File: panama.c

package info (click to toggle)
libmcrypt 2.5.8-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,060 kB
  • sloc: ansic: 15,868; sh: 8,579; makefile: 196
file content (700 lines) | stat: -rw-r--r-- 19,854 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
/* panama_x.c */

/* $Id: panama.c,v 1.21 2003/01/19 17:48:27 nmav Exp $ */

/* daemen.j@protonworld.com */
/**************************************************************************+
*
*  PANAMA high-performance reference C-code, based on the description in 
*  the paper 'Fast Hashing and Stream Encryption with PANAMA', presented 
*  at the Fast Software Encryption Workshop, Paris, 1998, see "Fast 
*  Software Encryption - 5th International Workshop, FSE'98", edited by 
*  Serge Vaudenay, LNCS-1372, Springer-Verlag, 1998, pp 60-74, also 
*  available on-line at http://standard.pictel.com/ftp/research/security
*
*  Algorithm design by Joan Daemen and Craig Clapp
*
*  panama_x.c  -  Core routines for the Panama stream/hash module, this 
*                 exportable version excludes an encryption routine.
*
*
*  History:
*
*  29-Oct-98  Craig Clapp  Implemention for Dr. Dobbs, Dec. 1998 issue, 
*                          based on earlier performance-benchmark code.
*
*
*  Notes:  This code is supplied for the purposes of evaluating the 
*          performance of the Panama stream/hash module and as a 
*          reference implementation for generating test vectors for 
*          compatibility / interoperability verification.
*
*
+**************************************************************************/

/* modified in order to use the libmcrypt API by Nikos Mavroyanopoulos 
 * All modifications are placed under the license of libmcrypt.
 */

#include <libdefs.h>

#include <mcrypt_modules.h>
#include "panama.h"


#define _mcrypt_set_key panama_LTX__mcrypt_set_key
#define _mcrypt_encrypt panama_LTX__mcrypt_encrypt
#define _mcrypt_decrypt panama_LTX__mcrypt_decrypt
#define _mcrypt_get_size panama_LTX__mcrypt_get_size
#define _mcrypt_get_block_size panama_LTX__mcrypt_get_block_size
#define _is_block_algorithm panama_LTX__is_block_algorithm
#define _mcrypt_get_key_size panama_LTX__mcrypt_get_key_size
#define _mcrypt_get_algo_iv_size panama_LTX__mcrypt_get_algo_iv_size
#define _mcrypt_get_supported_key_sizes panama_LTX__mcrypt_get_supported_key_sizes
#define _mcrypt_get_algorithms_name panama_LTX__mcrypt_get_algorithms_name
#define _mcrypt_self_test panama_LTX__mcrypt_self_test
#define _mcrypt_algorithm_version panama_LTX__mcrypt_algorithm_version

/**************************************************************************+
*                         Panama internal routines                         *
+**************************************************************************/

/* tau, rotate  word 'a' to the left by rol_bits bit positions */

#define tau(a, rol_bits)  ROTL32(a, rol_bits)

/**************************************************************************/

/* move state between memory and local registers */

#define READ_STATE_i(i)   state_##i = state->word[i]
#define WRITE_STATE_i(i)  state->word[i] = state_##i


#define READ_STATE    \
                      \
    READ_STATE_i(0);  \
    READ_STATE_i(1);  \
    READ_STATE_i(2);  \
    READ_STATE_i(3);  \
    READ_STATE_i(4);  \
    READ_STATE_i(5);  \
    READ_STATE_i(6);  \
    READ_STATE_i(7);  \
    READ_STATE_i(8);  \
    READ_STATE_i(9);  \
    READ_STATE_i(10); \
    READ_STATE_i(11); \
    READ_STATE_i(12); \
    READ_STATE_i(13); \
    READ_STATE_i(14); \
    READ_STATE_i(15); \
    READ_STATE_i(16)


#define WRITE_STATE    \
                       \
    WRITE_STATE_i(0);  \
    WRITE_STATE_i(1);  \
    WRITE_STATE_i(2);  \
    WRITE_STATE_i(3);  \
    WRITE_STATE_i(4);  \
    WRITE_STATE_i(5);  \
    WRITE_STATE_i(6);  \
    WRITE_STATE_i(7);  \
    WRITE_STATE_i(8);  \
    WRITE_STATE_i(9);  \
    WRITE_STATE_i(10); \
    WRITE_STATE_i(11); \
    WRITE_STATE_i(12); \
    WRITE_STATE_i(13); \
    WRITE_STATE_i(14); \
    WRITE_STATE_i(15); \
    WRITE_STATE_i(16)

/**************************************************************************/

/* gamma, shift-invariant transformation a[i] XOR (a[i+1] OR NOT a[i+2]) */

#define gamma_in_(i)   state_##i
#define gamma_out_(i)  gamma_##i

#define GAMMA_i(i, i_plus_1, i_plus_2)  \
                                        \
    gamma_out_(i) = gamma_in_(i) ^ (gamma_in_(i_plus_1) | ~gamma_in_(i_plus_2))


#define GAMMA            \
                         \
    GAMMA_i( 0,  1,  2); \
    GAMMA_i( 1,  2,  3); \
    GAMMA_i( 2,  3,  4); \
    GAMMA_i( 3,  4,  5); \
    GAMMA_i( 4,  5,  6); \
    GAMMA_i( 5,  6,  7); \
    GAMMA_i( 6,  7,  8); \
    GAMMA_i( 7,  8,  9); \
    GAMMA_i( 8,  9, 10); \
    GAMMA_i( 9, 10, 11); \
    GAMMA_i(10, 11, 12); \
    GAMMA_i(11, 12, 13); \
    GAMMA_i(12, 13, 14); \
    GAMMA_i(13, 14, 15); \
    GAMMA_i(14, 15, 16); \
    GAMMA_i(15, 16,  0); \
    GAMMA_i(16,  0,  1)

/**************************************************************************/

/* pi, permute and cyclicly rotate the state words */

#define pi_in_(i)   gamma_##i
#define pi_out_(i)  pi_##i

#define PI_i(i, j, k)  pi_out_(i) = tau(pi_in_(j), k)


#define PI                  \
                            \
    pi_out_(0) = pi_in_(0); \
    PI_i( 1,  7,  1);       \
    PI_i( 2, 14,  3);       \
    PI_i( 3,  4,  6);       \
    PI_i( 4, 11, 10);       \
    PI_i( 5,  1, 15);       \
    PI_i( 6,  8, 21);       \
    PI_i( 7, 15, 28);       \
    PI_i( 8,  5,  4);       \
    PI_i( 9, 12, 13);       \
    PI_i(10,  2, 23);       \
    PI_i(11,  9,  2);       \
    PI_i(12, 16, 14);       \
    PI_i(13,  6, 27);       \
    PI_i(14, 13,  9);       \
    PI_i(15,  3, 24);       \
    PI_i(16, 10,  8)

/**************************************************************************/

/* theta, shift-invariant transformation a[i] XOR a[i+1] XOR a[i+4] */

#define theta_in_(i)   pi_##i
#define theta_out_(i)  theta_##i

#define THETA_i(i, i_plus_1, i_plus_4)  \
                                        \
    theta_out_(i) = theta_in_(i) ^ theta_in_(i_plus_1) ^ theta_in_(i_plus_4)


#define THETA            \
                         \
    THETA_i( 0,  1,  4); \
    THETA_i( 1,  2,  5); \
    THETA_i( 2,  3,  6); \
    THETA_i( 3,  4,  7); \
    THETA_i( 4,  5,  8); \
    THETA_i( 5,  6,  9); \
    THETA_i( 6,  7, 10); \
    THETA_i( 7,  8, 11); \
    THETA_i( 8,  9, 12); \
    THETA_i( 9, 10, 13); \
    THETA_i(10, 11, 14); \
    THETA_i(11, 12, 15); \
    THETA_i(12, 13, 16); \
    THETA_i(13, 14,  0); \
    THETA_i(14, 15,  1); \
    THETA_i(15, 16,  2); \
    THETA_i(16,  0,  3)

/**************************************************************************/

/* sigma, merge two buffer stages with current state */

#define sigma_in_(i)   theta_##i
#define sigma_out_(i)  state_##i

#define SIGMA_L_i(i)  sigma_out_(i) = sigma_in_(i) ^ L->word[i-1]
#define SIGMA_B_i(i)  sigma_out_(i) = sigma_in_(i) ^ b->word[i-9]


#define SIGMA      \
                   \
    sigma_out_(0) = sigma_in_(0) ^ 0x00000001L; \
                   \
    SIGMA_L_i(1);  \
    SIGMA_L_i(2);  \
    SIGMA_L_i(3);  \
    SIGMA_L_i(4);  \
    SIGMA_L_i(5);  \
    SIGMA_L_i(6);  \
    SIGMA_L_i(7);  \
    SIGMA_L_i(8);  \
                   \
    SIGMA_B_i(9);  \
    SIGMA_B_i(10); \
    SIGMA_B_i(11); \
    SIGMA_B_i(12); \
    SIGMA_B_i(13); \
    SIGMA_B_i(14); \
    SIGMA_B_i(15); \
    SIGMA_B_i(16)

/**************************************************************************/

/* lambda, update the 256-bit wide by 32-stage LFSR buffer */

#define LAMBDA_25_i(i)  \
  ptap_25->word[i] = ptap_25->word[i] ^ ptap_0->word[(i+2) & (PAN_STAGE_SIZE-1)]

#define LAMBDA_0_i(i, source)  ptap_0->word[i] = source ^ ptap_0->word[i]


#define LAMBDA_25_UPDATE \
                         \
    LAMBDA_25_i(0);      \
    LAMBDA_25_i(1);      \
    LAMBDA_25_i(2);      \
    LAMBDA_25_i(3);      \
    LAMBDA_25_i(4);      \
    LAMBDA_25_i(5);      \
    LAMBDA_25_i(6);      \
    LAMBDA_25_i(7)

#define LAMBDA_0_PULL       \
                            \
    LAMBDA_0_i(0, state_1); \
    LAMBDA_0_i(1, state_2); \
    LAMBDA_0_i(2, state_3); \
    LAMBDA_0_i(3, state_4); \
    LAMBDA_0_i(4, state_5); \
    LAMBDA_0_i(5, state_6); \
    LAMBDA_0_i(6, state_7); \
    LAMBDA_0_i(7, state_8)

#define LAMBDA_0_PUSH          \
                               \
    LAMBDA_0_i(0, L->word[0]); \
    LAMBDA_0_i(1, L->word[1]); \
    LAMBDA_0_i(2, L->word[2]); \
    LAMBDA_0_i(3, L->word[3]); \
    LAMBDA_0_i(4, L->word[4]); \
    LAMBDA_0_i(5, L->word[5]); \
    LAMBDA_0_i(6, L->word[6]); \
    LAMBDA_0_i(7, L->word[7])

/* avoid temporary register for tap 31 by finishing updating tap 25 before updating tap 0 */
#define LAMBDA_PULL   \
    LAMBDA_25_UPDATE; \
    LAMBDA_0_PULL

#define LAMBDA_PUSH   \
    LAMBDA_25_UPDATE; \
    LAMBDA_0_PUSH

/**************************************************************************/

#define regs(i)  state_##i, gamma_##i, pi_##i, theta_##i

/**************************************************************************/




/**************************************************************************+
*                         Panama external routines                         *
+**************************************************************************/


/**************************************************************************+
*
*  pan_pull() - Performs multiple iterations of the Panama 'Pull' operation.
*               The input and output arrays are treated as integer multiples 
*               of Panama's natural 256-bit block size.
*
*               Input and output arrays may be disjoint or coincident but 
*               may not be overlapped if offset from one another.
*
*               If 'In' is a NULL pointer then output is taken direct from 
*               the state machine (used for hash output). If 'Out' is a NULL 
*               pointer then a dummy 'Pull' is performed. Otherwise 'In' is 
*               XOR combined with the state machine to produce 'Out' 
*               (used for stream encryption / decryption).
*
+**************************************************************************/

static void pan_pull(word32 * restrict In,	/* input array                   */
	      word32 * restrict Out,	/* output array                  */
	      word32 pan_blocks,	/* number of blocks to be Pulled */
	      PAN_BUFFER * restrict buffer,	/* LFSR buffer                   */
	      PAN_STATE * restrict state)
{				/* 17-word finite-state machine  */
	int i;

	word32 regs(0), regs(1), regs(2), regs(3), regs(4);
	word32 regs(5), regs(6), regs(7), regs(8), regs(9);
	word32 regs(10), regs(11), regs(12), regs(13), regs(14);
	word32 regs(15), regs(16);

	word32 tap_0;
	PAN_STAGE *restrict ptap_0, *restrict ptap_25;
	PAN_STAGE *restrict L, *restrict b;

	/* configure routine according to which PULL mode is intended */
	static word32 null_in[PAN_STAGE_SIZE] = { 0, 0, 0, 0, 0, 0, 0, 0 };
	word32 dummy_out[PAN_STAGE_SIZE];
	word32 in_step, out_step;

	in_step = out_step = PAN_STAGE_SIZE;

	if (In == NULL || Out == NULL) {
		In = null_in;
		in_step = 0;
	}

	if (Out == NULL) {
		Out = dummy_out;
		out_step = 0;
	}

	/* copy buffer pointers and state to registers */
	tap_0 = buffer->tap_0;
	READ_STATE;

	/* rho, cascade of state update operations */

	for (i = 0; i < pan_blocks; i++) {
		/* apply state output to crypto buffer */
		Out[0] = In[0] ^ gamma_in_(9);
		Out[1] = In[1] ^ gamma_in_(10);
		Out[2] = In[2] ^ gamma_in_(11);
		Out[3] = In[3] ^ gamma_in_(12);
		Out[4] = In[4] ^ gamma_in_(13);
		Out[5] = In[5] ^ gamma_in_(14);
		Out[6] = In[6] ^ gamma_in_(15);
		Out[7] = In[7] ^ gamma_in_(16);

		Out += out_step;
		In += in_step;

		GAMMA;		/* perform non-linearity stage */

		PI;		/* perform bit-dispersion stage */

		THETA;		/* perform diffusion stage */

		/* calculate pointers to taps 4 and 16 for sigma based on current position of tap 0 */
		L = &buffer->stage[(tap_0 + 4) & (PAN_STAGES - 1)];
		b = &buffer->stage[(tap_0 + 16) & (PAN_STAGES - 1)];

		/* move tap_0 left by one stage, equivalent to shifting LFSR one stage right */
		tap_0 = (tap_0 - 1) & (PAN_STAGES - 1);

		/* set tap pointers for use by lambda */
		ptap_0 = &buffer->stage[tap_0];
		ptap_25 = &buffer->stage[(tap_0 + 25) & (PAN_STAGES - 1)];

		LAMBDA_PULL;	/* update the LFSR buffer */

		/* postpone sigma until after lambda in order to avoid extra temporaries for feedback path */
		/* note that sigma gets to use the old positions of taps 4 and 16 */

		SIGMA;		/* perform buffer injection stage */
	}

	/* write buffer pointer and state back to memory */
	buffer->tap_0 = tap_0;
	WRITE_STATE;
}


/**************************************************************************+
*
*  pan_push() - Performs multiple iterations of the Panama 'Push' operation.
*               The input array is treated as an integer multiple of the 
*               256-bit blocks which are Panama's natural input size.
*
+**************************************************************************/

static void pan_push(word32 * restrict In,	/* input array                   */
	      word32 pan_blocks,	/* number of blocks to be Pushed */
	      PAN_BUFFER * restrict buffer,	/* LFSR buffer                   */
	      PAN_STATE * restrict state)
{				/* 17-word finite-state machine  */
	int i;

	word32 regs(0), regs(1), regs(2), regs(3), regs(4);
	word32 regs(5), regs(6), regs(7), regs(8), regs(9);
	word32 regs(10), regs(11), regs(12), regs(13), regs(14);
	word32 regs(15), regs(16);

	word32 tap_0;
	PAN_STAGE *restrict ptap_0, *restrict ptap_25;
	PAN_STAGE *restrict L, *restrict b;

	/* copy buffer pointers and state to registers */
	tap_0 = buffer->tap_0;
	READ_STATE;

/*	assert((word32 *) ((PAN_STAGE *) In) == In); */
	L = (PAN_STAGE *) In;	/* we assume pointer to input buffer is compatible with pointer to PAN_STAGE */

#ifdef WORDS_BIGENDIAN
	if (L != NULL)
		for (i = 0; i < PAN_STAGE_SIZE; i++) {
			L->word[i] = byteswap32(L->word[i]);
		}
#endif

	/* rho, cascade of state update operations */

	for (i = 0; i < pan_blocks; i++) {
		GAMMA;		/* perform non-linearity stage */

		PI;		/* perform bit-dispersion stage */

		THETA;		/* perform diffusion stage */


		/* calculate pointer to tap 16 for sigma based on current position of tap 0 */
		b = &buffer->stage[(tap_0 + 16) & (PAN_STAGES - 1)];

		/* move tap_0 left by one stage, equivalent to shifting LFSR one stage right */
		tap_0 = (tap_0 - 1) & (PAN_STAGES - 1);

		/* set tap pointers for use by lambda */
		ptap_0 = &buffer->stage[tap_0];
		ptap_25 = &buffer->stage[(tap_0 + 25) & (PAN_STAGES - 1)];

		LAMBDA_PUSH;	/* update the LFSR buffer */

		/* postpone sigma until after lambda in order to avoid extra temporaries for feedback path */
		/* note that sigma gets to use the old positions of taps 4 and 16 */

		SIGMA;		/* perform buffer injection stage */

		L++;		/* In += PAN_STAGE_SIZE; */
	}

	/* write buffer pointer and state back to memory */
	buffer->tap_0 = tap_0;
	WRITE_STATE;

}


/**************************************************************************+
*
*  pan_reset() - Initializes an LFSR buffer and Panama state machine to 
*                all zeros, ready for a new hash to be accumulated or to 
*                re-synchronize or start up an encryption key-stream.
*
+**************************************************************************/

static void pan_reset(PAN_BUFFER * buffer, PAN_STATE * state)
{
	int i, j;

	buffer->tap_0 = 0;

	for (j = 0; j < PAN_STAGES; j++) {
		for (i = 0; i < PAN_STAGE_SIZE; i++) {
			buffer->stage[j].word[i] = 0L;
		}
	}

	for (i = 0; i < PAN_STATE_SIZE; i++) {
		state->word[i] = 0L;
	}
}


/**************************************************************************+
*
*  pan_crypt() - Performs stream encryption or decryption.
*
+**************************************************************************/

WIN32DLL_DEFINE
    int _mcrypt_set_key(PANAMA_KEY * pan_key, char *in_key, int keysize,
			char *init_vec, int vecsize)
{
	byte key[32];
	int keyblocks = (8 * keysize) / (PAN_STAGE_SIZE * WORDLENGTH);
	int vecblocks = (8 * vecsize) / (PAN_STAGE_SIZE * WORDLENGTH);
	int i;

	pan_key->keymat = (void*) pan_key->wkeymat;

/* initialize the Panama state machine for a fresh crypting operation */
	pan_reset(&pan_key->buffer, &pan_key->state);
	pan_push((void *) in_key, keyblocks, &pan_key->buffer,
		 &pan_key->state);
	if (init_vec != NULL)
		pan_push((void *) init_vec, vecblocks, &pan_key->buffer,
			 &pan_key->state);

	pan_pull(NULL, NULL, 32, &pan_key->buffer, &pan_key->state);

	pan_pull(NULL, pan_key->wkeymat, 1, &pan_key->buffer,
		 &pan_key->state);
	pan_key->keymat_pointer = 0;

#ifdef WORDS_BIGENDIAN
	for (i = 0; i < 8; i++) {

		pan_key->wkeymat[i] =
		    byteswap32( pan_key->wkeymat[i]);
	}
#endif

	return 0;
}

WIN32DLL_DEFINE void _mcrypt_encrypt(PANAMA_KEY * pan_key,	/* the key from pan_init */
				     byte * buf,	/* input array                         */
				     int length)
{				/* length to be encrypted, in bits     */
	int i;
#ifdef WORDS_BIGENDIAN
	int j;
#endif

/* initialize the Panama state machine for a fresh crypting operation */
	for (i = 0; i < length; i++) {

		if (pan_key->keymat_pointer == 32) {
			pan_pull(NULL, (void *) pan_key->wkeymat, 1,
				 &pan_key->buffer, &pan_key->state);
			pan_key->keymat_pointer = 0;
#ifdef WORDS_BIGENDIAN
			for (j = 0; j < 8; j++) {
				pan_key->wkeymat[j] =
				    byteswap32( pan_key->wkeymat[j]);
			}
#endif
		}
		buf[i] ^= pan_key->keymat[pan_key->keymat_pointer];
		pan_key->keymat_pointer++;
	}
}

WIN32DLL_DEFINE void _mcrypt_decrypt(PANAMA_KEY * pan_key,	/* the key from pan_init */
				     byte * buf,	/* input array                         */
				     int length)
{				/* length to be encrypted, in bits     */
	_mcrypt_encrypt(pan_key, buf, length);
}

/**************************************************************************/


WIN32DLL_DEFINE int _mcrypt_get_size()
{
	return sizeof(PANAMA_KEY);
}
WIN32DLL_DEFINE int _mcrypt_get_block_size()
{
	return 1;
}
WIN32DLL_DEFINE int _mcrypt_get_algo_iv_size()
{
	return 32;
}
WIN32DLL_DEFINE int _is_block_algorithm()
{
	return 0;
}
WIN32DLL_DEFINE int _mcrypt_get_key_size()
{
	return 32;
}

static const int key_sizes[] = { 32 };
WIN32DLL_DEFINE const int *_mcrypt_get_supported_key_sizes(int *len)
{
	*len = sizeof(key_sizes)/sizeof(int);
	return key_sizes;

}

WIN32DLL_DEFINE char *_mcrypt_get_algorithms_name()
{
return "PANAMA";
}

#define CIPHER "d76e3c2243feadd2c99edfcb95c64c852ba6c59f"

WIN32DLL_DEFINE int _mcrypt_self_test()
{
	char *keyword;
	unsigned char plaintext[20];
	unsigned char ciphertext[20];
	int blocksize = 20, j;
	void *key;
	unsigned char cipher_tmp[200];

	keyword = calloc(1, _mcrypt_get_key_size());
	if (keyword == NULL)
		return -1;

	for (j = 0; j < _mcrypt_get_key_size(); j++) {
		keyword[j] = ((j * 2 + 10) % 256);
	}

	for (j = 0; j < blocksize; j++) {
		plaintext[j] = j % 256;
	}
	key = malloc(_mcrypt_get_size());
	if (key == NULL) {
		free(keyword);
		return -1;
	}

	memcpy(ciphertext, plaintext, blocksize);

	_mcrypt_set_key(key, (void *) keyword, _mcrypt_get_key_size(),
			NULL, 0);
	_mcrypt_encrypt(key, (void *) ciphertext, blocksize);

	for (j = 0; j < blocksize; j++) {
		sprintf(&((char *) cipher_tmp)[2 * j], "%.2x",
			ciphertext[j]);
	}

	if (strcmp((char *) cipher_tmp, CIPHER) != 0) {
		printf("failed compatibility\n");
		printf("Expected: %s\nGot: %s\n", CIPHER,
		       (char *) cipher_tmp);
		free(keyword);
		free(key);
		return -1;
	}

	_mcrypt_set_key(key, (void *) keyword, _mcrypt_get_key_size(),
			NULL, 0);
	free(keyword);

	_mcrypt_decrypt(key, (void *) ciphertext, blocksize);
	free(key);

	if (strcmp(ciphertext, plaintext) != 0) {
		printf("failed internally\n");
		return -1;
	}

	return 0;
}

WIN32DLL_DEFINE word32 _mcrypt_algorithm_version(void)
{
	return 20010801;
}

#ifdef WIN32
# ifdef USE_LTDL
WIN32DLL_DEFINE int main (void)
{
       /* empty main function to avoid linker error (see cygwin FAQ) */
}
# endif
#endif