File: Math-Vector-Real-kdTree.t

package info (click to toggle)
libmath-vector-real-kdtree-perl 0.15-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 136 kB
  • sloc: perl: 1,385; makefile: 3
file content (264 lines) | stat: -rw-r--r-- 10,126 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/perl

use strict;
use warnings;

use Test::More tests => 21209;

use_ok('Math::Vector::Real::kdTree');

use Sort::Key::Top qw(nhead);
use Math::Vector::Real;
use Math::Vector::Real::Test qw(eq_vector);

sub find_in_ball_bruteforce {
    my ($vs, $ix, $d) = @_;
    my $d2 = $d * $d;
    grep { $ix <=> $_ and $vs->[$ix]->dist2($vs->[$_]) <= $d2 } 0..$#$vs;
}

sub nearest_vectors_bruteforce {
    my ($bottom, $top) = Math::Vector::Real->box(@_);
    my $box = $top - $bottom;
    my $v = [map $_ - $bottom, @_];
    my $ixs = [0..$#_];
    my $dist2 = [($box->abs2 * 10 + 1) x @_];
    my $neighbors = [(undef) x @_];
    _nearest_vectors_bruteforce($v, $ixs, $dist2, $neighbors, $box, 0);
    return @$neighbors;
}

sub _nearest_vectors_bruteforce {
    my ($v, $ixs, $dist2, $neighbors) = @_;
    my $ixix = 0;
    for my $i (@$ixs) {
        $ixix++;
        my $v0 = $v->[$i];
        for my $j (@$ixs[$ixix..$#$ixs]) {
            my $d2 = $v0->dist2($v->[$j]);
            if ($dist2->[$i] > $d2) {
                $dist2->[$i] = $d2;
                $neighbors->[$i] = $j;
            }
            if ($dist2->[$j] > $d2) {
                $dist2->[$j] = $d2;
                $neighbors->[$j] = $i;
            }
        }
    }
}

sub farthest_vectors_bruteforce {
    my @best_ix;
    my @best_d2 = ((-1) x @_);
    for my $i (1..$#_) {
        my $v = $_[$i];
        for my $j (0..$i - 1) {
            my $d2 = Math::Vector::Real::dist2($v, $_[$j]);
            if ($d2 > $best_d2[$i]) {
                $best_d2[$i] = $d2;
                $best_ix[$i] = $j;
            }
            if ($d2 > $best_d2[$j]) {
                $best_d2[$j] = $d2;
                $best_ix[$j] = $i;
            }
        }
    }
    return @best_ix;
}

sub find_two_nearest_vectors_bruteforce {
    my @best_ix = (undef, undef);
    my $best_d2 = 'inf' + 0;
    for my $i (1..$#_) {
        my $v = $_[$i];
        for my $j (0..$i - 1) {
            my $d2 = Math::Vector::Real::dist2($v, $_[$j]);
            if ($d2 < $best_d2) {
                $best_d2 = $d2;
                @best_ix = ($i, $j);
            }
        }
    }
    (@best_ix, sqrt($best_d2))
}

sub test_neighbors {
    unshift @_, $_[0];
    goto &test_neighbors_indirect;
}

sub test_neighbors_indirect {
    my ($o1, $o2, $n1, $n2, $msg) = @_;
    my (@d1, @d2);
    for my $ix (0..$#$o1) {
        my $eo   = $o1->[$ix];
        my $ixn1 = $n1->[$ix];
        defined $ixn1 or do {
            fail($msg);
            diag("expected index for element $ix is undefined");
            goto break_me;
        };
        my $ixn2 = $n2->[$ix];
        defined $ixn2 or do {
            fail($msg);
            diag("template index for element $ix is undefined");
            goto break_me;
        };
        $ixn1 < @$o2 or do {
            fail($msg);
            diag("expected index $ixn1 out of range");
            goto break_me;
        };
        $ixn2 < @$o2 or do {
            fail($msg);
            diag("template index $ixn1 out of range");
            goto break_me;
        };
        my $en1 = $o2->[$ixn1];
        my $en2  = $o2->[$ixn2];
        push @d1, $eo->dist2($en1);
        push @d2, $eo->dist2($en2);
    }
    is "@d1", "@d2", $msg and return 1;

 break_me:
    diag "break me!";
    0;
}

my %gen = ( num => sub { rand },
            int => sub { int rand(10) } );


#srand 318275924;
diag "srand: " . srand;
for my $g (keys %gen) {
    for my $d (1, 2, 3, 10) {
        for my $n (2, 10, 50, 250, 500) {
        # for my $n ((2) x 100) {
            my $id = "gen: $g, d: $d, n: $n";
            my @o = map V(map $gen{$g}->(), 1..$d), 1..$n;
            my @nbf = nearest_vectors_bruteforce(@o);

            my $t = Math::Vector::Real::kdTree->new(@o);

            my @n = map scalar($t->find_nearest_vector_internal($_)), 0..$#o;
            is ($#n, $#o, "count find_nearest_vector_internal - build - $id");
            test_neighbors(\@o, \@n, \@nbf, "find_nearest_vector_internal - build - $id");
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - build - after find_nearest_vector_internal - $id");

            @n = $t->find_nearest_vector_all_internal;
            is ($#n, $#o, "count find_nearest_vector_all_internal - build - $id");
            test_neighbors(\@o, \@n, \@nbf, "find_nearest_vector_all_internal - build - $id");
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - build - after find_nearest_vector_all_internal - $id");

            $t = Math::Vector::Real::kdTree->new;
            for my $ix (0..$#o) {
                $t->insert($o[$ix]);
                my @obp = $t->ordered_by_proximity;
                is ($ix, $#obp, "ordered_by_proxymity - count - $id, ix: $ix");
            }
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - insert - after insert - $id");

            @n = map scalar($t->find_nearest_vector_internal($_)), 0..$#o;
            test_neighbors(\@o, \@n, \@nbf, "find_nearest_vector_internal - insert - $id");
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - insert - after find_nearest_vector_internal - $id");

            @n = $t->find_nearest_vector_all_internal;
            test_neighbors(\@o, \@n, \@nbf, "find_nearest_vector_all_internal - insert - $id");
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - insert - after find_nearest_vector_all_internal - $id");

            my @fbf = farthest_vectors_bruteforce(@o);
            @n = map scalar($t->find_farthest_vector_internal($_)), 0..$#o;
            test_neighbors(\@o, \@n, \@fbf, "find_farthest_vector_internal - insert - $id");
            is_deeply([map $t->at($_), 0..$#o], \@o , "at - insert - after find_farthest_vector_internal - $id");

            my ($b1, $b2, $min_d2) = $t->find_two_nearest_vectors;
            my ($b1bf, $b2bf, $min_d2_bf) = find_two_nearest_vectors_bruteforce(@o);
            is($min_d2, $min_d2_bf, "nearest_two_vectors") or do {
                diag "values differ: $min_d2 $min_d2_bf best: $b1, $b2, best_bf: $b1bf, $b2bf\n";
                diag $t->dump_to_string(pole_id => 1, remark => [$b1, $b2, $b1bf, $b2bf]);
            };

            my %seed_errs = (k_means_seed => [1], k_means_seed_pp => [1, 0.9, 0.5]);

            my $k;
            for ($k = 1; $k < @n; $k *= 2) {
                for my $seed_method (qw(k_means_seed)) { # k_means_seed_pp)) {
                    for my $err (@{$seed_errs{$seed_method}}) {
                        no warnings 'once';
                        local $Math::Vector::Real::kdTree::k_means_seed_pp_test = sub {
                            my ($t, $err, $kmvs, $ws) = @_;
                            # use Data::Dumper;
                            # diag Dumper $ws;
                            # diag Dumper $kmvs;
                            my @error;
                            for my $ix (0..$#o) {
                                my $w = nhead map { $o[$ix]->dist2($_) } @$kmvs;
                                # diag "checking element $ix, o: $o[$ix] ws: $ws->[$ix], w: $w";
                                if ($ws->[$ix] + 0.0001 < $w * $err or $ws->[$ix] * $err > $w + 0.0001) {
                                    push @error, "weight calculation failed for ix $ix: precise: $w, estimated: $ws->[$ix], err: $err"
                                }
                            }
                            ok(@error == 0, "k_means_seed_pp_test, k: $k, err: $err, $id");
                            diag $_ for @error;
                        };

                        my @kms = $t->$seed_method($k, $err);
                        my $k_gen = scalar(@kms);
                        if ($seed_method eq 'k_means_seed') {
                            is ($k_gen, $k, "$seed_method generates $k results - err: $err, $id");
                        }
                        else {
                            ok(1, "keep number of tests unchanged") for $k_gen..$k-1;
                            ok($k_gen >= 1,  "$seed_method generates at least one result");
                            ok($k_gen <= $k, "$seed_method generates $k or less results");
                        }
                        my @km = $t->k_means_loop(@kms);
                        is (scalar(@km), $k_gen, "k_means_loop generates $k_gen results - err: $err, $id")
                            or do {
                                diag "break me 2";
                            };
                        my @kma = $t->k_means_assign(@km);
                        my $t1 = Math::Vector::Real::kdTree->new(@km);
                        my @n = map scalar($t1->find_nearest_vector($_)), @o;
                        test_neighbors_indirect(\@o, \@km, \@kma, \@n, "k_means_assign - err: $err, k: $k, $id");

                        my @sum = map V((0) x $d), 1..$k_gen;
                        my @count = ((0) x $k_gen);

                        for my $ix (0..$#kma) {
                            my $cluster = $kma[$ix];
                            $count[$cluster]++;
                            $sum[$cluster] += $o[$ix];
                        }
                        for my $cluster (0..$#sum) {
                            if ($count[$cluster]) {
                                $sum[$cluster] /= $count[$cluster];
                            }
                            else {
                                $sum[$cluster] = $km[$cluster];
                            }

                            eq_vector($sum[$cluster], $km[$cluster], "cluster centroid - $cluster - k: $k, $id");
                        }
                        ok (1, "keep number of tests unchanged") for $#sum..$k-1;
                    }
                }
            }

            for my $ix (0..$#o) {
                my $r = 0.0001 + rand(1);
                my @bix = sort { $a <=> $b } $t->find_in_ball($o[$ix], $r, $ix);
                my @bixbf = find_in_ball_bruteforce(\@o, $ix, $r);

                is_deeply (\@bix, \@bixbf, "find_in_ball - $ix - $id") or
                    do {;
                        diag "break me 3";
                    }
            }
        }
    }
}