File: VectorReal.pm

package info (click to toggle)
libmath-vectorreal-perl 1.02-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 180 kB
  • sloc: perl: 996; makefile: 5
file content (648 lines) | stat: -rw-r--r-- 21,527 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#
# Math::VectorReal     Vector Mathematics 
#
#
# Copyright (c) 2001 Anthony Thyssen. All rights reserved. This program
# is free software; you can redistribute it and/or modify it under the
# same terms as Perl itself.
#
package Math::VectorReal;

=head1 NAME

Math::VectorReal - Module to handle 3D Vector Mathematics

=head1 SYNOPSIS

    #!/usr/bin/perl
    use Math::VectorReal;

    $a = vector( 1, 2, .5 );
    print "Vector as string (MatrixReal default format)\n\$a => ", $a;

    print  $a->stringify("Formated Output   \$a => { %g, %g, %g }\n");

    # I hate newline in the default output format (defined as MatrixReal)
    $Math::VectorReal::FORMAT = "[ %.5f %.5f %.5f ]";
    print "Modified default output format   \$a => $a\n";

    print 'length     => ', $a->length, "\n";
    print 'normalised => ', $a->norm, "\n";

    use Math::VectorReal qw(:all);  # Include O X Y Z axis constant vectors
    print 'string concat   $a."**" = ', $a."**", "\n";
    print 'vector constant    X    = ',   X,    "\n";
    print 'subtraction     $a - Z  = ', $a - Z, "\n";
    print 'scalar divide   $a / 3  = ', $a / 3, "\n";
    print 'dot product     $a . Y  = ', $a . Y, "\n";
    print 'cross product   $a x Y  = ', $a x Y, "\n";

    print "Plane containing points X, \$a, Z (in anti-clockwise order)\n";
    ($n,$d) = plane( X, $a, Z ); # return normal and disance from O
    print '      normal      =    $n     = ', $n, "\n";
    print '  disance from O  =    $d     = ', $d, "\n";
    print ' Y axis intersect = $d/($n.Y) = ', $d/($n.Y), "\n";

    print "VectorReal and MatrixReal interaction\n\n";
    use Math::MatrixReal;  # Not required for pure vector math as above

    $r = $a->vector2matrix_row;  # convert to MatrixReal Row Vector
    $c = $a->vector2matrix_col;  # convert to MatrixReal Column Vector
    print 'Vector as a MatrixReal Row $r (vector -> matrix) => ', "\n", $r;
    print 'Vector as a MatrixReal Col $c (vector -> matrix) => ', "\n", $c;

    $nx = $a->norm;   $ny = $nx x Z;  $nz = $nx x $ny; # orthogonal vectors
    $R = vector_matrix( $nx, $ny, $nz );   # make the rotation matrix
    print 'Rotation Matrix from 3 Vectors   $R   => ',"\n", $R, "\n";

    print "Extract the Y row from the matrix as a VectorReal..\n";
    print '$R->matrix_row2vector(1) => ', $R->matrix_row2vector(1), "\n";

    print "Rotate a vector with above rotation matrix\n";
    print '$a * $R (vector -> vector)',"\n", $a * $R, "\n";

    print "Rotate a MatrixReal column (post multiply)...\n";
    print "(NB: matrix must be transposed (~) to match column format)\n";
    print '~$R * $c (col_matrix -> col_matrix) =>',"\n", ~$R * $c, "\n";

=head1 DESCRIPTION

The C<Math::VectorReal> package defines a 3D mathematical "vector", in a way
that is compatible with the previous CPAN module C<Math::MatrixReal>. However
it provides a more vector oriented set of mathematical functions and overload
operators, to the C<MatrixReal> package.  For example the normal perl string
functions "x" and "." have been overloaded to allow vector cross and dot
product operations. Vector math formula thus looks like vector math formula in
perl programs using this package.

While this package is compatible with Math::MatrixReal, you DO NOT need to
have that package to perform purely vector orientated calculations. You will
need it however if you wish to do matrix operations with these vectors. The
interface has been designed with this package flexibility in mind.

The vectors are defined in the same way as a "row" C<Math::MatrixReal> matrix,
instead of that packages choice of "column" definition for vector operations.
Such vectors are multiplied to matices with the vector on the left and the
matrix on the right. EG:   v * M -> 'v

Not only is this the way I prefer to handle vectors, but it is the way most
graphics books use vectors. As a bonus it results in no overload conflicts
between this package and that of Math::MatrixReal, (the left objects overload
operator is called to do the mathematics). It also is a lot simpler than
C<MatrixReal> column vector methods, which were designed for equation solving
rather than 3D geometry operations.

The  vector_matrix()  function provided, simplifies the creation a
C<MatrixReal> object from 3 (usually orthogonal) vectors. This with its vector
orientated math operators makes it very easy to define orthogonal rotation
matrices from C<Math::VectorReal> objects.  See a rough example in the
synopsis above, or in the file "matrix_test" in the packages source.

NOTE: the 6th element the C<Math::MatrixReal> array object is used to hold the
length of the vector so that it can be re-used without needing to be
re-calculated all the time. This means the expensive sqrt() function, need not
be called unless nessary.  This usage should not effect the direct use of
these objects in the C<Math::MatrixReal> functions.

=cut

use strict;
#require Math::MatrixReal;  # not required!

use strict;
use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $VERSION);
require Exporter;

@ISA = qw(Exporter);

@EXPORT = qw( vector plane vector_matrix );

@EXPORT_OK = qw( O X Y Z );

%EXPORT_TAGS = (
   axis => [ qw( O X Y Z ) ],     # Unix Axis Vector Constants
   all  => [@EXPORT, @EXPORT_OK]
);

$VERSION = '1.0';

use Carp;
use vars qw( $FORMAT $TRACE );
$TRACE = 0;
$FORMAT  = "[ %#19.12E %#19.12E %#19.12E ]\n"; # output format (as MatrixReal)

=head1 CONSTANTS

Four constant vectors are available for export (using an ":all" tag).
these are

    0 = [ 0 0 0 ]   the zero vector or origin
    X = [ 1 0 0 ]   |
    Y = [ 0 1 0 ]    > Unit axis vectors
    Z = [ 0 0 1 ]   |

=cut 

# Constant Vector Functions
# The format is as per a Math::MatrixReal object, with extra length item
sub O() { bless [ [[0,0,0]], 1,3, undef,undef,undef, 0 ], __PACKAGE__; }
sub X() { bless [ [[1,0,0]], 1,3, undef,undef,undef, 1 ], __PACKAGE__; }
sub Y() { bless [ [[0,1,0]], 1,3, undef,undef,undef, 1 ], __PACKAGE__; }
sub Z() { bless [ [[0,0,1]], 1,3, undef,undef,undef, 1 ], __PACKAGE__; }

=head1 CONSTRUCTORS

=over 4

=item new(x,y,z)

Create a new vector with the values of C<x>, C<y>, C<z> returning the
appropriate object.

=item vector(x,y,z)

As C<new> but is a exported function which does not require a package
reference to create a C<Math::VectorReal> object.

=item clone()

Return a completely new copy of the referring C<Math::VectorReal> object.

=back

=cut

sub new {  # typical object creation (not many checks)
  croak "Usage: \$vector = ".__PACKAGE__."->new(x,y,z);\n" unless @_;
  my $ref = shift;
  return bless [ [[ @_ ]], 1,3 ], ref $ref || $ref;
}


sub vector {  # normal way to create a vector - Exported function
              # This works as both a Object Method or Exported Function
  croak "Usage: \$vector = ".__PACKAGE__."->vector(x,y,z);\n".
        "  or   \$vector = vector(x,y,z);\n"
                          unless @_ == 3  ||  @_ == 4 && ref $_[0];
  my $class = __PACKAGE__;
  $class = ref shift  if @_ == 4;
  return $class->new(@_);
}

sub clone {
  croak "Usage: \$vector_copy = \$vector->clone;\n" unless @_ == 1;
  my $v = shift;
  my $c = $v->new( $v->array );          # create a new vector using values
  $c->[6] = $v->[6] if defined $v->[6];  # also note its length (if known)
  return $c;
}

=head1 METHODS

=over 4

=item array()

Return the x,y,z elements of the referring vector are an array of values.

=item x()

Return the x element of the referring vector.

=item y()

Return the y element of the referring vector.

=item z()

Return the z element of the referring vector.

=item stringify( [ FORMAT ] )

Return the referring verctor as a string. The C<FORMAT> if given is used
to sprintf format the vector. This is used for all VectorReal to String
conversions.

By default this format is the same as it would be for a C<Math::MatrixReal>
object, "[ %#19.12E %#19.12E %#19.12E ]\n".  Note that this includes a newline
character!.

However unlike C<Math::MatrixReal> you can assign a new default sprintf
format by assigning it to the packages C<$FORMAT> variable. For Example

   $Math::VectorReal::FORMAT = "{ %g, %g, %g }"

Which is a good format to output vectors for use by the POVray (Persistence of
Vision Raytracer) program.

=item length()

Return the length of the given vector. As a side effect the length is saved
into that vectors object to avoid the use of the expensive sqrt() function.

=item norm()

Normalise the Vector. That is scalar divide the vector by its length, so that
it becomes of length one.  Normal vectors are commonly use to define
directions, without scale, or orientation of a 3 dimensional plane.

=cut

sub array {   # return vector as an array of values
  my $v = shift;
  return @{$v->[0][0]};
}

sub x {
  my $v = shift;
  return ($v->array)[0];
}

sub y {
  my $v = shift;
  return ($v->array)[1];
}

sub z {
  my $v = shift;
  return ($v->array)[2];
}

sub stringify {   # convert a vector to a string (with optional format)
  my( $v, $fmt ) = @_;
  $fmt = $FORMAT   unless defined $fmt;  # if not given use current default
  return sprintf $fmt, $v->array;
}

sub length {   # convert a vector to a string
  my $v = shift;
  return $v->[6] if defined $v->[6];
  return $v->[6] = sqrt( $v.$v );
}

sub norm {   # scale vector to a length of one
  my $v = shift;
  return $v / $v->length;
}

=item plane( v1, v2, v3 )

Given three points defined counter clockwise on a plane, return an array in
which the first element is the planes normal unit vector, and the second its
distance from the origin, along that vector.  NOTE: the distance may be
negitive, in which case the origon is above the defined plane in 3d space.

=cut

sub plane { # Given three points on the plane (right-hand rule)
            # return a normal vector and distance from origin for a plane
  croak "Usage: (\$normal, \$distance) = plane(\$p1,\$p2,\$p3);\n"
                                                         unless @_ == 3;
  my ($a, $b, $c) = @_;
  my $normal = (($b - $a) x ($c - $b))->norm;
  return ( $normal, $a . $normal );
}

=item vector_matrix( nx, ny, nz )

Given the new location for the X, Y and Z vectors, concatanate them together
(row wise) to create a C<Math::MatrixReal> translation matrix. For example
if the 3 vectors are othogonal to each other, the matrix created will be
a rotation matrix to rotate the X, Y and Z axis to the given vectors. See
above for an example.

=cut

sub vector_matrix {
  my( $nx, $ny, $nz ) = @_;
  bless [ [[$nx->array],
           [$ny->array],
           [$nz->array]], 3, 3 ],  "Math::MatrixReal";
}

# ------------------------------------------------------------------
# Convertsions between Math::MatrixReal and Math::VectorReal packages

=back

=head1 VECTOR/MATRIX CONVERSION

The following functions provide links between the C<Math::VectorReal> and
C<Math::MatrixReal> packages.

NOTE: While this package is closely related to C<Math::MatrixReal>, it does
NOT require that that package to be installed unless you actually want to
perform matrix operations.

Also the overload operations will automatically handle vector/matrix
mathematics (See below).

=head2 Vector to Matrix Conversion

=over 4

=item vector2matrix_row( [CLASS] )

=item vector2matrix_col( [CLASS] )

Convert C<Math::VectorReal> objects to a C<Math::MatrixReal> objects.
Optional argument defines the object class to be returned (defaults to
C<Math::MatrixReal>).

Note that as a C<Math::VectorReal> is internally equivelent to a
C<Math::MatrixReal> row matrix, C<vector2matrix_row> is essentually just a
bless operation, which is NOT required to use with C<Math::MatrixReal>
functions.

The C<vector2matrix_col> performs the required transpose to convert the
C<Math::VectorReal> object into a C<Math::MatrixReal> version of a vector (a
column matrix).

=back

=cut

sub vector2matrix_row {
  my( $v, $ref ) = @_;
  $ref ||= "Math::MatrixReal";
  bless $v->clone,  ref $ref || $ref;  # clone and bless (object unchanged)
}

sub vector2matrix_col {
  my( $v, $ref ) = @_;
  $ref ||= "Math::MatrixReal";
  my @v = $v->array;
  bless [ [[$v[0]],[$v[1]],[$v[2]]], 3, 1 ], ref $ref || $ref;
}

=head2 Matrix to Vector Conversion

=over 4

=item matrix_row2vector( [ROW] )

=item matrix_col2vector( [COLUMN] )

When referred to by a C<Math::MatrixReal> object, extracts the vector
from the matrix. the optional argument defines which row or column of the
matrix is to be extracted as a C<Math::VectorReal> vector.

=cut

{  # Enclose MartixReal package in a block
package Math::MatrixReal; # Fake a change into the Math::MatrixReal package
use Carp;                 # import carp into this package

sub matrix_row2vector {
  my $m = shift;    my($rows,$cols) = ($m->[1],$m->[2]);
  my $r = shift;   # optional, which column from matrix
  croak "Error: matrix does not have 3D rows" unless ($cols == 3);
  if ( defined $r ) {
    croak "Error: matrix does not have that row" unless ( $r < $rows);
  }
  else {    # if no option, it must be a Math::MatrixReal Row Vector
    croak "Error: matrix given to matrix_row2vector is not a 3D row matrix"
           unless ($rows == 1);
    $r = 0;
  }
  return Math::VectorReal->new(@{$m->[0][$r]}); # same result, only cleaned up
}

sub matrix_col2vector {
  my $m = shift;    my($rows,$cols) = ($m->[1],$m->[2]);
  my $c = shift;   # optional, which column from matrix
  croak "Error: matrix does not have 3D rows" unless ($rows == 3);
  if ( defined $c ) {
    croak "Error: matrix does not have that column" unless ( $c < $cols);
  }
  else {    # if no option, it must be a Math::MatrixReal Column Vector
    croak "Error: matrix given to matrix_col2vector is not a 3D column matrix"
           unless ($cols == 1);
    $c = 0;
  }
  return Math::VectorReal->new($m->[0][0][$c], $m->[0][1][$c], $m->[0][2][$c]);
}

} # Return to the Math::VectorReal package we are really defining

# ------------------------------------------------------------------
# Overloaded Math functions

=back

=head1 OPERATOR OVERLOADING

Overload operations are provided to perform the usual string conversion,
addition, subtraction, unary minus, scalar multiplation & division.  On top of
this however the multiply have been expanded to look for and execute
C<MatrixReal> multiplation.

The Main purpose of this package however was to provide the special vector
product operations: dot product "." and cross product "x".  In perl these
operations are normally used for string operations, but if either argument
is a C<VectorReal> object, the operation will attempt the approprate
vector math operation instead.

Note however that if one side of the dot "." operator is already a string,
then the vector will be converted to a sting and a string concatantion will be
performed. The cross operator "x" will just croak() as it is non-sensical to
either repeat the string conversion of a vector, OR to repeat a string,
vector, times!

Overloaded operator summery...
    neg     unary minus - multiply vector by -1
     ""     automatic string conversion using stringify() function
      +     vector addition
      -     vector subtraction
      /     scalar division (left argument must be the vector)
      *     scalar multiplication OR MatrixReal multiplication
      x     vector/cross product of two vectors
      .     dot product of two vectors OR vector/string concatanation

Possible future addition   '~'  to transpose a C<VectorReal> into a
C<MatrixReal> column vector (as per that operator on C<MatrixReal> objects).
It was not added as it just did not seem to be needed.

=cut

use overload
     'neg' => \&_negate,
      '""' => \&_stringify,
       '+' => \&_addition,
       '-' => \&_subtract,
       '*' => \&_multiply,
       '/' => \&_scalar_divide,
       'x' => \&_cross_product, # Redefination of the string function
       '.' => \&_dot_product,   # These includes stingify/concatanation
'fallback' => undef;


sub _trace {
    return unless $TRACE;
    my($text,$object,$argument,$flip) = @_;
    unless (defined $object)   { $object   = 'undef'; };
    unless (defined $argument) { $argument = 'undef'; };
    unless (defined $flip)     { $flip     = 'undef'; };
    if (ref($object))   { $object   = ref($object);   }
    if (ref($argument)) { $argument = ref($argument); }
    $argument =~ s/\n/\\n/g;
    print "$text: \$obj='$object' \$arg='$argument' \$flip='$flip'\n";
}


sub _negate {
  my($object,$argument,$flip) = @_;
  _trace("'neg'",$object,$argument,$flip);
  my $v = $object->clone;
  for ( 0 .. 2 ) { $v->[0][0][$_] = -$v->[0][0][$_]; }
  # $v->[6]; does not change.
  return $v
}

sub _stringify {
  my($object,$argument,$flip) = @_;
  _trace("'\"\"'",$object,$argument,$flip);
  return $object->stringify;
}


sub _addition {
  # Operation on two vectors, as such $flip will be undefined or false
  # The operation is also communitive - order does not matter.
  my($object,$argument,$flip) = @_;
  _trace("'+'",$object,$argument,$flip);
  if ( (defined $argument) && ref($argument) &&
       (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/) ) {
    my $v = $object->clone;
    for ( 0 .. 2 ) { $v->[0][0][$_] += $argument->[0][0][$_]; }
    $#{$v} = 2;   # any cached vector length is now invalid
    return $v;
  }
  croak("non-vector argument for '+'");
}


sub _subtract {
  my($object,$argument,$flip) = @_;
  _trace("'-'",$object,$argument,$flip);
  # Operation on two vectors, as such $flip will be undefined or false
  # Note; however this is not communitive - order matters
  if ( (defined $argument) && ref($argument) &&
       (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/) ) {
    my $v = $object->clone;
    for ( 0 .. 2 ) { $v->[0][0][$_] -= $argument->[0][0][$_]; }
    $#{$v} = 2;    # any cached vector length is now invalid
    return $v;
  }
  croak("non-vector argument for '-'");
}


sub _multiply {
  my($object,$argument,$flip) = @_;
  _trace("'*'",$object,$argument,$flip);
  if ( ref($argument) ) {
    # Assume multiply by  Math::MatrixReal object  EG:  $v * $M --> $new_v
    # Order is communicative, but $flip should NOT be true
    if ( ! $flip ) {
      return ( $object->vector2matrix_row($argument)
                        * $argument )->matrix_row2vector;
    } else { # just in case flip is true..
      return ( $argument *
                $object->vector2matrix_row($argument) )->matrix_row2vector;
    }
  }
  elsif ( defined $argument ) {
    # defined $argument must be a scalar, so Scalar Multiply
    # Communitive - order does not matter, $flip can be ignored
    my $v = $object->clone;
    for ( 0 .. 2 ) { $v->[0][0][$_] *= $argument; }
    $v->[6] *= abs($argument) if defined $v->[6]; # multiply vector length
    return $v;
  }
  croak("undefined argument given for vector multiply");
}


sub _scalar_divide {
  my($object,$argument,$flip) = @_;
  _trace("'/'",$object,$argument,$flip);
  # The order is very important, you can NOT divide a scalar by a vector
  croak("You can not divide a scalar by a vector") if $flip;
  # The provided $argument must be a defined scalar
  if ( (defined $argument) && ! ref($argument)  ) {
    my $v = $object->clone;
    for ( 0 .. 2 ) { $v->[0][0][$_] /= $argument; }
    $v->[6] /= abs($argument) if defined $v->[6]; # do vector length
    return $v;
  }
  croak("non-scalar given for vector scalar divide");
}


sub _cross_product {
  my($object,$argument,$flip) = @_;
  # Operation on two vectors, as such $flip will be undefined or false
  # Note: however this is not communitive - order does matters
  _trace("'x'",$object,$argument,$flip);
  if ( (defined $argument) && ref($argument) &&
       (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/) ) {
    my $v = $object->new;
    my @o = $object->array;
    my @a = $argument->array;
    @{$v->[0][0]} = ( $o[1]*$a[2] - $o[2]*$a[1],
                      $o[2]*$a[0] - $o[0]*$a[2],
                      $o[0]*$a[1] - $o[1]*$a[0] );
    $#{$v} = 2;    # any cached vector length is now invalid
    return $v;
  }
  croak("string 'x' with a vector does not make sense!");
}


sub _dot_product {
  my($object,$argument,$flip) = @_;
  if ( (defined $argument) && ref($argument) &&
       (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/) ) {
    # Operation on two vectors, and communitive - order does not matter
    _trace("'.'",$object,$argument,$flip);
    my $v = 0;   # result is NOT an object, but a scalar
    for ( 0 .. 2 ) { $v +=  $object->[0][0][$_] * $argument->[0][0][$_]; }
    return $v;
  }
  # Argument is NOT a vector! Assume String concatenation wanted
  elsif ( defined $flip ) {
    if ( $flip ) {
      _trace("'.\"\"'",$object,$argument,$flip);
      return $argument . $object->stringify;
    } else {
      _trace("'\"\".'",$object,$argument,$flip);
      return $object->stringify . $argument;
    }
  }
  # concatenate a string to a vector
  _trace("'.='",$object,$argument,$flip);
  return $object->stringify . $argument;
  # Concatenate a vector to string is handled automatically with '""' operator
}

1;
# ------------------------------------------------------------------

=head1 SEE ALSO

The C<Math::MatrixReal> CPAN Module by   Steffen Beyer
and the C<Math::MatrixReal-Ext1> CPAN extension by  Mike South

=head1 AUTHOR

Anthony Thyssen E<lt>F<anthony@cit.gu.edu.au>E<gt>

=head1 COPYRIGHT

Copyright (c) 2001 Anthony Thyssen. All rights reserved. This program is free
software; you can redistribute it and/or modify it under the same terms as
Perl itself. I would appreciate any suggestions however.

=cut