1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
/*
* The GOST 28147-89 cipher
*
* This is based on the 25 Movember 1993 draft translation
* by Aleksandr Malchik, with Whitfield Diffie, of the Government
* Standard of the U.S.S.R. GOST 28149-89, "Cryptographic Transformation
* Algorithm", effective 1 July 1990. (Whitfield.Diffie@eng.sun.com)
*
* That is a draft, and may contain errors, which will be faithfully
* reflected here, along with possible exciting new bugs.
*
* Some details have been cleared up by the paper "Soviet Encryption
* Algorithm" by Josef Pieprzyk and Leonid Tombak of the University
* of Wollongong, New South Wales. (josef/leo@cs.adfa.oz.au)
*
* The standard is written by A. Zabotin (project leader), G.P. Glazkov,
* and V.B. Isaeva. It was accepted and introduced into use by the
* action of the State Standards Committee of the USSR on 2 June 89 as
* No. 1409. It was to be reviewed in 1993, but whether anyone wishes
* to take on this obligation from the USSR is questionable.
*
* This code is placed in the public domain.
*/
/* modified in order to use the libmcrypt API by Nikos Mavroyanopoulos
* All modifications are placed under the license of libmcrypt.
*/
/* $Id: gost.c,v 1.13 2003/01/19 17:48:27 nmav Exp $ */
/*
* If you read the standard, it belabors the point of copying corresponding
* bits from point A to point B quite a bit. It helps to understand that
* the standard is uniformly little-endian, although it numbers bits from
* 1 rather than 0, so bit n has value 2^(n-1). The least significant bit
* of the 32-bit words that are manipulated in the algorithm is the first,
* lowest-numbered, in the bit string.
*/
#include <libdefs.h>
#include <mcrypt_modules.h>
#define _mcrypt_set_key gost_LTX__mcrypt_set_key
#define _mcrypt_encrypt gost_LTX__mcrypt_encrypt
#define _mcrypt_decrypt gost_LTX__mcrypt_decrypt
#define _mcrypt_get_size gost_LTX__mcrypt_get_size
#define _mcrypt_get_block_size gost_LTX__mcrypt_get_block_size
#define _is_block_algorithm gost_LTX__is_block_algorithm
#define _mcrypt_get_key_size gost_LTX__mcrypt_get_key_size
#define _mcrypt_get_supported_key_sizes gost_LTX__mcrypt_get_supported_key_sizes
#define _mcrypt_get_algorithms_name gost_LTX__mcrypt_get_algorithms_name
#define _mcrypt_self_test gost_LTX__mcrypt_self_test
#define _mcrypt_algorithm_version gost_LTX__mcrypt_algorithm_version
void _mcrypt_kboxinit(void);
/*
* The standard does not specify the contents of the 8 4 bit->4 bit
* substitution boxes, saying they're a parameter of the network
* being set up. For illustration purposes here, I have used
* the first rows of the 8 S-boxes from the DES. (Note that the
* DES S-boxes are numbered starting from 1 at the msb. In keeping
* with the rest of the GOST, I have used little-endian numbering.
* Thus, k8 is S-box 1.
*
* Obviously, a careful look at the cryptographic properties of the cipher
* must be undertaken before "production" substitution boxes are defined.
*
* The standard also does not specify a standard bit-string representation
* for the contents of these blocks.
*/
/* These are NOT the original s-boxes. I replaced them with the ones
* found in Applied Cryptography book by Bruce Schneier. These were
* used in an application for the Central Bank of the Russian Federation
* --Nikos
*/
static int init = 0;
static unsigned char const gost_k1[16] = {
1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 2
};
static unsigned char const gost_k2[16] = {
13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12
};
static unsigned char const gost_k3[16] = {
4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14
};
static unsigned char const gost_k4[16] = {
6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2
};
static unsigned char const gost_k5[16] = {
7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3
};
static unsigned char const gost_k6[16] = {
5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11
};
static unsigned char const gost_k7[16] = {
14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9
};
static unsigned char const gost_k8[16] = {
4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3
};
/* Byte-at-a-time substitution boxes */
static unsigned char gost_k87[256];
static unsigned char gost_k65[256];
static unsigned char gost_k43[256];
static unsigned char gost_k21[256];
/*
* Build byte-at-a-time subtitution tables.
* This must be called once for global setup.
*/
WIN32DLL_DEFINE int _mcrypt_set_key(word32 * inst, word32 * key, int len)
{
_mcrypt_kboxinit();
inst[0] = 0;
inst[1] = 0;
inst[2] = 0;
inst[3] = 0;
inst[4] = 0;
inst[5] = 0;
inst[6] = 0;
inst[7] = 0;
memmove(inst, key, len);
#ifdef WORDS_BIGENDIAN
inst[0] = byteswap32(inst[0]);
inst[1] = byteswap32(inst[1]);
inst[2] = byteswap32(inst[2]);
inst[3] = byteswap32(inst[3]);
inst[4] = byteswap32(inst[4]);
inst[5] = byteswap32(inst[5]);
inst[6] = byteswap32(inst[6]);
inst[7] = byteswap32(inst[7]);
#endif
return 0;
}
void _mcrypt_kboxinit(void)
{
int i;
if (init == 0) {
init = 1;
for (i = 0; i < 256; i++) {
gost_k87[i] = gost_k8[i >> 4] << 4 | gost_k7[i & 15];
gost_k65[i] = gost_k6[i >> 4] << 4 | gost_k5[i & 15];
gost_k43[i] = gost_k4[i >> 4] << 4 | gost_k3[i & 15];
gost_k21[i] = gost_k2[i >> 4] << 4 | gost_k1[i & 15];
}
}
}
/*
* Do the substitution and rotation that are the core of the operation,
* like the expansion, substitution and permutation of the DES.
* It would be possible to perform DES-like optimisations and store
* the table entries as 32-bit words, already rotated, but the
* efficiency gain is questionable.
*
* This should be inlined for maximum speed
*/
static word32 f(word32 x)
{
/* Do substitutions */
# if 0
/* This is annoyingly slow */
x = k8[x >> 28 & 15] << 28 | k7[x >> 24 & 15] << 24 |
k6[x >> 20 & 15] << 20 | k5[x >> 16 & 15] << 16 |
k4[x >> 12 & 15] << 12 | k3[x >> 8 & 15] << 8 |
k2[x >> 4 & 15] << 4 | k1[x & 15];
# else
/* This is faster */
x = gost_k87[x >> 24 & 255] << 24 | gost_k65[x >> 16 & 255] << 16 |
gost_k43[x >> 8 & 255] << 8 | gost_k21[x & 255];
# endif
/* Rotate left 11 bits */
return x << 11 | x >> (32 - 11);
}
/*
* The GOST standard defines the input in terms of bits 1..64, with
* bit 1 being the lsb of in[0] and bit 64 being the msb of in[1].
*
* The keys are defined similarly, with bit 256 being the msb of key[7].
*/
WIN32DLL_DEFINE void _mcrypt_encrypt(word32 const key[8], word32 * in)
{
register word32 n1, n2; /* As named in the GOST */
/* Added to make it compatible with bigendian machines
* --nikos
*/
#ifndef WORDS_BIGENDIAN
n1 = byteswap32(in[0]);
n2 = byteswap32(in[1]);
#else
n1 = in[0];
n2 = in[1];
#endif
/* Instead of swapping halves, swap names each round */
n2 ^= f(n1 + key[0]);
n1 ^= f(n2 + key[1]);
n2 ^= f(n1 + key[2]);
n1 ^= f(n2 + key[3]);
n2 ^= f(n1 + key[4]);
n1 ^= f(n2 + key[5]);
n2 ^= f(n1 + key[6]);
n1 ^= f(n2 + key[7]);
n2 ^= f(n1 + key[0]);
n1 ^= f(n2 + key[1]);
n2 ^= f(n1 + key[2]);
n1 ^= f(n2 + key[3]);
n2 ^= f(n1 + key[4]);
n1 ^= f(n2 + key[5]);
n2 ^= f(n1 + key[6]);
n1 ^= f(n2 + key[7]);
n2 ^= f(n1 + key[0]);
n1 ^= f(n2 + key[1]);
n2 ^= f(n1 + key[2]);
n1 ^= f(n2 + key[3]);
n2 ^= f(n1 + key[4]);
n1 ^= f(n2 + key[5]);
n2 ^= f(n1 + key[6]);
n1 ^= f(n2 + key[7]);
n2 ^= f(n1 + key[7]);
n1 ^= f(n2 + key[6]);
n2 ^= f(n1 + key[5]);
n1 ^= f(n2 + key[4]);
n2 ^= f(n1 + key[3]);
n1 ^= f(n2 + key[2]);
n2 ^= f(n1 + key[1]);
n1 ^= f(n2 + key[0]);
/* There is no swap after the last round */
#ifndef WORDS_BIGENDIAN
in[0] = byteswap32(n2);
in[1] = byteswap32(n1);
#else
in[0] = n2;
in[1] = n1;
#endif
}
/*
* The key schedule is somewhat different for decryption.
* (The key table is used once forward and three times backward.)
* You could define an expanded key, or just write the code twice,
* as done here.
*/
WIN32DLL_DEFINE void _mcrypt_decrypt(word32 const key[8], word32 * in)
{
register word32 n1, n2; /* As named in the GOST */
#ifndef WORDS_BIGENDIAN
n1 = byteswap32(in[0]);
n2 = byteswap32(in[1]);
#else
n1 = in[0];
n2 = in[1];
#endif
n2 ^= f(n1 + key[0]);
n1 ^= f(n2 + key[1]);
n2 ^= f(n1 + key[2]);
n1 ^= f(n2 + key[3]);
n2 ^= f(n1 + key[4]);
n1 ^= f(n2 + key[5]);
n2 ^= f(n1 + key[6]);
n1 ^= f(n2 + key[7]);
n2 ^= f(n1 + key[7]);
n1 ^= f(n2 + key[6]);
n2 ^= f(n1 + key[5]);
n1 ^= f(n2 + key[4]);
n2 ^= f(n1 + key[3]);
n1 ^= f(n2 + key[2]);
n2 ^= f(n1 + key[1]);
n1 ^= f(n2 + key[0]);
n2 ^= f(n1 + key[7]);
n1 ^= f(n2 + key[6]);
n2 ^= f(n1 + key[5]);
n1 ^= f(n2 + key[4]);
n2 ^= f(n1 + key[3]);
n1 ^= f(n2 + key[2]);
n2 ^= f(n1 + key[1]);
n1 ^= f(n2 + key[0]);
n2 ^= f(n1 + key[7]);
n1 ^= f(n2 + key[6]);
n2 ^= f(n1 + key[5]);
n1 ^= f(n2 + key[4]);
n2 ^= f(n1 + key[3]);
n1 ^= f(n2 + key[2]);
n2 ^= f(n1 + key[1]);
n1 ^= f(n2 + key[0]);
#ifndef WORDS_BIGENDIAN
in[0] = byteswap32(n2);
in[1] = byteswap32(n1);
#else
in[0] = n2;
in[1] = n1;
#endif
}
WIN32DLL_DEFINE int _mcrypt_get_size()
{
return 8 * sizeof(word32);
}
WIN32DLL_DEFINE int _mcrypt_get_block_size()
{
return 8;
}
WIN32DLL_DEFINE int _is_block_algorithm()
{
return 1;
}
WIN32DLL_DEFINE int _mcrypt_get_key_size()
{
return 32;
}
static const int key_sizes[] = { 32 };
WIN32DLL_DEFINE const int *_mcrypt_get_supported_key_sizes(int *len)
{
*len = sizeof(key_sizes)/sizeof(int);
return key_sizes;
}
WIN32DLL_DEFINE const char *_mcrypt_get_algorithms_name()
{
return "GOST";
}
#define CIPHER "e498cf78cdf1d4a5"
WIN32DLL_DEFINE int _mcrypt_self_test()
{
char *keyword;
unsigned char plaintext[16];
unsigned char ciphertext[16];
int blocksize = _mcrypt_get_block_size(), j;
void *key;
unsigned char cipher_tmp[200];
keyword = calloc(1, _mcrypt_get_key_size());
if (keyword == NULL)
return -1;
for (j = 0; j < _mcrypt_get_key_size(); j++) {
keyword[j] = ((j * 2 + 10) % 256);
}
for (j = 0; j < blocksize; j++) {
plaintext[j] = j % 256;
}
key = malloc(_mcrypt_get_size());
if (key == NULL) {
free(keyword);
return -1;
}
memcpy(ciphertext, plaintext, blocksize);
_mcrypt_set_key(key, (void *) keyword, _mcrypt_get_key_size());
free(keyword);
_mcrypt_encrypt(key, (void *) ciphertext);
for (j = 0; j < blocksize; j++) {
sprintf(&((char *) cipher_tmp)[2 * j], "%.2x",
ciphertext[j]);
}
if (strcmp((char *) cipher_tmp, CIPHER) != 0) {
printf("failed compatibility\n");
printf("Expected: %s\nGot: %s\n", CIPHER,
(char *) cipher_tmp);
free(key);
return -1;
}
_mcrypt_decrypt(key, (void *) ciphertext);
free(key);
if (strcmp(ciphertext, plaintext) != 0) {
printf("failed internally\n");
return -1;
}
return 0;
}
WIN32DLL_DEFINE word32 _mcrypt_algorithm_version()
{
return 20010801;
}
#ifdef WIN32
# ifdef USE_LTDL
WIN32DLL_DEFINE int main (void)
{
/* empty main function to avoid linker error (see cygwin FAQ) */
}
# endif
#endif
|