1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
/* This is an independent implementation of the encryption algorithm: */
/* */
/* LOKI97 by Brown and Pieprzyk */
/* */
/* which is a candidate algorithm in the Advanced Encryption Standard */
/* programme of the US National Institute of Standards and Technology. */
/* */
/* Copyright in this implementation is held by Dr B R Gladman but I */
/* hereby give permission for its free direct or derivative use subject */
/* to acknowledgment of its origin and compliance with any conditions */
/* that the originators of the algorithm place on its exploitation. */
/* */
/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999 */
/* $Id: loki97.c,v 1.14 2003/01/19 17:48:27 nmav Exp $ */
/* modified in order to use the libmcrypt API by Nikos Mavroyanopoulos
* All modifications are placed under the license of libmcrypt.
*/
/* Timing data for LOKI97 (loki.c)
Core timing without I/O endian conversion:
128 bit key:
Key Setup: 7430 cycles
Encrypt: 2134 cycles = 12.0 mbits/sec
Decrypt: 2192 cycles = 11.7 mbits/sec
Mean: 2163 cycles = 11.8 mbits/sec
192 bit key:
Key Setup: 7303 cycles
Encrypt: 2138 cycles = 12.0 mbits/sec
Decrypt: 2189 cycles = 11.7 mbits/sec
Mean: 2164 cycles = 11.8 mbits/sec
256 bit key:
Key Setup: 7166 cycles
Encrypt: 2131 cycles = 12.0 mbits/sec
Decrypt: 2184 cycles = 11.7 mbits/sec
Mean: 2158 cycles = 11.9 mbits/sec
Full timing with I/O endian conversion:
128 bit key:
Key Setup: 7582 cycles
Encrypt: 2174 cycles = 11.8 mbits/sec
Decrypt: 2235 cycles = 11.5 mbits/sec
Mean: 2205 cycles = 11.6 mbits/sec
192 bit key:
Key Setup: 7477 cycles
Encrypt: 2167 cycles = 11.8 mbits/sec
Decrypt: 2223 cycles = 11.5 mbits/sec
Mean: 2195 cycles = 11.7 mbits/sec
256 bit key:
Key Setup: 7365 cycles
Encrypt: 2177 cycles = 11.8 mbits/sec
Decrypt: 2194 cycles = 11.7 mbits/sec
Mean: 2186 cycles = 11.7 mbits/sec
*/
#include <libdefs.h>
#include <mcrypt_modules.h>
#define _mcrypt_set_key loki97_LTX__mcrypt_set_key
#define _mcrypt_encrypt loki97_LTX__mcrypt_encrypt
#define _mcrypt_decrypt loki97_LTX__mcrypt_decrypt
#define _mcrypt_get_size loki97_LTX__mcrypt_get_size
#define _mcrypt_get_block_size loki97_LTX__mcrypt_get_block_size
#define _is_block_algorithm loki97_LTX__is_block_algorithm
#define _mcrypt_get_key_size loki97_LTX__mcrypt_get_key_size
#define _mcrypt_get_supported_key_sizes loki97_LTX__mcrypt_get_supported_key_sizes
#define _mcrypt_get_algorithms_name loki97_LTX__mcrypt_get_algorithms_name
#define _mcrypt_self_test loki97_LTX__mcrypt_self_test
#define _mcrypt_algorithm_version loki97_LTX__mcrypt_algorithm_version
#define byte(x,n) ((byte)((x) >> (8 * n)))
#define S1_SIZE 13
#define S1_LEN (1 << S1_SIZE)
#define S1_MASK (S1_LEN - 1)
#define S1_HMASK (S1_MASK & ~0xff)
#define S1_POLY 0x2911
#define S2_SIZE 11
#define S2_LEN (1 << S2_SIZE)
#define S2_MASK (S2_LEN - 1)
#define S2_HMASK (S2_MASK & ~0xff)
#define S2_POLY 0x0aa7
word32 delta[2] = { 0x7f4a7c15, 0x9e3779b9 };
byte sb1[S1_LEN]; /* GF(2^11) S box */
byte sb2[S2_LEN]; /* GF(2^11) S box */
word32 prm[256][2];
word32 init_done = 0;
/* word32 l_key[96]; */
#define add_eq(x,y) (x)[1] += (y)[1] + (((x)[0] += (y)[0]) < (y)[0] ? 1 : 0)
#define sub_eq(x,y) xs = (x)[0]; (x)[1] -= (y)[1] + (((x)[0] -= (y)[0]) > xs ? 1 : 0)
word32 ff_mult(word32 a, word32 b, word32 tpow, word32 mpol)
{
word32 r, s, m;
r = s = 0;
m = (1 << tpow);
while (b) {
if (b & 1)
s ^= a;
b >>= 1;
a <<= 1;
if (a & m)
a ^= mpol;
}
return s;
}
void init_tables(void)
{
word32 i, j, v;
/* initialise S box 1 */
for (i = 0; i < S1_LEN; ++i) {
j = v = i ^ S1_MASK;
v = ff_mult(v, j, S1_SIZE, S1_POLY);
sb1[i] = (byte) ff_mult(v, j, S1_SIZE, S1_POLY);
}
/* initialise S box 2 */
for (i = 0; i < S2_LEN; ++i) {
j = v = i ^ S2_MASK;
v = ff_mult(v, j, S2_SIZE, S2_POLY);
sb2[i] = (byte) ff_mult(v, j, S2_SIZE, S2_POLY);
}
/* initialise permutation table */
for (i = 0; i < 256; ++i) {
prm[i][0] =
((i & 1) << 7) | ((i & 2) << 14) | ((i & 4) << 21) |
((i & 8) << 28);
prm[i][1] =
((i & 16) << 3) | ((i & 32) << 10) | ((i & 64) << 17) |
((i & 128) << 24);
}
}
void f_fun(word32 res[2], const word32 in[2], const word32 key[2])
{
word32 i, tt[2], pp[2];
/* tt[0] = in[0] & ~key[0] | in[1] & key[0];
* tt[1] = in[1] & ~key[0] | in[0] & key[0];
*/
tt[0] = (in[0] & ~key[0]) | (in[1] & key[0]);
tt[1] = (in[1] & ~key[0]) | (in[0] & key[0]);
i = sb1[((tt[1] >> 24) | (tt[0] << 8)) & S1_MASK];
pp[0] = prm[i][0] >> 7;
pp[1] = prm[i][1] >> 7;
i = sb2[(tt[1] >> 16) & S2_MASK];
pp[0] |= prm[i][0] >> 6;
pp[1] |= prm[i][1] >> 6;
i = sb1[(tt[1] >> 8) & S1_MASK];
pp[0] |= prm[i][0] >> 5;
pp[1] |= prm[i][1] >> 5;
i = sb2[tt[1] & S2_MASK];
pp[0] |= prm[i][0] >> 4;
pp[1] |= prm[i][1] >> 4;
i = sb2[((tt[0] >> 24) | (tt[1] << 8)) & S2_MASK];
pp[0] |= prm[i][0] >> 3;
pp[1] |= prm[i][1] >> 3;
i = sb1[(tt[0] >> 16) & S1_MASK];
pp[0] |= prm[i][0] >> 2;
pp[1] |= prm[i][1] >> 2;
i = sb2[(tt[0] >> 8) & S2_MASK];
pp[0] |= prm[i][0] >> 1;
pp[1] |= prm[i][1] >> 1;
i = sb1[tt[0] & S1_MASK];
pp[0] |= prm[i][0];
pp[1] |= prm[i][1];
/*
res[0] ^= sb1[byte(pp[0], 0) | (key[1] << 8) & S1_HMASK]
| (sb1[byte(pp[0], 1) | (key[1] << 3) & S1_HMASK] << 8)
| (sb2[byte(pp[0], 2) | (key[1] >> 2) & S2_HMASK] << 16)
| (sb2[byte(pp[0], 3) | (key[1] >> 5) & S2_HMASK] << 24);
res[1] ^= sb1[byte(pp[1], 0) | (key[1] >> 8) & S1_HMASK]
| (sb1[byte(pp[1], 1) | (key[1] >> 13) & S1_HMASK] << 8)
| (sb2[byte(pp[1], 2) | (key[1] >> 18) & S2_HMASK] << 16)
| (sb2[byte(pp[1], 3) | (key[1] >> 21) & S2_HMASK] << 24);
*/
res[0] ^= sb1[byte(pp[0], 0) | ((key[1] << 8) & S1_HMASK)]
| ((sb1[byte(pp[0], 1) | ((key[1] << 3) & S1_HMASK)] << 8))
| ((sb2[byte(pp[0], 2) | ((key[1] >> 2) & S2_HMASK)] << 16))
| ((sb2[byte(pp[0], 3) | ((key[1] >> 5) & S2_HMASK)] << 24));
res[1] ^= sb1[byte(pp[1], 0) | ((key[1] >> 8) & S1_HMASK)]
| ((sb1[byte(pp[1], 1) | ((key[1] >> 13) & S1_HMASK)] << 8))
| ((sb2[byte(pp[1], 2) | ((key[1] >> 18) & S2_HMASK)] << 16))
| ((sb2[byte(pp[1], 3) | ((key[1] >> 21) & S2_HMASK)] << 24));
}
/* 256 bit version only */
WIN32DLL_DEFINE
int _mcrypt_set_key(word32 * l_key, const word32 in_key[],
const word32 key_len)
{
word32 i, k1[2], k2[2], k3[2], k4[2], del[2], tt[2], sk[2];
if (!init_done) {
init_tables();
init_done = 1;
}
#ifdef WORDS_BIGENDIAN
k4[0] = byteswap32(in_key[1]);
k4[1] = byteswap32(in_key[0]);
k3[0] = byteswap32(in_key[3]);
k3[1] = byteswap32(in_key[2]);
#else
k4[0] = (in_key[1]);
k4[1] = (in_key[0]);
k3[0] = (in_key[3]);
k3[1] = (in_key[2]);
#endif
#ifdef WORDS_BIGENDIAN
k2[0] = byteswap32(in_key[5]);
k2[1] = byteswap32(in_key[4]);
k1[0] = byteswap32(in_key[7]);
k1[1] = byteswap32(in_key[6]);
#else
k2[0] = (in_key[5]);
k2[1] = (in_key[4]);
k1[0] = (in_key[7]);
k1[1] = (in_key[6]);
#endif
del[0] = delta[0];
del[1] = delta[1];
for (i = 0; i < 48; ++i) {
tt[0] = k1[0];
tt[1] = k1[1];
add_eq(tt, k3);
add_eq(tt, del);
add_eq(del, delta);
sk[0] = k4[0];
sk[1] = k4[1];
k4[0] = k3[0];
k4[1] = k3[1];
k3[0] = k2[0];
k3[1] = k2[1];
k2[0] = k1[0];
k2[1] = k1[1];
k1[0] = sk[0];
k1[1] = sk[1];
f_fun(k1, tt, k3);
l_key[i + i] = k1[0];
l_key[i + i + 1] = k1[1];
}
return 0;
}
#define r_fun(l,r,k) \
add_eq((l),(k)); \
f_fun((r),(l),(k) + 2); \
add_eq((l), (k) + 4)
WIN32DLL_DEFINE void _mcrypt_encrypt(word32 * l_key, word32 * _blk)
{
word32 blk[4];
#ifdef WORDS_BIGENDIAN
blk[3] = byteswap32(_blk[0]);
blk[2] = byteswap32(_blk[1]);
blk[1] = byteswap32(_blk[2]);
blk[0] = byteswap32(_blk[3]);
#else
blk[3] = (_blk[0]);
blk[2] = (_blk[1]);
blk[1] = (_blk[2]);
blk[0] = (_blk[3]);
#endif
r_fun(blk, blk + 2, l_key + 0);
r_fun(blk + 2, blk, l_key + 6);
r_fun(blk, blk + 2, l_key + 12);
r_fun(blk + 2, blk, l_key + 18);
r_fun(blk, blk + 2, l_key + 24);
r_fun(blk + 2, blk, l_key + 30);
r_fun(blk, blk + 2, l_key + 36);
r_fun(blk + 2, blk, l_key + 42);
r_fun(blk, blk + 2, l_key + 48);
r_fun(blk + 2, blk, l_key + 54);
r_fun(blk, blk + 2, l_key + 60);
r_fun(blk + 2, blk, l_key + 66);
r_fun(blk, blk + 2, l_key + 72);
r_fun(blk + 2, blk, l_key + 78);
r_fun(blk, blk + 2, l_key + 84);
r_fun(blk + 2, blk, l_key + 90);
#ifdef WORDS_BIGENDIAN
_blk[3] = byteswap32(blk[2]);
_blk[2] = byteswap32(blk[3]);
_blk[1] = byteswap32(blk[0]);
_blk[0] = byteswap32(blk[1]);
#else
_blk[3] = (blk[2]);
_blk[2] = (blk[3]);
_blk[1] = (blk[0]);
_blk[0] = (blk[1]);
#endif
}
#define ir_fun(l,r,k) \
sub_eq((l),(k) + 4); \
f_fun((r),(l),(k) + 2); \
sub_eq((l),(k))
WIN32DLL_DEFINE void _mcrypt_decrypt(word32 * l_key, word32 * _blk)
{
word32 xs, blk[4];
#ifdef WORDS_BIGENDIAN
blk[3] = byteswap32(_blk[0]);
blk[2] = byteswap32(_blk[1]);
blk[1] = byteswap32(_blk[2]);
blk[0] = byteswap32(_blk[3]);
#else
blk[3] = (_blk[0]);
blk[2] = (_blk[1]);
blk[1] = (_blk[2]);
blk[0] = (_blk[3]);
#endif
ir_fun(blk, blk + 2, l_key + 90);
ir_fun(blk + 2, blk, l_key + 84);
ir_fun(blk, blk + 2, l_key + 78);
ir_fun(blk + 2, blk, l_key + 72);
ir_fun(blk, blk + 2, l_key + 66);
ir_fun(blk + 2, blk, l_key + 60);
ir_fun(blk, blk + 2, l_key + 54);
ir_fun(blk + 2, blk, l_key + 48);
ir_fun(blk, blk + 2, l_key + 42);
ir_fun(blk + 2, blk, l_key + 36);
ir_fun(blk, blk + 2, l_key + 30);
ir_fun(blk + 2, blk, l_key + 24);
ir_fun(blk, blk + 2, l_key + 18);
ir_fun(blk + 2, blk, l_key + 12);
ir_fun(blk, blk + 2, l_key + 6);
ir_fun(blk + 2, blk, l_key);
#ifdef WORDS_BIGENDIAN
_blk[3] = byteswap32(blk[2]);
_blk[2] = byteswap32(blk[3]);
_blk[1] = byteswap32(blk[0]);
_blk[0] = byteswap32(blk[1]);
#else
_blk[3] = (blk[2]);
_blk[2] = (blk[3]);
_blk[1] = (blk[0]);
_blk[0] = (blk[1]);
#endif
}
WIN32DLL_DEFINE int _mcrypt_get_size()
{
return 96 * sizeof(word32);
}
WIN32DLL_DEFINE int _mcrypt_get_block_size()
{
return 16;
}
WIN32DLL_DEFINE int _is_block_algorithm()
{
return 1;
}
WIN32DLL_DEFINE int _mcrypt_get_key_size()
{
return 32;
}
static const int key_sizes[] = { 16, 24, 32 };
WIN32DLL_DEFINE const int *_mcrypt_get_supported_key_sizes(int *len)
{
*len = sizeof(key_sizes)/sizeof(int);
return key_sizes;
}
WIN32DLL_DEFINE char *_mcrypt_get_algorithms_name()
{
return "LOKI97";
}
#define CIPHER "8cb28c958024bae27a94c698f96f12a9"
WIN32DLL_DEFINE int _mcrypt_self_test()
{
char *keyword;
unsigned char plaintext[16];
unsigned char ciphertext[16];
int blocksize = _mcrypt_get_block_size(), j;
void *key;
unsigned char cipher_tmp[200];
keyword = calloc(1, _mcrypt_get_key_size());
if (keyword == NULL)
return -1;
for (j = 0; j < _mcrypt_get_key_size(); j++) {
keyword[j] = ((j * 2 + 10) % 256);
}
for (j = 0; j < blocksize; j++) {
plaintext[j] = j % 256;
}
key = malloc(_mcrypt_get_size());
if (key == NULL) {
free(keyword);
return -1;
}
memcpy(ciphertext, plaintext, blocksize);
_mcrypt_set_key(key, (void *) keyword, _mcrypt_get_key_size());
free(keyword);
_mcrypt_encrypt(key, (void *) ciphertext);
for (j = 0; j < blocksize; j++) {
sprintf(&((char *) cipher_tmp)[2 * j], "%.2x",
ciphertext[j]);
}
if (strcmp((char *) cipher_tmp, CIPHER) != 0) {
printf("failed compatibility\n");
printf("Expected: %s\nGot: %s\n", CIPHER,
(char *) cipher_tmp);
free(key);
return -1;
}
_mcrypt_decrypt(key, (void *) ciphertext);
free(key);
if (strcmp(ciphertext, plaintext) != 0) {
printf("failed internally\n");
return -1;
}
return 0;
}
WIN32DLL_DEFINE word32 _mcrypt_algorithm_version()
{
return 20010801;
}
#ifdef WIN32
# ifdef USE_LTDL
WIN32DLL_DEFINE int main (void)
{
/* empty main function to avoid linker error (see cygwin FAQ) */
}
# endif
#endif
|