1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/**********************************************************
TEA - Tiny Encryption Algorithm
Feistel cipher by David Wheeler & Roger M. Needham
(extended version)
**********************************************************/
/* $Id: xtea.c,v 1.13 2003/01/19 17:48:27 nmav Exp $ */
/* modified in order to use the libmcrypt API by Nikos Mavroyanopoulos
* All modifications are placed under the license of libmcrypt.
*/
#include <libdefs.h>
#include <mcrypt_modules.h>
#define _mcrypt_set_key xtea_LTX__mcrypt_set_key
#define _mcrypt_encrypt xtea_LTX__mcrypt_encrypt
#define _mcrypt_decrypt xtea_LTX__mcrypt_decrypt
#define _mcrypt_get_size xtea_LTX__mcrypt_get_size
#define _mcrypt_get_block_size xtea_LTX__mcrypt_get_block_size
#define _is_block_algorithm xtea_LTX__is_block_algorithm
#define _mcrypt_get_key_size xtea_LTX__mcrypt_get_key_size
#define _mcrypt_get_supported_key_sizes xtea_LTX__mcrypt_get_supported_key_sizes
#define _mcrypt_get_algorithms_name xtea_LTX__mcrypt_get_algorithms_name
#define _mcrypt_self_test xtea_LTX__mcrypt_self_test
#define _mcrypt_algorithm_version xtea_LTX__mcrypt_algorithm_version
#define ROUNDS 32
#define DELTA 0x9e3779b9 /* sqr(5)-1 * 2^31 */
/**********************************************************
Input values: k[4] 128-bit key
v[2] 64-bit plaintext block
Output values: v[2] 64-bit ciphertext block
**********************************************************/
WIN32DLL_DEFINE
int _mcrypt_set_key(word32 * k, word32 * input_key, int len)
{
k[0] = 0;
k[2] = 0;
k[1] = 0;
k[3] = 0;
memmove(k, input_key, len);
return 0;
}
WIN32DLL_DEFINE void _mcrypt_encrypt(word32 * k, word32 * v)
{
#ifdef WORDS_BIGENDIAN
word32 y = v[0], z = v[1];
#else
word32 y = byteswap32(v[0]), z = byteswap32(v[1]);
#endif
word32 limit, sum = 0;
int N = ROUNDS;
limit = DELTA * N;
#ifdef WORDS_BIGENDIAN
while (sum != limit) {
y += (((z << 4) ^ (z >> 5)) + z) ^ (sum + k[sum & 3]);
sum += DELTA;
z += (((y << 4) ^ (y >> 5)) + y) ^ (sum +
k[(sum >> 11) & 3]);
}
#else
while (sum != limit) {
y += (((z << 4) ^ (z >> 5)) + z) ^ (sum +
byteswap32(k
[sum & 3]));
sum += DELTA;
z += (((y << 4) ^ (y >> 5)) + y) ^ (sum +
byteswap32(k
[(sum >>
11) &
3]));
}
#endif
#ifdef WORDS_BIGENDIAN
v[0] = y;
v[1] = z;
#else
v[0] = byteswap32(y);
v[1] = byteswap32(z);
#endif
}
WIN32DLL_DEFINE void _mcrypt_decrypt(word32 * k, word32 * v)
{
#ifdef WORDS_BIGENDIAN
word32 y = v[0], z = v[1];
#else
word32 y = byteswap32(v[0]), z = byteswap32(v[1]);
#endif
word32 limit, sum = 0;
int N = (-ROUNDS);
limit = DELTA * N;
#ifdef WORDS_BIGENDIAN
sum = DELTA * (-N);
while (sum) {
z -= (((y << 4) ^ (y >> 5)) + y) ^ (sum +
k[(sum >> 11) & 3]);
sum -= DELTA;
y -= (((z << 4) ^ (z >> 5)) + z) ^ (sum + k[sum & 3]);
#else
sum = DELTA * (-N);
while (sum) {
z -= (((y << 4) ^ (y >> 5)) + y) ^ (sum +
byteswap32(k
[(sum >>
11) &
3]));
sum -= DELTA;
y -= (((z << 4) ^ (z >> 5)) + z) ^ (sum +
byteswap32(k
[sum & 3]));
#endif
}
#ifdef WORDS_BIGENDIAN
v[0] = y;
v[1] = z;
#else
v[0] = byteswap32(y);
v[1] = byteswap32(z);
#endif
}
/*
void _mcrypt_encrypt(word32 * k, word32 * v)
{
_mcrypt_tean(k, v, ROUNDS);
}
void _mcrypt_decrypt(word32 * k, word32 * v)
{
_mcrypt_tean(k, v, -ROUNDS);
}
*/
WIN32DLL_DEFINE int _mcrypt_get_size()
{
return 4 * sizeof(word32);
}
WIN32DLL_DEFINE int _mcrypt_get_block_size()
{
return 8;
}
WIN32DLL_DEFINE int _is_block_algorithm()
{
return 1;
}
WIN32DLL_DEFINE int _mcrypt_get_key_size()
{
return 16;
}
static const int key_sizes[] = { 16 };
WIN32DLL_DEFINE const int *_mcrypt_get_supported_key_sizes(int *len)
{
*len = sizeof(key_sizes)/sizeof(int);
return key_sizes;
}
WIN32DLL_DEFINE const char *_mcrypt_get_algorithms_name()
{
return "xTEA";
}
#define CIPHER "f61e7ff6da7cdb27"
WIN32DLL_DEFINE int _mcrypt_self_test()
{
char *keyword;
unsigned char plaintext[16];
unsigned char ciphertext[16];
int blocksize = _mcrypt_get_block_size(), j;
void *key;
unsigned char cipher_tmp[200];
keyword = calloc(1, _mcrypt_get_key_size());
if (keyword == NULL)
return -1;
for (j = 0; j < _mcrypt_get_key_size(); j++) {
keyword[j] = ((j * 2 + 10) % 256);
}
for (j = 0; j < blocksize; j++) {
plaintext[j] = j % 256;
}
key = malloc(_mcrypt_get_size());
if (key == NULL)
return -1;
memcpy(ciphertext, plaintext, blocksize);
_mcrypt_set_key(key, (void *) keyword, _mcrypt_get_key_size());
free(keyword);
_mcrypt_encrypt(key, (void *) ciphertext);
for (j = 0; j < blocksize; j++) {
sprintf(&((char *) cipher_tmp)[2 * j], "%.2x",
ciphertext[j]);
}
if (strcmp((char *) cipher_tmp, CIPHER) != 0) {
printf("failed compatibility\n");
printf("Expected: %s\nGot: %s\n", CIPHER,
(char *) cipher_tmp);
free(key);
return -1;
}
_mcrypt_decrypt(key, (void *) ciphertext);
free(key);
if (strcmp(ciphertext, plaintext) != 0) {
printf("failed internally\n");
return -1;
}
return 0;
}
WIN32DLL_DEFINE word32 _mcrypt_algorithm_version()
{
return 20010801;
}
#ifdef WIN32
# ifdef USE_LTDL
WIN32DLL_DEFINE int main (void)
{
/* empty main function to avoid linker error (see cygwin FAQ) */
}
# endif
#endif
|