1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
|
package Math::Vector::Real;
our $VERSION = '0.18';
use strict;
use warnings;
use Carp;
use POSIX ();
use Exporter qw(import);
our @EXPORT = qw(V);
our $dont_use_XS;
unless ($dont_use_XS) {
my $xs_version = do {
local ($@, $!, $SIG{__DIE__});
eval {
require Math::Vector::Real::XS;
$Math::Vector::Real::XS::VERSION;
}
};
if (defined $xs_version and $xs_version < 0.07) {
croak "Old and buggy version of Math::Vector::Real::XS detected, update it!";
}
}
our %op = (add => '+',
neg => 'neg',
sub => '-',
mul => '*',
div => '/',
cross => 'x',
add_me => '+=',
sub_me => '-=',
mul_me => '*=',
div_me => '/=',
abs => 'abs',
atan2 => 'atan2',
equal => '==',
nequal => '!=',
clone => '=',
as_string => '""');
our %ol;
$ol{$op{$_}} = \&{${Math::Vector::Real::}{$_}} for keys %op;
require overload;
overload->import(%ol);
sub V { bless [@_] }
sub new {
my $class = shift;
bless [@_], $class
}
sub new_ref {
my $class = shift;
bless [@{shift()}], $class;
}
sub zero {
my ($class, $dim) = @_;
$dim >= 0 or croak "negative dimension";
bless [(0) x $dim], $class
}
sub is_zero {
$_ and return 0 for @$_[0];
return 1
}
sub cube {
my ($class, $dim, $size) = @_;
bless [($size) x $dim], $class;
}
sub axis_versor {
my ($class, $dim, $ix);
if (ref $_[0]) {
my ($self, $ix) = @_;
$class = ref $self;
$dim = @$self;
}
else {
($class, $dim, $ix) = @_;
$dim >= 0 or croak "negative dimension";
}
($ix >= 0 and $ix < $dim) or croak "axis index out of range";
my $self = [(0) x $dim];
$self->[$ix] = 1;
bless $self, $class
}
sub _caller_op {
my $level = (shift||1) + 1;
my $sub = (caller $level)[3];
$sub =~ s/.*:://;
my $op = $op{$sub};
(defined $op ? $op : $sub);
}
sub _check_dim {
local ($@, $SIG{__DIE__});
eval { @{$_[0]} == @{$_[1]} } and return;
my $op = _caller_op(1);
my $loc = ($_[2] ? 'first' : 'second');
UNIVERSAL::isa($_[1], 'ARRAY') or croak "$loc argument to vector operator '$op' is not a vector";
croak "vector dimensions do not match";
}
sub clone { bless [@{$_[0]}] }
sub set {
&_check_dim;
my ($v0, $v1) = @_;
$v0->[$_] = $v1->[$_] for 0..$#$v1;
}
sub add {
&_check_dim;
my ($v0, $v1) = @_;
bless [map $v0->[$_] + $v1->[$_], 0..$#$v0]
}
sub add_me {
&_check_dim;
my ($v0, $v1) = @_;
$v0->[$_] += $v1->[$_] for 0..$#$v0;
$v0;
}
sub neg { bless [map -$_, @{$_[0]}] }
sub sub {
&_check_dim;
my ($v0, $v1) = ($_[2] ? @_[1, 0] : @_);
bless [map $v0->[$_] - $v1->[$_], 0..$#$v0]
}
sub sub_me {
&_check_dim;
my ($v0, $v1) = @_;
$v0->[$_] -= $v1->[$_] for 0..$#$v0;
$v0;
}
sub mul {
if (ref $_[1]) {
&_check_dim;
my ($v0, $v1) = @_;
my $acu = 0;
$acu += $v0->[$_] * $v1->[$_] for 0..$#$v0;
$acu;
}
else {
my ($v, $s) = @_;
bless [map $s * $_, @$v];
}
}
sub mul_me {
ref $_[1] and croak "can not multiply by a vector in place as the result is not a vector";
my ($v, $s) = @_;
$_ *= $s for @$v;
$v
}
sub div {
croak "can't use vector as dividend"
if ($_[2] or ref $_[1]);
my ($v, $div) = @_;
$div == 0 and croak "illegal division by zero";
my $i = 1 / $div;
bless [map $i * $_, @$v]
}
sub div_me {
croak "can't use vector as dividend" if ref $_[1];
my $v = shift;
my $i = 1.0 / shift;
$_ *= $i for @$v;
$v;
}
sub equal {
&_check_dim;
my ($v0, $v1) = @_;
$v0->[$_] == $v1->[$_] || return 0 for 0..$#$v0;
1;
}
sub nequal {
&_check_dim;
my ($v0, $v1) = @_;
$v0->[$_] == $v1->[$_] || return 1 for 0..$#$v0;
0;
}
sub cross {
&_check_dim;
my ($v0, $v1) = ($_[2] ? @_[1, 0] : @_);
my $dim = @$v0;
if ($dim == 3) {
return bless [$v0->[1] * $v1->[2] - $v0->[2] * $v1->[1],
$v0->[2] * $v1->[0] - $v0->[0] * $v1->[2],
$v0->[0] * $v1->[1] - $v0->[1] * $v1->[0]]
}
if ($dim == 7) {
croak "cross product for dimension 7 not implemented yet, patches welcome!";
}
else {
croak "cross product not defined for dimension $dim"
}
}
sub as_string { "{" . join(", ", @{$_[0]}). "}" }
sub abs {
my $acu = 0;
$acu += $_ * $_ for @{$_[0]};
sqrt $acu;
}
sub abs2 {
my $acu = 0;
$acu += $_ * $_ for @{$_[0]};
$acu;
}
sub dist {
&_check_dim;
my ($v0, $v1) = @_;
my $d2 = 0;
for (0..$#$v0) {
my $d = $v0->[$_] - $v1->[$_];
$d2 += $d * $d;
}
sqrt($d2);
}
sub dist2 {
&_check_dim;
my ($v0, $v1) = @_;
my $d2 = 0;
for (0..$#$v0) {
my $d = $v0->[$_] - $v1->[$_];
$d2 += $d * $d;
}
$d2;
}
sub max_component {
my $max = 0;
for (@{shift()}) {
my $abs = CORE::abs($_);
$abs > $max and $max = $abs;
}
$max
}
sub min_component {
my $self = shift;
my $min = CORE::abs($self->[0]);
for (@$self) {
my $abs = CORE::abs($_);
$abs < $min and $min = $abs;
}
$min
}
sub manhattan_norm {
my $n = 0;
$n += CORE::abs($_) for @{$_[0]};
return $n;
}
sub manhattan_dist {
&_check_dim;
my ($v0, $v1) = @_;
my $d = 0;
$d += CORE::abs($v0->[$_] - $v1->[$_]) for 0..$#$v0;
return $d;
}
sub chebyshev_dist {
&_check_dim;
my ($v0, $v1) = @_;
my $max = 0;
for (0..$#$v0) {
my $d = CORE::abs($v0->[$_] - $v1->[$_]);
$max = $d if $d > $max;
}
$max;
}
sub _upgrade {
my $dim;
map {
my $d = eval { @{$_} };
defined $d or croak "argument is not a vector or array";
if (defined $dim) {
$d == $dim or croak "dimensions do not match";
}
else {
$dim = $d;
}
UNIVERSAL::isa($_, __PACKAGE__) ? $_ : clone($_);
} @_;
}
sub atan2 {
my ($v0, $v1) = @_;
if (@$v0 == 2) {
my $dot = $v0->[0] * $v1->[0] + $v0->[1] * $v1->[1];
my $cross = $v0->[0] * $v1->[1] - $v0->[1] * $v1->[0];
return CORE::atan2($cross, $dot);
}
else {
my $a0 = &abs($v0);
return 0 unless $a0;
my $u0 = $v0 / $a0;
my $p = $v1 * $u0;
CORE::atan2(&abs($v1 - $p * $u0), $p);
}
}
sub versor {
my $self = shift;
my $f = 0;
$f += $_ * $_ for @$self;
$f == 0 and croak "Illegal division by zero";
$f = 1/sqrt $f;
bless [map $f * $_, @$self]
}
sub wrap {
my ($self, $v) = @_;
&_check_dim;
bless [map { my $s = $self->[$_];
my $c = $v->[$_];
$c - $s * POSIX::floor($c/$s) } (0..$#$self)];
}
sub first_orthant_reflection {
my $self = shift;
bless [map CORE::abs, @$self];
}
sub sum {
ref $_[0] or shift; # works both as a class and as an instance method
my $sum;
if (@_) {
$sum = V(@{shift()});
$sum += $_ for @_;
}
return $sum;
}
sub box {
shift;
return unless @_;
my $min = clone(shift);
my $max = clone($min);
my $dim = $#$min;
for (@_) {
for my $ix (0..$dim) {
my $c = $_->[$ix];
if ($max->[$ix] < $c) {
$max->[$ix] = $c;
}
elsif ($min->[$ix] > $c) {
$min->[$ix] = $c
}
}
}
wantarray ? ($min, $max) : $max - $min;
}
sub nearest_in_box {
my $p = shift->clone;
my ($min, $max) = Math::Vector::Real->box(@_);
for (0..$#$p) {
if ($p->[$_] < $min->[$_]) {
$p->[$_] = $min->[$_];
}
elsif ($p->[$_] > $max->[$_]) {
$p->[$_] = $max->[$_];
}
}
$p
}
sub dist2_to_box {
@_ > 1 or croak 'Usage: $v->dist2_to_box($w0, ...)';
my $p = shift;
my $d2 = 0;
my ($min, $max) = Math::Vector::Real->box(@_);
for (0..$#$p) {
if ($p->[$_] < $min->[$_]) {
my $d = $p->[$_] - $min->[$_];
$d2 += $d * $d;
}
elsif ($p->[$_] > $max->[$_]) {
my $d = $p->[$_] - $max->[$_];
$d2 += $d * $d;
}
}
$d2;
}
sub chebyshev_dist_to_box {
@_ > 1 or croak 'Usage $v->chebyshev_dist_to_box($w0, ...)';
my $p = shift;
my $d = 0;
my ($min, $max) = Math::Vector::Real->box(@_);
for (0..$#$p) {
if ($p->[$_] < $min->[$_]) {
my $delta = CORE::abs($p->[$_] - $min->[$_]);
$d = $delta if $delta > $d;
}
elsif ($p->[$_] > $max->[$_]) {
my $delta = CORE::abs($p->[$_] - $min->[$_]);
$d = $delta if $delta > $d;
}
}
$d;
}
sub chebyshev_cut_box {
@_ > 2 or croak 'Usage $v->chebyshev_cut_box($cd, $w0, ...)';
my $p = shift;
my $cd = shift;
my ($min, $max) = Math::Vector::Real->box(@_);
for (0..$#$p) {
my $a = $p->[$_];
my $a_min = $a - $cd;
my $a_max = $a + $cd;
my $b_min = $min->[$_];
my $b_max = $max->[$_];
return if $b_min > $a_max or $b_max < $a_min;
$min->[$_] = $a_min if $b_min < $a_min;
$max->[$_] = $a_max if $b_min > $a_max;
}
($min, $max);
}
sub nearest_in_box_border {
# TODO: this method can be optimized
my $p = shift->clone;
my ($b0, $b1) = Math::Vector::Real->box(@_);
my $in = 0;
for (0..$#$p) {
if ($p->[$_] < $b0->[$_]) {
$p->[$_] = $b0->[$_];
}
elsif ($p->[$_] > $b1->[$_]) {
$p->[$_] = $b1->[$_];
}
else {
$in++;
}
}
if ($in == @$p) {
# vector was inside the box
my $min_d = 'inf';
my ($comp, $comp_ix);
for my $q ($b0, $b1) {
for (0..$#$p) {
my $d = CORE::abs($p->[$_] - $q->[$_]);
if ($min_d > $d) {
$min_d = $d;
$comp = $q->[$_];
$comp_ix = $_;
}
}
}
$p->[$comp_ix] = $comp;
}
$p;
}
sub max_dist2_to_box {
@_ > 1 or croak 'Usage: $v->max_dist2_to_box($w0, ...)';
my $p = shift;
my ($c0, $c1) = Math::Vector::Real->box(@_);
my $d2 = 0;
for (0..$#$p) {
my $d0 = CORE::abs($c0->[$_] - $p->[$_]);
my $d1 = CORE::abs($c1->[$_] - $p->[$_]);
$d2 += ($d0 >= $d1 ? $d0 * $d0 : $d1 * $d1);
}
return $d2;
}
sub dist2_between_boxes {
my ($class, $a0, $a1, $b0, $b1) = @_;
my ($c0, $c1) = $class->box($a0, $a1);
my ($d0, $d1) = $class->box($b0, $b1);
my $d2 = 0;
for (0..$#$c0) {
my $e0 = $d0->[$_] - $c1->[$_];
if ($e0 >= 0) {
$d2 += $e0 * $e0;
}
else {
my $e1 = $c0->[$_] - $d1->[$_];
if ($e1 > 0) {
$d2 += $e1 * $e1;
}
}
}
$d2;
}
*min_dist2_between_boxes = \&dist2_between_boxes;
sub max_dist2_between_boxes {
my ($class, $a0, $a1, $b0, $b1) = @_;
my ($c0, $c1) = $class->box($a0, $a1);
my ($d0, $d1) = $class->box($b0, $b1);
my $d2 = 0;
for (0..$#$c0) {
my $e0 = $d1->[$_] - $c0->[$_];
my $e1 = $d0->[$_] - $c1->[$_];
$e0 *= $e0;
$e1 *= $e1;
$d2 += ($e0 > $e1 ? $e0 : $e1);
}
$d2;
}
sub max_component_index {
my $self = shift;
return unless @$self;
my $max = 0;
my $max_ix = 0;
for my $ix (0..$#$self) {
my $c = CORE::abs($self->[$ix]);
if ($c > $max) {
$max = $c;
$max_ix = $ix;
}
}
$max_ix;
}
sub min_component_index {
my $self = shift;
return unless @$self;
my $min = CORE::abs($self->[0]);
my $min_ix = 0;
for my $ix (1..$#$self) {
my $c = CORE::abs($self->[$ix]);
if ($c < $min) {
$min = $c;
$min_ix = $ix
}
}
$min_ix;
}
sub decompose {
my ($u, $v) = @_;
my $p = $u * ($u * $v)/abs2($u);
my $n = $v - $p;
wantarray ? ($p, $n) : $n;
}
sub canonical_base {
my ($class, $dim) = @_;
my @base = map { bless [(0) x $dim], $class } 1..$dim;
$base[$_][$_] = 1 for 0..$#base;
return @base;
}
sub rotation_base_3d {
my $v = shift;
@$v == 3 or croak "rotation_base_3d requires a vector with three dimensions";
$v = $v->versor;
my $n = [0, 0, 0];
for (0..2) {
if (CORE::abs($v->[$_]) > 0.57) {
$n->[($_ + 1) % 3] = 1;
$n = $v->decompose($n)->versor;
return ($v, $n, $v x $n);
}
}
die "internal error, all the components where smaller than 0.57!";
}
sub rotate_3d {
my $v = shift;
my $angle = shift;
my $c = cos($angle); my $s = sin($angle);
my ($i, $j, $k) = $v->rotation_base_3d;
my $rj = $c * $j + $s * $k;
my $rk = $c * $k - $s * $j;
if (wantarray) {
return map { ($_ * $i) * $i + ($_ * $j) * $rj + ($_ * $k) * $rk } @_;
}
else {
my $a = shift;
return (($a * $i) * $i + ($a * $j) * $rj + ($a * $k) * $rk);
}
}
sub normal_base { __PACKAGE__->complementary_base(@_) }
sub complementary_base {
shift;
@_ or croak "complementaty_base requires at least one argument in order to determine the dimension";
my $dim = @{$_[0]};
if ($dim == 2 and @_ == 1) {
my $u = versor($_[0]);
@$u = ($u->[1], -$u->[0]);
return $u;
}
my @v = map clone($_), @_;
my @base = Math::Vector::Real->canonical_base($dim);
for my $i (0..$#v) {
my $u = versor($v[$i]);
$_ = decompose($u, $_) for @v[$i+1 .. $#v];
$_ = decompose($u, $_) for @base;
}
my $last = $#base - @v;
return if $last < 0;
for my $i (0 .. $last) {
my $max = abs2($base[$i]);
if ($max < 0.3) {
for my $j ($i+1 .. $#base) {
my $d2 = abs2($base[$j]);
if ($d2 > $max) {
@base[$i, $j] = @base[$j, $i];
last unless $d2 < 0.3;
$max = $d2;
}
}
}
my $versor = $base[$i] = versor($base[$i]);
$_ = decompose($versor, $_) for @base[$i+1..$#base];
}
wantarray ? @base[0..$last] : $base[0];
}
sub select_in_ball {
my $v = shift;
my $r = shift;
my $r2 = $r * $r;
grep $v->dist2($_) <= $r2, @_;
}
sub select_in_ball_ref2bitmap {
my $v = shift;
my $r = shift;
my $p = shift;
my $r2 = $r * $r;
my $bm = "\0" x int((@$p + 7) / 8);
for my $ix (0..$#$p) {
vec($bm, $ix, 1) = 1 if $v->dist2($p->[$ix]) <= $r2;
}
return $bm;
}
sub dist2_to_segment {
my ($p, $a, $b) = @_;
my $ab = $a - $b;
my $ap = $a - $p;
my $ap_ab = $ap * $ab;
return norm2($ap) if $ap_ab <= 0;
my $x = $ap * $ab / ($ab * $ab);
return dist2($ap, $ab) if $x >= 1;
return dist2($ap, $x * $ab);
}
sub dist_to_segment { sqrt(&dist_to_segment) }
sub dist2_between_segments {
my ($class, $a, $b, $c, $d) = @_;
my $ab = $a - $b;
my $cd = $c - $d;
my $bd = $b - $d;
if (@$a > 2) {
my $ab_ab = $ab * $ab;
my $ab_cd = $ab * $cd;
my $cd_cd = $cd * $cd;
if (CORE::abs(1.0 - ($ab_cd * $ab_cd) / ($ab_ab * $cd_cd)) > 1e-10) {
# This method works for non-parallel segments
my $ab_bd = $ab * $bd;
my $bd_cd = $bd * $cd;
my $D01 = $ab_cd * $ab_cd - $ab_ab * $cd_cd;
my $D21 = $cd_cd * $ab_bd - $bd_cd * $ab_cd;
my $x = $D21 / $D01;
return dist2_to_segment($b, $c, $d) if $x < 0;
return dist2_to_segment($a, $c, $d) if $x > 1;
my $D02 = $ab_cd * $ab_bd - $bd_cd * $ab_ab;
my $y = $D02 / $D01;
return dist2_to_segment($d, $a, $b) if $y < 0;
return dist2_to_segment($c, $a, $b) if $y > 1;
my $p = $b + $ab * $x;
my $q = $d + $cd * $y;
return $p->dist2($q);
}
}
# We are in 2D or lines are parallel, we consider the distance
# between one segment to the vertices of the other one and
# viceverse and return the minimum.
my $min_d2 = dist2_to_segment($a, $c, $d);
my $d2 = dist2_to_segment($b, $c, $d);
$d2 = dist2_to_segment($c, $a, $b);
$min_d2 = $d2 if $d2 < $min_d2;
$d2 = dist2_to_segment($d, $a, $b);
$min_d2 = $d2 if $d2 < $min_d2;
return $min_d2;
}
sub dist_between_segments { sqrt(&dist2_between_segments) }
# This is run *after* Math::Vector::Real::XS is loaded!
*norm = \&abs;
*norm2 = \&abs2;
*max = \&max_component;
*min = \&min_component;
*chebyshev_norm = \&max_component;
1;
__END__
=head1 NAME
Math::Vector::Real - Real vector arithmetic in Perl
=head1 SYNOPSIS
use Math::Vector::Real;
my $v = V(1.1, 2.0, 3.1, -4.0, -12.0);
my $u = V(2.0, 0.0, 0.0, 1.0, 0.3);
printf "abs(%s) = %d\n", $v, abs($b);
my $dot = $u * $v;
my $sub = $u - $v;
# etc...
=head1 DESCRIPTION
A simple pure perl module to manipulate vectors of any dimension.
The function C<V>, always exported by the module, allows one to create
new vectors:
my $v = V(0, 1, 3, -1);
Vectors are represented as blessed array references. It is allowed to
manipulate the arrays directly as far as only real numbers are
inserted (well, actually, integers are also allowed because from a
mathematical point of view, integers are a subset of the real
numbers).
Example:
my $v = V(0.0, 1.0);
# extending the 2D vector to 3D:
push @$v, 0.0;
# setting some component value:
$v->[0] = 23;
Vectors can be used in mathematical expressions:
my $u = V(3, 3, 0);
$p = $u * $v; # dot product
$f = 1.4 * $u + $v; # scalar product and vector addition
$c = $u x $v; # cross product, only defined for 3D vectors
# etc.
The currently supported operations are:
+ * /
- (both unary and binary)
x (cross product for 3D vectors)
+= -= *= /= x=
== !=
"" (stringfication)
abs (returns the norm)
atan2 (returns the angle between two vectors)
That, AFAIK, are all the operations that can be applied to vectors.
When an array reference is used in an operation involving a vector, it
is automatically upgraded to a vector. For instance:
my $v = V(1, 2);
$v += [0, 2];
=head2 Extra methods
Besides the common mathematical operations described above, the
following methods are available from the package.
Note that all these methods are non destructive returning new objects
with the result.
=over 4
=item $v = Math::Vector::Real->new(@components)
Equivalent to C<V(@components)>.
=item $zero = Math::Vector::Real->zero($dim)
Returns the zero vector of the given dimension.
=item $v = Math::Vector::Real->cube($dim, $size)
Returns a vector of the given dimension with all its components set to
C<$size>.
=item $u = Math::Vector::Real->axis_versor($dim, $ix)
Returns a unitary vector of the given dimension parallel to the axis
with index C<$ix> (0-based).
For instance:
Math::Vector::Real->axis_versor(5, 3); # V(0, 0, 0, 1, 0)
Math::Vector::Real->axis_versor(2, 0); # V(1, 0)
=item @b = Math::Vector::Real->canonical_base($dim)
Returns the canonical base for the vector space of the given
dimension.
=item $u = $v->versor
Returns the versor for the given vector.
It is equivalent to:
$u = $v / abs($v);
=item $wrapped = $w->wrap($v)
Returns the result of wrapping the given vector in the box
(hyper-cube) defined by C<$w>.
Long description:
Given the vector C<W> and the canonical base C<U1, U2, ...Un> such
that C<W = w1*U1 + w2*U2 +...+ wn*Un>. For every component C<wi> we
can consider the infinite set of affine hyperplanes perpendicular to
C<Ui> such that they contain the point C<j * wi * Ui> being C<j> an
integer number.
The combination of all the hyperplanes defined by every component
define a grid that divides the space into an infinite set of affine
hypercubes. Every hypercube can be identified by its lower corner
indexes C<j1, j2, ..., jN> or its lower corner point C<j1*w1*U1 +
j2*w2*U2 +...+ jn*wn*Un>.
Given the vector C<V>, wrapping it by C<W> is equivalent to finding
where it lays relative to the lower corner point of the hypercube
inside the grid containing it:
Wrapped = V - (j1*w1*U1 + j2*w2*U2 +...+ jn*wn*Un)
such that ji*wi <= vi < (ji+1)*wi
=item $max = $v->max_component
Returns the maximum of the absolute values of the vector components.
=item $min = $v->min_component
Returns the minimum of the absolute values of the vector components.
=item $d2 = $b->norm2
Returns the norm of the vector squared.
=item $d = $v->dist($u)
Returns the distance between the two vectors.
=item $d = $v->dist2($u)
Returns the distance between the two vectors squared.
=item $d = $v->manhattan_norm
Returns the norm of the vector calculated using the Manhattan metric.
=item $d = $v->manhattan_dist($u)
Returns the distance between the two vectors using the Manhattan metric.
=item $d = $v->chebyshev_norm
Returns the norm of the vector calculated using the Chebyshev metric
(note that this method is an alias for C<max_component>.
=item $d = $v->chebyshev_dist($u)
Returns the distance between the two vectors using the Chebyshev metric.
=item ($bottom, $top) = Math::Vector::Real->box($v0, $v1, $v2, ...)
Returns the two corners of the L<axis-aligned minimum bounding
box|http://en.wikipedia.org/wiki/Minimum_bounding_box#Axis-aligned_minimum_bounding_box>
(or L<hyperrectangle|http://en.wikipedia.org/wiki/Hyperrectangle>) for
the given vectors.
In scalar context returns the difference between the two corners (the
box diagonal vector).
=item $p = $v->nearest_in_box($w0, $w1, ...)
Returns the vector nearest to C<$v> from the axis-aligned minimum box
bounding the given set of vectors.
For instance, given a point C<$v> and an axis-aligned rectangle
defined by two opposite corners (C<$c0> and C<$c1>), this method can be
used to find the point nearest to C<$v> from inside the rectangle:
my $n = $v->nearest_in_box($c0, $c1);
Note that if C<$v> lays inside the box, the nearest point is C<$v>
itself. Otherwise it will be a point from the box hyper-surface.
=item $d2 = $v->dist2_to_box($w0, $w1, ...)
Calculates the square of the minimal distance between the vector C<$v>
and the minimal axis-aligned box containing all the vectors C<($w0,
$w1, ...)>.
=item $d2 = $v->max_dist2_to_box($w0, $w1, ...)
Calculates the square of the maximum distance between the vector C<$v>
and the minimal axis-aligned box containing all the vectors C<($w0,
$w1, ...)>.
=item $d = $v->chebyshev_dist_to_box($w0, $w1, ...)
Calculates the minimal distance between the vector C<$v> and the
minimal axis-aligned box containing all the vectors C<($w0, $w1, ...)>
using the Chebyshev metric.
=item $d2 = Math::Vector::Real->dist2_between_boxes($a0, $a1, $b0, $b1)
Returns the square of the minimum distance between any two points
belonging to the boxes defined by C<($a0, $a1)> and
C<($b0, $b1)> respectively.
=item $d2 = Math::Vector::Real->max_dist2_between_boxes($a0, $a1, $b0, $b1)
Returns the square of the maximum distance between any two points
belonging respectively to the boxes defined by C<($a0, $a1)> and
C<($b0, $b1)>.
=item $d2 = $v->dist2_to_segment($a0, $a1)
Returns the square of the minimum distance between the given point
C<$v> and the line segment defined by the vertices C<$a0> and C<$a1>.
=item $d2 = Math::Vector::Real->dist2_between_segments($a0, $a1, $b0, $b1)
Returns the square of the distance between the line segment defined by
the vertices C<$a0> and C<$a1> and the one defined by the vertices
C<$b0> and C<$b1>.
Degenerated cases where the length of any segment is (too close to) 0
are not supported.
=item $v->set($u)
Equivalent to C<$v = $u> but without allocating a new object.
Note that this method is destructive.
=item $d = $v->max_component_index
Returns the index of the vector component with the maximum size.
=item $r = $v->first_orthant_reflection
Given the set of vectors formed by C<$v> and all its reflections
around the axis-aligned hyperplanes, this method returns the one lying
on the first orthant.
See also
[http://en.wikipedia.org/wiki/Reflection_%28mathematics%29|reflection]
and [http://en.wikipedia.org/wiki/Orthant|orthant].
=item ($p, $n) = $v->decompose($u)
Decompose the given vector C<$u> in two vectors: one parallel to C<$v>
and another normal.
In scalar context returns the normal vector.
=item $v = Math::Vector::Real->sum(@v)
Returns the sum of all the given vectors.
=item @b = Math::Vector::Real->complementary_base(@v)
Returns a base for the subspace complementary to the one defined by
the base @v.
The vectors on @v must be linearly independent. Otherwise a division
by zero error may pop up or probably due to rounding errors, just a
wrong result may be generated.
=item @b = $v->normal_base
Returns a set of vectors forming an orthonormal base for the hyperplane
normal to $v.
In scalar context returns just some unitary vector normal to $v.
Note that this two expressions are equivalent:
@b = $v->normal_base;
@b = Math::Vector::Real->complementary_base($v);
=item ($i, $j, $k) = $v->rotation_base_3d
Given a 3D vector, returns a list of 3 vectors forming an orthonormal
base where $i has the same direction as the given vector C<$v> and
C<$k = $i x $j>.
=item @r = $v->rotate_3d($angle, @s)
Returns the vectors C<@u> rotated around the vector C<$v> an
angle C<$angle> in radians in anticlockwise direction.
See L<http://en.wikipedia.org/wiki/Rotation_operator_(vector_space)>.
=item @s = $center->select_in_ball($radius, $v1, $v2, $v3, ...)
Selects from the list of given vectors those that lay inside the
n-ball determined by the given radius and center (C<$radius> and
C<$center> respectively).
=back
=head2 Zero vector handling
Passing the zero vector to some methods (i.e. C<versor>, C<decompose>,
C<normal_base>, etc.) is not acceptable. In those cases, the module
will croak with an "Illegal division by zero" error.
C<atan2> is an exceptional case that will return 0 when any of its
arguments is the zero vector (for consistency with the C<atan2> builtin
operating over real numbers).
In any case note that, in practice, rounding errors frequently cause
the check for the zero vector to fail resulting in numerical
instabilities.
The correct way to handle this problem is to introduce in your code
checks of this kind:
if ($v->norm2 < $epsilon2) {
croak "$v is too small";
}
Or even better, reorder the operations to minimize the chance of
instabilities if the algorithm allows it.
=head2 Math::Vector::Real::XS
The module L<Math::Vector::Real::XS> reimplements most of the methods
available from this module in XS. C<Math::Vector::Real> automatically
loads and uses it when it is available.
=head1 SEE ALSO
L<Math::Vector::Real::Random> extends this module with random vector
generation methods.
L<Math::GSL::Vector>, L<PDL>.
There are other vector manipulation packages in CPAN (L<Math::Vec>,
L<Math::VectorReal>, L<Math::Vector>), but they can only handle 3
dimensional vectors.
=head1 SUPPORT
In order to report bugs you can send me and email to the address that
appears below or use the CPAN RT bug-tracking system available at
L<http://rt.cpan.org>.
The source for the development version of the module is hosted at
GitHub: L<https://github.com/salva/p5-Math-Vector-Real>.
=head2 My wishlist
If you like this module and you're feeling generous, take a look at my
wishlist: L<http://amzn.com/w/1WU1P6IR5QZ42>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2009-2012, 2014-2017 by Salvador FandiE<ntilde>o
(sfandino@yahoo.com)
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.10.0 or,
at your option, any later version of Perl 5 you may have available.
=cut
|