either set of coefficients are
	# empty lists.
	#
	return ([0], \@numerator) if ($n_degree < $d_degree);
	return (undef, undef) if ($d_degree < 0 or $n_degree < 0);

	my $lead_coefficient = $divisor[$#divisor];

	#
	# Perform the synthetic division. The remainder will
	# be what's left in the numerator.
	# (4, 13, 4, -9, 6) / (1, 2) = (4, 5, -6, 3)
	#
	@quotient = reverse map {
		#
		# Get the next term for the quotient. We pop
		# off the lead numerator term, which would become
		# zero due to subtraction anyway.
		#
		my $q = (pop @numerator)/$lead_coefficient;

		for my $k (0..$d_degree - 1)
		{
			$numerator[$#numerator - $k] -= $q * $divisor[$d_degree - $k - 1];
		}

		$q;
	} reverse (0 .. $n_degree - $d_degree);

	return (\@quotient, \@numerator);
}

=head3 pl_mult()

    $m_ref = pl_mult(\@coefficients1, \@coefficients2);

Returns the reference to the product of the two multiplicands.

=cut

sub pl_mult
{
	my($av, $bv) = @_;
	my $a_degree = $#{$av};
	my $b_degree = $#{$bv};

	#
	# Rather than multiplying left to right for each element,
	# sum to each degree of the resulting polynomial (the list
	# after the map block). Still an O(n**2) operation, but
	# we don't need separate storage variables.
	#
	return [ map {
		my $a_idx = ($a_degree > $_)? $_: $a_degree;
		my $b_to = ($b_degree > $_)? $_: $b_degree;
		my $b_from = $_ - $a_idx;

		my $c = $av->[$a_idx] * $bv->[$b_from];

		for my $b_idx ($b_from+1 .. $b_to)
		{
			$c += $av->[--$a_idx] * $bv->[$b_idx];
		}
		$c;
	} (0 .. $a_degree + $b_degree) ];
}

=head3 pl_derivative()

    $poly_ref = pl_derivative(\@coefficients);

Returns the derivative of a polynomial.

=cut

sub pl_derivative
{
	my @coefficients = @{$_[0]};
	my $degree = $#coefficients;

	return [] if ($degree < 1);

	$coefficients[$_] *= $_ for (2..$degree);

	shift @coefficients;
	return \@coefficients;
}

=head3 pl_antiderivative()

    $poly_ref = pl_antiderivative(\@coefficients);

Returns the antiderivative of a polynomial. The constant value is
always set to zero and will need to be changed by the caller if a
different constant is needed.

  my @coefficients = (1, 2, -3, 2);
  my $integral = pl_antiderivative(\@coefficients);

  #
  # Integral needs to be 0 at x = 1.
  #
  my @coeff1 = @{$integral};
  $coeff1[0] = - pl_evaluate($integral, 1);

=cut

sub pl_antiderivative
{
	my @coefficients = @{$_[0]};
	my $degree = scalar @coefficients;

	#
	# Sanity check if its an empty list.
	#
	return [0] if ($degree < 1);

	$coefficients[$_ - 1] /= $_ for (2..$degree);

	unshift @coefficients, 0;
	return \@coefficients;
}

=head1 AUTHOR

John M. Gamble, C<< <jgamble at cpan.org> >>

=head1 SEE ALSO

L<Math::Polynomial> for a complete set of polynomial operations, with the
added convenience that objects bring.

Among its other functions, L<List::Util> has the mathematically useful
functions max(), min(), product(), sum(), and sum0().

L<List::MoreUtils> has the function minmax().

L<Math::Prime::Util> has gcd() and lcm() functions, as well as vecsum(),
vecprod(), vecmin(), and vecmax(), which are like the L<List::Util>
functions but which can force integer use, and when appropriate use
L<Math::BigInt>.

L<Math::VecStat> Likewise has min(), max(), sum() (which can take
as arguments array references as well as arrays), plus maxabs(),
minabs(), sumbyelement(), convolute(), and other functions.

=head1 BUGS

Please report any bugs or feature requests to C<bug-math-util at rt.cpan.org>, or through
the web interface at L<http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Math-Utils>.  I will be notified, and then you'll
automatically be notified of progress on your bug as I make changes.

=head1 SUPPORT

This module is on Github at L<https://github.com/jgamble/Math-Utils>.

You can also look for information at:

=over 4

=item * RT: CPAN's request tracker (report bugs here)

L<http://rt.cpan.org/NoAuth/Bugs.html?Dist=Math-Utils>

=item * MetaCPAN

L<https://metacpan.org/release/Math-Utils>

=back

=head1 ACKNOWLEDGEMENTS

To J. A. R. Williams who got the ball rolling with L<Math::Fortran>.

=head1 LICENSE AND COPYRIGHT

Copyright (c) 2017 John M. Gamble. All rights reserved. This program is
free software; you can redistribute it and/or modify it under the same
terms as Perl itself.

=cut

1; # End of Math::Utils